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Abstract. While wireless access networks are rapidly evolving, constantly 
increasing both in coverage and offered bandwidth, the vision for Next 
Generation Wireless Networks (NGWNs) encompasses a core network 
incorporating various Radio Access Technologies (RATs) in a unified and 
seamless manner. In such an environment, providers with multi-RAT 
technologies will aim at the maximization of the satisfaction of their 
subscribers, while attempting to avoid overloading their subsystems. In this 
paper we deal with the network selection problem in a multi-RAT environment 
where users are equipped with multimode terminals. We introduce a utility-
based optimization function and formulate the problem of allocating user 
terminals to RATs as an optimization problem under demand and capacity 
constraints. This problem is recognized as NP-hard and we propose an optimal 
Branch and Bound (BB) algorithm, as well as a greedy heuristic which exploits 
a metric that measures the utility gained versus the resource spent for each 
allocation. BB manages to significantly reduce the search procedure, while 
greedy produces optimal allocation results similar to BB but with very low 
computational cost. 

Keywords: Next Generation Wireless Networks, network selection, 
optimization, Branch and Bound. 

1 Introduction 

Cellular networks have developed significantly in the past decade from voice-mainly 
2G systems to voice and data 3G networks, mainly suitable for high coverage but with 
relatively low to higher bandwidth. On the other hand, Wireless LAN technology has 
emerged as an omnipresent technology, offering very high bandwidth compared to 
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cellular networks but significantly lower coverage. Apart from the aforementioned 
technologies, other wireless systems have also emerged, such as 802.16 [1], DVB and 
HSPA [2] [3]. 

NGWNs will be characterized by even higher bandwidth, e.g. LTE [4], along with 
the coexistence of various RATs. 3GPP has already developed a series of documents 
to deal with the 3G-WLAN coexistence, while the ΙΕΕΕ 1900.4 standard [5] describes 
the architecture and protocols for distributed decision making to optimize radio 
resource usage in heterogeneous wireless networks. In a multi-RAT environment, 
various issues are about to arise mainly due to such coexistence. According to the 
concept of being Always Best Connected (ABC) [6], the notion of “Best” can be 
represented by the satisfaction a user gains by using the network. In ABC networks, 
user satisfaction will become an important variable to successful network operation, 
since technological and market advancements will make it much easier for a user to 
migrate from one RAT to another within a single or multiple cooperating providers 
even on session level basis. 

In this paper we examine the network selection problem, which deals with the 
assignment of each terminal to the most suitable RAT and is similar to well-known 
NP-hard problems, such as the Knapsack and the Generalized Assignment Problems 
[7]. We follow the approach in [8] and formulate it as an optimization problem which 
attempts to maximize a utility-based objective function under requirement and 
capacity constraints. We develop a Branch and Bound (BB) algorithm and a Greedy 
heuristic which exploits the special characteristics of the problem. It turns out that the 
Greedy heuristic behaves quite well compared to the BB under various traffic loads 
with significant computational savings. 

The rest of this paper is organized as follows. In the next section we illustrate some 
related works. In Section 3, we briefly outline the system model of our study and 
formulate the optimization problem of access selection in multi-RAT environments. 
In Sections 4 and 5 we present the BB and the Greedy algorithms, while in Section 6 
we present our simulation results. The paper is concluded in Section 7. 

2 Related Work 

There has been numerous works that deal with the Network Selection problem in 
different ways. For example, in [9] users are assigned to subsystems, in order to 
minimize blocking probability and at the same time maximize the system capacity, 
while the formulation is done according to the Online Bin-Packing Problem. In a 
similar context, the authors in [10] study resource allocation in the context of ABC 
using the Knapsack Problem formulation. The overall goal is to maximize the users' 
utility, while taking their preferences and satisfaction into account, through a quality-
to-utility mapping.  

A thorough study on the utility theory to define an appropriate decision mechanism 
in the frame of the access network selection was made by the authors in [11] who 
proposed new single-criterion and multi-criteria utility forms to best capture the user 
satisfaction and sensitivity facing up to a bundle of access network characteristics. In 
[12], the authors point out the need of the existence of a Common Radio Resource 
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Management (CRRM) as a fundamental part of the upcoming next generation 
wireless systems. They formulate the problem as a Generalized Access Selection 
Problem (GASP) and expose the optimization criteria that define the solution. They 
also formulate a Strict version of the Access Selection Problem (SASP) and in order 
to obtain the solution they use a heuristic strategy based on a Genetic Algorithm 
(GA).  

In [13], users’ allocation is compared to a competition among group of users in 
different service areas to share the limited amount of bandwidth in the available 
wireless access networks. Eventually the problem is formulated as a dynamic 
evolutionary game where the evolutionary equilibrium is considered to be the solution 
to this game. Finally, in [14] the authors cast the problem as a non-cooperative game 
where users and access networks act selfishly according to their objectives while in 
[15] bandwidth allocation and admission control algorithms are presented based on 
the bankruptcy game.  

3 System Model and Problem Formulation 

A representation of the entities involved in the scope of this paper is depicted in     
Fig. 1. We assume that there is a specific server responsible for collecting all 
necessary measurements and reaching the required decisions, such as the CRRM 
entity described in [12]. Upon arrival, the users' requests are forwarded to the CRRM 
whose optimization module is responsible for assigning each user to an available 
RAT, or even allocating different portions of its requested rate to various RATs. 

Although the case of multiple providers can be formulated accordingly, we assume 
one provider offering network services, through a set of N RATs. Users arrive 
dynamically and are allocated resources from some RAT for a limited period of time, 
and then depart, releasing the occupied resources from that RAT. We denote the 
currently available data rate capacity of RAT j as Cj, j = 1,…,N. We assume that each 
user i declares upon arrival its data rate requirements RDi, along with Si ⊂ {1,…,N}, the 
preferable set of RATs, mainly to exclude some of the available RATs. Without loss of 
generality we assume that Si = {1,…,N}. When admitted to some RAT j, user i may be 
assigned rate Rij at that RAT, which may be less or equal to the requested rate RDi. 

HWN 

CRRM 

Optimization 
model 

RAT 1 

RAT 2 

User 1 

User 2 

RAT N 
User M 

 

Fig. 1. Network selection model 
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To capture the gratification level of user i when served by some RAT j, we use 
utility function U(Rij,RDi), which measures the normalized satisfaction of user i by 
taking into account the rate Rij assigned at RAT j compared to the rate requested by 
the user. Thus, when a user gets exactly the rate requested, the utility should be high, 
while if the user is not accepted at some RAT the corresponding utility should be low. 
Users can then be differentiated by the way utility varies with respect to the rate 
assigned with normalized values ranging from zero (if zero rate is assigned) to one (if 
the requested rate is assigned). Below we define three different kinds of users: 

• Linear-Expectation users (LEU) gain satisfaction that grows proportionally to the 
rate assigned. In this case, we assume that the utility function is a linear function of 
the rate assigned. 

• High-Expectation users (HEU) are willing to spend a large amount of money but 
are very demanding regarding the level of service they get. In this case, the utility 
function should produce very low utility values, when they are assigned low rates 
compared to the rates requested, and should gradually increase only when the rates 
assigned approach the values of their requests. 

• Between the two extremes we can define a class of users that are less demanding 
than HEU but more demanding than LEU. We will refer to these users as Mid-
Expectation users (MEU). 

We use the following utility functions for LEU, MEU and HEU users, respectively: 
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The plots of these functions are also shown in Fig. 2. For example, if a HEU is 
requesting a rate of 256Kbps and the possible rates at some RAT are 128Kbps and 
256Kbps, depending on the prevailing network conditions, the corresponding utility 
gain is 0.0625 and 1.00 when the lower or higher rate is assigned, respectively. 

 

Fig. 2. Utility functions for LEU, MEU and HEU users 
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We can now formulate the network selection problem as follows: 
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Equations (1) and (3) stand for the capacity constraints and the requirement constraints, 
respectively, while xij is an indicator variable that prohibits users from getting rate from 
more than one RATs. This policy corresponds to a scenario where no more than one 
hardware interface can be open at each multimode terminal.  Finally, we assume that, 
even if a RAT supports more than one possible rates for user i of some class requesting 
rate RDi, the problem is formulated after the final decision on the offered rate Rij ≤RDi is 
taken based on the current traffic conditions at that RAT. 

4 Branch and Bound 

BB is designed to treat the above optimization problem under the last assumption of 
the previous section, namely when the rate and the corresponding utility gained by 
each RAT j for a specific user request i are known in advance and form two M×N 
matrices R=[Rij] and U=[Uij]. The algorithm takes as input these two matrices and 
vector C=[Cj] with the available capacity of each RAT and its goal is to find, among 
all the possible assignments, the optimal assignment of all user requests to RATs 
which maximizes the utility function. Assuming that every user i=1,…,M can, 
theoretically, connect to every RAT j=1,…,N, all possible assignments form a feasible 
state space of NM states. 

A search algorithm starts developing the feasible solutions tree by creating all 
possible assignments of users to RATs, examining users one by one and considering 
user i at step i, i=1,…,M. The algorithm keeps track of all the feasible assignments in 
the form of paths along the solution tree. It begins by assigning the first user to all 
possible RATs, thus creating the first N paths which are stored in set S1. At the next 
step, it attempts to extend the N existing paths, by adding to each existing path one 
new assignment of the current step user to one of the N RATs, thus creating N×N 
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paths which are stored in set S2. This exhaustive procedure will finally create the full 
state space of NM paths stored in SM. It is obvious that an exhaustive search is 
intractable and thus we employ a branch-and-bound technique to limit our search and 
avoid the extension of some of the existing paths of set Sk-1 at step k. 

The main condition for avoiding the unnecessary extension of some paths is based 
on the following idea. It is not necessary to further extend a path of set Sk-1 if the sum 
of the utility gained up to step k-1 for that path and the maximum possible utility that 
can be obtained from the next M-k+1 steps is less than the utility gained up to step k-1 
by some other path in Sk-1. More formally, at step k of the algorithm we can define an 
upper bound Ūk of the maximum utility which may be achieved in the remaining steps 
k+1, …,M of the algorithm as: 

max( ) .k ij
j

i k

U U
>

=∑  
(5)

Note that this is an upper bound which may not be achievable because the 
corresponding solution path may not be feasible due to some other problem 
constraint. If we now denote by Uk

(p) the utility gained from path p of set Sk, including 
the assignment during step k, then the extension of path p is excluded from the next 
steps of the algorithm if the following inequality holds: 

( ) ( )max .p q
k k k

q
U U U≤ −  (6)

Indeed if this inequality holds for path p, then the total possible achievable utility 
including the remaining steps of the algorithm will be less than the utility already 
gained by some other path q without considering the remaining steps of the algorithm. 

Additional checks for reducing the number of paths to extend at step k of the 
algorithm are imposed by the capacity constraints of (1). According to these, at step k 
the extension of some path p of set Sk-1 is performed for RAT j only if the existing 
RAT capacity is greater than or equal to rate Rkj. If we denote by Cj

(k,p) the capacity 
consumed by RAT j in path p until step k-1, then the extension of path p, by assigning 
user k at RAT j, is excluded if the following inequality holds: 

( , ) .k p
kj j jR C C> −  

We will use the example below to illustrate the behavior of BB algorithm, where we 
assume that there are N=2 RATs and M=3 users. The data in the following matrices 
which are fed as input to the algorithm are used only for the sake of the example: 

1 3 1 1
2

1 2 , 1 1 ,
2

1 1 1 1

U R C
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We can construct the upper bound Ūk, k=1,…,M in advance as follows: 
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Each node of the solution tree is represented at step k by a triplet [ai],[Cj-Cj
(k,p)],Uk

(p). 
[ai] is the 1x3 allocation vector, whose values denote the RAT user i is allocated to, 
and corresponds to some path p. [Cj-Cj

(k,p)] is the 1x2 vector of the remaining capacity 
in each RAT, while Uk

(p) is the utility gained so far if allocations are made as shown in 
the allocation vector.  

 [0,0,0], [2,2],0 

[1,0,0], [1,2],1 

[1,2,0], [1,1],3 [1,1,0], [0,2],2 [2,2,0], [2,0],5 [2,1,0] [1,1],4 

[2,0,0], [2,1],3 U1=3 

[2,2,1], [1,0],6 [2,2,2], [2,-1],6 

U2=1 

 

Fig. 3. Branch and Bound algorithm example 

As we can see in Fig. 3, if the first user is allocated at the first RAT [1,0,0] at step 
1, and the second user is allocated at the first RAT [1,1,0] as well at step 2, then the 
total utility gained so far at step 2 is 2. However, the best that we could achieve at 
step 2 is maxqUk

(q) = 5, in case both users are allocated to the second RAT and the 
maximum utility that the algorithm can achieve in the remaining third step is Ū2 = 1. 
Thus the path corresponding to allocation [1,1,0] is not further extended because (6) 
holds for that path. The same inequality holds also for the paths corresponding to 
allocations [1,2,0] and [2,1,0] and these paths are excluded from further expansion in 
step 3. 

Finally, at the last step we illustrate how the capacity constraint is violated if the 
third user is allocated to the second RAT and thus this solution is excluded from the 
feasible set, rendering an optimum solution with allocation vector [2,2,1] and total 
utility value 6. 

5 Greedy Heuristic 

BB significantly reduces the computational cost compared to the exhaustive search 
procedure, and is useful for obtaining optimum solutions to compare with other non-
optimal algorithms. Nevertheless, its time complexity, even for small problem 
instances, is prohibitive for problems which require finding a solution within 
reasonable time limits, as the one studied in this paper. Thus, it is necessary to devise 
heuristics that are computationally efficient and can produce near-optimum solutions. 
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Our greedy heuristic exploits the special characteristics of the problems and favors 
allocations of users to RATs that produce higher utility values, with relatively low 
RATs capacity consumption. The algorithm uses the ratio utility gained per resource 
used γij = Uij/Rij which is actually a measure of the utility that will be gained if user i 
is allocated to RAT j. So, instead of favoring allocations with high utility values, this 
heuristic favors allocations which yield higher values for this metric. Ties are resolved 
by favoring the allocation with the higher utility value. 

The algorithm takes as input the same M×N matrices U and R and RAT capacity 
vector C and initially computes the M×N ratios γij, which are then sorted in a list in 
decreasing order of their values. The algorithm performs the allocation of the users to 
RATs in M steps, each step consisting of the following two phases: 

Phase 1:  the first element γij in the list of ratios is picked, and a check whether 
capacity constraints are violated is performed. If RAT j has greater capacity than Rij, 
then user i is allocated to RAT j, the available capacity of RAT j is reduced by Rij, and 
the algorithm proceeds to the second phase. Otherwise, user i cannot be allocated to 
RAT j, γij is removed from the list and the algorithm repeats phase 1. 

Phase 2: the remaining list of ratios is searched, and all the remaining γil ratios for 
user i that has been previously allocated to RAT j are removed from the list, l≠ j. 

This procedure is repeated M times until all M users are assigned to RATs, or the 
available capacities of all RATs are too low to accept a user. Since there are M users 
to assign and the length of the initial list is M×N, the time complexity of this heuristic 
is bounded by O(M2×N). 

6 Simulation Results 

Apart from BB and Greedy, we developed two Bin-Packing heuristics for comparing 
the efficiency of our algorithms. The first one is a variation of the First Fit (FF) 
strategy, while the second one is a variation of the Worse Fit (WF) strategy. Instead of 
using any utility based criterion for selecting the most appropriate RAT, both 
algorithms base their decisions only on rate requests and existing RAT capacities. FF 
assigns users to the first RAT that has enough capacity to accommodate the user 
requests, while WF assigns users requests to the RAT which will have the largest 
available capacity after the allocation.  

We consider a wireless environment composed of 2 different RATs, RAT-1 and 
RAT-2, with capacities 256kbps and 512kbps, respectively. We assume that each 
incoming user requests 128kbps and may be allocated part of the rate requested 
depending on the prevailing network conditions and the RAT which is hosting the 
request. In this way, we can simulate different situations, where RATs cannot support 
the total requested rate, either due to RAT technology constraints or due to network 
traffic or inefficient channel conditions. 

Table 1, summarizes the several combinations of rates assigned and utility gains 
under the different scenarios used in our study. Three different network conditions 
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were considered. Depending on the probability of being fair or bad the network 
conditions can be distinguished as propitious, balanced or ominous. When network 
conditions are fair the rate allocated is 64kbps at RAT-1 and 128kbps at RAT-2. 
Thus, RAT-1 supports only half of the requested rate, even when conditions are good, 
and this assumption is mainly due to RAT technology constraints. On the contrary, 
when network conditions are bad the arriving user gets only 32kbps (64kbps) if 
allocated to RAT-1 (RAT-2). This assumption is made mainly because network traffic 
is high or channel conditions are bad. 

Table 1. Rates assigned and utilities gained under different network conditions 

Propitious Network Conditions Fair - 70% Bad - 30% 

Balanced Network Conditions Fair - 50% Bad - 50% 

Ominous Network Conditions Fair - 30% Bad - 70% 

RAT RAT-1 RAT-2 RAT-1 RAT-2 

Rate Assigned 64 128 32 64 
LEU-Utility gained 0.5 1 0.25 0.5 

MEU-Utility gained 0.25 1 0.0625 0.25 

HEU-Utility gained 0.0625 1 0.003906 0.0625 

 
Each user request is statistically categorized as arriving when network conditions 

are fair or bad, and this statistical outcome is used as input to the algorithms. 
According to Table 1, if for example a HEU arrives when ominous network 
conditions prevail, there is 70% chance the network conditions to be bad and 30% 
chance to be fair. If the user is statistically categorized as arriving when bad networks 
conditions prevail, then the utility gained is 0.003906 if assigned at RAT-1 and 
0.0625 if assigned at RAT-2. 

We estimate the efficiency of BB in reducing the number of necessary searches 
until the optimum solution is found, by measuring the total number of nodes 
examined, compared to the total number of tree nodes examined by an exhaustive 
search procedure. In Table 2 we present the results on the pruning performed by BB 
until the optimum solution is found when we run the BB algorithm for each of the 
three kinds of users in every possible network condition. We do not include results for 
number of users below 8 because the reduction is negligible for very light traffic load. 
As we can see, significant reductions in the search procedure start to appear when the 
number of users exceeds 9. In any case, when the system is fully loaded the saving of 
BB climb up to 20% and more, reducing efficiently the number of the extended paths. 
However, when the system is overloaded, BB’s reduction of the search space is 
extremely high but the actual number of nodes examined remains quite high as well 
and cannot performed in real time. 
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Table 2. Total number of tree nodes examined 

Number of 
Users 8 9 10 11 12 13 14 15 16 17 18 

Exhaustive 
search 510 1022 2046 4094 8190 16382 32766 65534 131070 262142 524286 

Propitious Network Conditions 

LEU-BB 469 862 1514 2680 4429 6889 10090 15029 22348 28657 30401 

LEU-
Reduction 

(%) 
8 16 26 35 46 58 69 77 83 89 94 

MEU-BB 470 862 1590 2755 4504 6942 9987 14656 18733 19521 19582 

MEU-
Reduction 

(%) 
8 16 22 33 45 58 70 78 86 93 96 

HEU-BB 495 951 1753 3081 5138 8113 12081 16716 20663 21425 21486 

HEU-
Reduction 

(%) 
3 7 14 25 37 50 63 74 84 92 96 

Balanced Network Conditions 

LEU-BB 498 977 1902 3673 7020 13249 23170 37371 54614 69577 73429 

LEU-
Reduction 

(%) 
2.4 4.4 7 10 14 19 29 43 58 73 86 

MEU-BB 486 912 1603 2844 5002 8630 12024 16453 21384 21522 21522 

MEU-
Reduction 

(%) 
4.7 11 22 31 39 47 63 75 84 92 96 

HEU-BB 495 951 1693 2678 4426 7455 12560 20837 24659 24707 24708 

HEU-
Reduction 

(%) 
2.9 7 17 35 46 54 62 68 81 91 95 

Ominous Network Conditions 

LEU-BB 504 1000 1925 3692 6583 11637 20083 33380 44806 55783 61476 

LEU-
Reduction 

(%) 
1.2 2.2 5.9 9.8 20 29 39 49 66 79 88 

MEU-BB 494 966 1848 3452 5380 8505 13244 19667 26811 32489 32494 

MEU-
Reduction 

(%) 
3.1 5.5 9.7 16 34 48 60 70 80 88 94 

HEU-BB 509 1005 1371 2060 2447 3063 4013 4071 4137 4184 4189 

HEU-
Reduction 

(%) 
0,20 1.7 33 50 70 81 88 94 97 98 99 

Fig. 4, 5 and 6 depict the total utility gained by each algorithm examined (BB, 
Greedy, FF, WF) under increasing traffic load, for every different class of users 
(LEU, MEU, HEU) and every network condition assumed. The results obtained by 
BB are optimal and are used to evaluate the performance of the other heuristics. 
Greedy produces very good results like BB at low, medium and high traffic loads, and 
this is justified by the metric used for sorting the user requests. The metric attempts to 
maximize the utility gained per capacity used and yields optimal results in the above 
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example scenarios. On the other hand, FF and WF allocate user requests following the 
same pattern and behave relatively worse, since they do not take into consideration 
the corresponding utilities, but instead take into account only the rate requests and the 
available capacity at each RAT. 

 

(a) LEU (b) MEU 

 

(c) HEU 

Fig. 4. Total utility under ominous network conditions 

 

(a) LEU (b) MEU 

 

(c) HEU 

Fig. 5. Total utility under balanced network conditions 

 

(a) LEU 

 

(b) MEU 

 

(c) HEU 

Fig. 6. Total utility under propitious network conditions 

7 Conclusions 

In this paper we presented our work on the study of a multi-RAT environment. 
Specifically, we focused on the network selection problem where users are equipped 
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with multimode terminals. We formulated this problem as an optimization problem 
and introduced a utility-based optimization function. We proposed an optimal Branch 
and Bound algorithm and a greedy algorithm which exploits a metric that measures 
the utility gained versus the resource spent for each allocation. In order to verify their 
efficiency, we compared them against two simplified algorithms based on the Bin-
Packing problem, the First Fit and the Worse Fit algorithms. Our results showed that 
BB significantly reduces the search procedure and that the greedy heuristic is very 
efficient in achieving allocations of users to RATs that maximize utility values as BB 
does with much lower computational cost. However, even though the pruning of BB 
seems to be quite high for the settings of our simulation scenario, further investigation 
is necessary to reveal the dependency of the BB algorithm behavior on the parameters 
of the problem, namely the utility functions, RAT capacities and available RAT rates, 
and network conditions. 
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