
Designing Repeatable Experiments
on an Emulab Testbed

Andres Perez-Garcia, Christos Siaterlis, and Marcelo Masera

Institute for the Protection and Security of the Citizen
Joint Research Centre

Via E. Fermi 2749, 21027 Ispra (VA) Italy
{andres.perez-garcia,christos.siaterlis,marcelo.masera}@jrc.ec.europa.eu

Abstract. Emulation testbeds are increasingly used in an effort to pro-
mote repeatable experiments in the area of distributed systems and net-
working. In this paper we are studying how different design choices, e.g.
use of specific tools, can affect the repeatability of experiments of an
emulation testbed (e.g. based on the Emulab software).

Our study is based on multiple experiments that are checked for sta-
bility and consistency (e.g., repetition of the same experiment and mea-
surement of the mean and standard deviation of our metrics). The results
indicate that repeatability of quantitative results is possible, under a de-
gree of expected statistical variation. The event scheduling mechanism
of Emulab is proven to be accurate down to a sub-second granularity.
On the other hand we demonstrate that there are significant differences
between traffic generation tools in terms of consistent recreation of a
predefined traffic pattern and therefore experiment repeatability.

The main contribution of this study is that based on experimental
results we provide scientific proofs that Emulab as a platform can be
used for scientifically rigorous experiments for networking research. New
users of Emulab can benefit from this study by understanding that Emu-
lab’s scheduling mechanism, it’s built-in packet generators and Iperf can
sufficiently support repeatable experiments while TCPreplay cannot and
therefore an alternative tool, i.e. TCPivo should be used.

Keywords: emulation, network test-bed, repeatability, traffic genera-
tors.

1 Introduction

Emulation testbeds are increasingly used in an effort to address the lack of
scientific rigor [1] and realism as well as to promote repeatable experiments in
the area of distributed systems and networking [2]. The study of complex systems
or system of systems, e.g., the Internet, could be carried out by experimenting
with real systems, software simulators or hardware emulators. Experimentation
with real production systems suffers from the inability to control the experiment
environment in order to reproduce results. Furthermore if the study intends

I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 28–39, 2012.
c Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Designing Repeatable Experiments on an Emulab Testbed 29

to test the resilience or security of a system, concerns about potential side-
effects (faults and disruptions) to mission critical services rise. On the other
hand the development of a dedicated experimentation infrastructure with real
components is often economically prohibitive. Software based simulation would
then appear as the best solution but due to the diversity and complexity of
protocols, systems and architectures of the Internet hardware-based emulation
is considered a flexible and powerful approach [3]. Indeed, emulation approaches
and specifically those based on the Emulab software are becoming very popular
[4]. Emulab is a network testbed, able to recreate a wide range of experimentation
environments in which researchers can develop, debug and evaluate a complex
system [5]. Emulation is particularly useful for security and resilience analysis
[6],[7], because in order to study resilience a researcher has to expose the system-
under-test to high load and extreme conditions.

In this paper we present a study of different parameters that might influ-
ence the repeatability of experiments on top of an Emulab-based testbed. We
show that experimental results can be systematically reproduced (even in abso-
lute numbers -quantitative- given a fixed hardware configuration). Furthermore
we study the event scheduling system of Emulab as an important mechanism
for repeating experiments as well as different traffic generating tools. To the
best of our knowledge, previous studies compare different emulation/simulation
approaches [8],[9] rather than systematically studying the repeatability of ex-
periments by comparing different runs of the same experiment. In this paper,
we take advantage of the automation functionality of Emulab in order to run
multiple experiments (hundreds) and draw our conclusions after checking the
experimental results for stability and consistency. Our contribution does not
only lie on the presented experimental results but also in the transformation
of our experience in terms of caveats, significant configuration parameters and
limitations into a set of guidelines that researchers using Emulab could use as a
reference. This would lower the barrier for new researchers trying to use Emulab
and promote scientific rigorous experimentation.

The paper is structured as follows. We begin in Section 2 with a description
of an Emulab-based testbed and its characteristics. Then we proceed in Section
3 with our study and experimental results. In Section 3.1 we present the experi-
mental setup that is used in our experiments and in the following subsections we
address how the repeatability of experiments can be influenced by the hardware
allocation policy, Emulab’s event scheduling mechanism and the use of various
traffic generators. We conclude in Section 4 and summarize our findings.

2 The Emulab Platform and Its Features

One of the most promising approaches for experimentation with large and com-
plex systems, e.g. those found in an industrial Supervisory Control and Data
Acquisition (SCADA) network [10], is the use of emulation testbeds. Pure soft-
ware simulation is often too simplistic to recreate complex environments and the
use of an ad-hoc testbed is not recommended because it is very time-consuming



30 A. Perez-Garcia, C. Siaterlis, and M. Masera

Fig. 1. Main steps for recreating a virtual network configuration within an Emulab-
based testbed

and error-prone to setup, maintain and change. A trend, that is constantly be-
coming more popular, is the use of emulation testbeds like Emulab [5]. We have
developed in our laboratory a testbed using the Emulab architecture and soft-
ware, that allows us to automatically and dynamically map physical components
(e.g. servers, switches) to a virtual topology. In other words the Emulab software
configures the physical topology in way that it emulates the virtual topology as
transparently as possible. This way we gain significant advantages in terms of
repeatability, scalability, controllability and automation of our experiments.

Our emulation testbed consists mainly of two servers running the Emulab
software and a pool of physical resources (e.g. generic PCs and network devices)
that are free to be used as experimental nodes. The following steps (Figure 1)
describe the re-creation of a virtual network configuration within our testbed:

1. First we need to create a detailed description of the virtual network config-
uration using an extension of the NS language [11] (the experiment script).

2. In our description we enumerate similar components as different instances of
the same component type. This way pre-defined templates of different com-
ponents (e.g a Linux server template) can be easily reused and automatically
deployed and configured.

3. Whenever we want to run an experiment we instantiate it by using the Em-
ulab software. The Emulab server automatically reserves and allocates the
physical resources that are needed from the pool of available components.



Designing Repeatable Experiments on an Emulab Testbed 31

This procedure is called swap-in, in contrast to the termination of the ex-
periment which is called swap-out.

4. Furthermore the software configures network switches in order to recreate the
virtual topology by connecting experimental nodes using multiple VLANs.

5. Finally, before the testbed is released for experimentation, the software con-
figures packet capturing of predefined links for monitoring purposes.

At this point it is important to note that in step 4, the Emulab software uses two
different strategies for network link emulation (e.g., delay, packet loss and band-
width) according to the predefined instructions given in the experiment script.
First, the delay-node-shaping strategy uses extra PCs to emulate network links.
These PCs, called delay nodes, run Dummynet to simulate link level character-
istics [12]. Second, the end-node-shaping strategy does not use extra resources
and therefore runs Dummynet inside the end user nodes. In this paper we don’t
use the end-node-shaping strategy as it can lead to unstable and unrealistic
results [13].

To achieve repeatable experiments on an Emulab testbed (i.e. the ability to
repeat an experiment and obtain the same or statistically consistent results) a
controlled environment is needed. In this paper we study how different tools and
mechanisms can influence the repeatability of experiments and specifically:

1. The hardware allocation strategy, that matches physical resources, i.e., PC’s
and network links, to the virtual topology (at step 3). Emulab can use three
different strategies:

– the fixed-hardware-allocation strategy where all experimental nodes are
matched with a specific hardware (e.g. a user node is always instantiated
by PC10);

– the fixed-class-allocation strategy where all experimental nodes are
matched with a hardware of a specific class (e.g. a user node is always
instantiated by a P4x2GHz);

– the free-hardware-allocation strategy where experimental nodes are freely
matched with any available hardware. We should note here that fixing
the allocation of delay nodes is not possible.

2. The event generation system, that allows the researcher to schedule events.
These events are an integral part of any experiment scenario. To reproduce a
previously stored experiment scenario the researcher should be able to setup
the experimental platform in the initial state and trigger all necessary events
in the right order and time of occurrence.

3. The traffic generating tools and their ability to consistently reproduce the
same background traffic environment. We consider two classes of tools: a)
synthetic traffic generators (Iperf and emulab-buildin tools) b) tools that
replay real traffic captures (Tcpreplay [14] and Tcpivo [15]).

3 Experimental Results

Based on a series of experiments, we study Emulab as a platform to conduct
rigorous experiments in terms of repeatability. First we present our experimental



32 A. Perez-Garcia, C. Siaterlis, and M. Masera

Fig. 2. The experimental setup that was used in our experiments

setup and then in the sections that follow, we present results demonstrating how
different tools and mechanisms can influence repeatability.

3.1 Experimental Setup

We experiment with a topology that consists of a 100Mbps LAN with two user
nodes. As we use the delay-node-shaping strategy, Emulab instantiates delay-
nodes running Dummynet in order to model the network (Figure 2). Dummynet
is configured with two pipes, inbound and outbound, to shape traffic entering
and leaving a user node. In our experiments, inbound and outbound pipes have a
queue size of 5 and 50 slots respectively. Physically, all interfaces in our testbed
are configured at 1Gbps and it is left up to Dummynet to shape the traffic at
the speed of our virtual topology, i.e. 100Mbps.

We have used two types of nodes in order to study the repeatability with
different hardware. Experimental nodes are either Dell PC’s with AMD 2GHz
Athlon processor and 2GB RAM, or Fujitsu PC’s with Intel PIV processor and
1GB RAM. As for the operating system, we have used both FreeBSD and Linux
Fedora Core as user nodes, depending on the application, while only FreeBSD
in delay-nodes.

The following tools have been used to launch the experiments and to collect
and analyze experimental data:

– Iperf [16] is a tool to generate UDP traffic between a source node and a sink
node. It also includes a build-in measurement functionality that provides
statistics such as sustained bandwidth and packet loss, that we use to assess
the network’s performance.

– The CBR traffic generator that comes with Emulab works similar to Iperf.
It does not provide statistics, but it is easier to use and schedule in the NS
script.



Designing Repeatable Experiments on an Emulab Testbed 33

– TCPReplay [14] uses a previously captured traffic file in libpcap format
and replays it back onto the network, usually to test switches, routers and
firewalls. It is a powerful tool that allows to classify traffic as client or server
and rewrite Layer 2, 3 and 4 headers.

– TCPivo [15] is another, less known, free and open-source tool that supports
high-speed packet replay from a trace file.

In order to run our experiments, we have made use of Emulab’s potential to
automatically launch scripts that configure and run the different experiments
and store statistics in a repository for further analysis. This has allowed us
to launch thousands of experiments in a short period of time without human
interaction.

We have set up three sets of experiments to study how repeatability can
be influenced by a) the hardware allocation strategy, b) the event generation
system, and c) the use of different traffic generators. In the following sections we
investigate these factors one by one.

3.2 Hardware Allocation Strategies

We have already demonstrated in [13] that the quantitative results of an Emulab-
based experiment are hardware-dependent. On the other hand, the hardware al-
location might change from one experiment to another due to (un)availability of
resources, randomness in Emulab’s swap-in algorithm or other testbed policies.
For this reason, we have performed a set of experiments in order to study the
influence of hardware allocation in the repeatability of an experiment. We mea-
sure the network performance, i.e. the traffic received by the sink node versus
the traffic sent by the source node, along repetitive experiments of three distinct
experiment sets corresponding to the three hardware-allocation-strategies:

1. the fixed-hardware-allocation strategy, where each experimental node is fixed
to a specific PC;

2. the fixed-class-allocation strategy where experimental nodes are chosen from
the class of Dell PCs;

3. the free-hardware-allocation strategy where experimental nodes are freely
chosen from the two hardware classes, i.e., Dell and Fujitsu PCs.

In all experiments, we measured the sustained network performance using Iperf’s
built-in measurement functionality. We generated UDP traffic from node1 to
node2 with 512 bytes of payload and bandwidth ranging from 0Mbps up to
100Mbps. In the first experiment set we did not swap in and out in order to pre-
serve the exact hardware allocation (not even a change in delay nodes), while in
the other two experiment sets we swapped in and out for each experiment, leav-
ing Emulab to freely choose the hardware allocation according to the predefined
strategy.

For each experiment set we run the same experiment 20 times and the results
are depicted in Figures 3, while the statistics, average μ, standard deviation σ
and coefficient of variation (CV = σ

μ), are shown in Figure 3(d). From the figures



34 A. Perez-Garcia, C. Siaterlis, and M. Masera

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110

Sent traffic in node1 (Mbps)

R
ec

ei
ve

d
 t

ra
ff

ic
 in

 n
o

d
e2

 (
M

b
p

s)

(a) Different runs using fixed-hardware-
allocation strategy.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 10
0

11
0

Sent traffic in node1 (Mbps)

R
ec

ei
ve

d
 t

ra
ff

ic
 in

 n
o

d
e2

 (
M

b
p

s)

(b) Different runs using fixed-class-
allocation strategy.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110
Sent traffic in node1 (Mbps)

R
ec

ei
ve

d
 t

ra
ff

ic
 in

 n
o

d
e2

 (
M

b
p

s)

(c) Different runs using free-hardware-
allocation strategy.

0,00 1,00 2,00 3,00 4,00 5,00 6,00

1

5

10

20

30

40

50

60

70

80

90

100
B

an
d

w
id

th
 (

M
b

p
s)

CV %

free-hardware-allocation
fixed-class-allocation
fixed-hardware-allocation

(d) Coefficient of variation.

Fig. 3. Repeatability of network’s performance in three different strategies of hardware
allocation

we can see that the 20 experiments in each case provide the same performance
when traffic is under 20Mbps, i.e. when there are no packet losses. However,
when Dummynet is not able to process all the packets and there are drops in
the queues, we see that the hardware allocation introduces a higher variability
in the results as we go from a fixed to a free allocation strategy.

In fact, if we look at the CV, which in general gets worse as the bandwidth
grows, the best results in terms of repeatability are with the fixed-hardware-
allocation strategy and the worst results with the free-hardware-allocation strat-
egy. Another important observation is that even in the worst case the CV is under
5%, i.e., the maximum CV for the three allocation strategies is 1.63%, 3.52% an
4.98% respectively. This means that in experiments of moderate network load
(where hardware dependence is not critical) even a free allocation strategy can
result repeatable results.



Designing Repeatable Experiments on an Emulab Testbed 35

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time (sec)

Se
nt

 tr
af

fic
 (p

ps
)

A= 5 sec. B = 20 sec. C= 5 sec.

Fig. 4. CBR traffic scheduled in the NS script to be sent in node3

3.3 The Event Geeration System

In this section we study the accuracy of the event generation system in Emulab.
In order to do that, we have run the same experiment 20 times (swapping in
and out). In the experiment NS script we have scheduled four events to generate
2 pulses of CBR traffic from node1 to node2. Each pulse (events A and C) has
a duration of 5 seconds, and the time between them (event B) is 20 seconds
(Figure 4). The information registered by Emulab about event generation in
each experiment is precise and consistent with the configuration.

We have captured the traffic with Tcpdump in delaynode0 and we have mea-
sured the time between the first and last packet of each pulse for the 20 experi-
ments. Table 1 shows the statistics of the duration of events A, B and C along
the 20 experiment runs. The standard deviation is always below 63 milliseconds,
which should be precise enough for most experiments that schedule events in
seconds or tens of seconds. In terms of CV, we see that the accuracy is better
with longer periods.

This variation can be explained by looking at what happens after the events
are scheduled by the system and before the traffic is captured. The events imply
starting or stopping an application (CBR traffic generator) in a remote node,
so there is a communication between the Emulab system and node1. Then, the
traffic arriving to the delaynode0 has to pass through network cards, switch

Table 1. The average, standard deviation and coefficient of variation of the duration
of events A, B, C

Event Avg Stdev CV %
A 4.94 0.03 0.55%
B 20.08 0.05 0.25%
C 4.86 0.06 1.30%



36 A. Perez-Garcia, C. Siaterlis, and M. Masera

and cables before it is captured. All these processes along with CPU scheduling
inaccuracy result some time shifting. The conclusion is though that Emulab’s
event generation system is accurate and consistent.

3.4 Traffic Generators

In this part of the study, we have analyzed the repeatability of different traffic
generators, namely Iperf, CBR, Tcpreplay and Tcpivo, by running each of them
10 times with the same configuration. For Iperf and CBR we generated pulses
of 30 seconds with UDP packets of 512bytes of payload from node1 to node2
(synthetic traffic), while for Tcpreplay and Tcpivo, we reproduced a real trace
of 30 seconds with TCP packets of random length (taken from the DATCAT
repository [17]).

Figure 5 shows the traffic measured with Tcpdump in node2 for each of the
traffic generators. At first sight, we see that tcpreplay is not able to reproduce
a single trace with the same characteristics: each reproduction is different from
the other. On the other hand the rest of the tools seem to generate traffic in a
repeatable way. In fact, if we look at Table 2, the duration of traffic is practically
the same for all the tools but Tcpreplay, where the CV is higher than 6% and
the standard deviation is σ = 3.27 seconds. Furthermore we have subtracted the
generated traffic signal that was produced by Tcpreplay and Tcpivo as measured
in node2, i.e., gen(t), from the original reference signal of the trace file we used
as input to both tools i.e., ref(t) and depicted the difference ref(t) − gen(t) in
Figure 6. We see that the differences are in the order of few Kbps in the case
of Tcpivo, but it reaches up to 2Mbps with Tcpreplay. A small difference was
expected due to the buffering mechanism in the network, but Tcpreplay wasn’t
able to provide repeatable results.

Table 2. Repeatability of traffic generators (traffic duration)

Tool Avg Stdev CV %
Tcpreplay 48.45 3.27 6.74%
TCPivo 30.00 0.00 0.00%

CBR 30.07 0.02 0.05%
Iperf 30.00 0.00 0.00%

4 Conclusion

The study of complex systems and networks is a hard process. The limitations
of software simulators and theoretic modeling as well as the required cost and
effort to setup and maintain ad-hoc testbeds of real systems, make the use of
emulation testbeds a promising approach. Emulation testbeds like Emulab are
increasingly used in networking research in an effort to raise the level of scientific
rigorousness and specifically by conducting repeatable experiments. In this paper
we investigate how different mechanisms and tools of an Emulab testbed can
influence the repeatability of experimental results.



Designing Repeatable Experiments on an Emulab Testbed 37

0

1

2

3

4

5

6
0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Time (seconds)

Tr
af
fic

(M
bp

s)

(a) Iperf

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Time (seconds)

Tr
af
fic

(M
bp

s)

(b) CBR

0

0,5

1

1,5

2

2,5

3

3,5

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

Time (seconds)

Tr
af
fic

(M
bp

s)

(c) TCPReplay

0

0,5

1

1,5

2

2,5

3

3,5

4
0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Time (seconds)

Tr
af
fic

(M
bp

s)

(d) TCPivo

Fig. 5. Traffic generated by different tools and measured in the sink node

3

2

1

0

1

2

3

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

Time (seconds)

Tr
af
fic

(M
bp

s)

(a) ref(t) − gen(t) for TCPReplay

30

20

10

0

10

20

30

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

Time (seconds)

Tr
af
fic

(K
bp

s)

(b) ref(t) − gen(t) for TCPivo

Fig. 6. Subtraction between traffic signals of the reference trace file ref(t) and the
generated traffic gen(t) by TCPReplay and TCPivo



38 A. Perez-Garcia, C. Siaterlis, and M. Masera

Our contribution can be summarized in the following points. We confirm
that repeatability of quantitative experimental results on an Emulab testbed is
possible, under a degree of expected statistical variation. If the fixed-hardware-
allocation strategy is used the coefficient of variation (CV) of the results lies on
average under 1%. Furthermore the event scheduling mechanism of Emulab is
proven to be accurate down to a sub-second granularity, ensuring thus a reliable
and accurate reproduction of an experiment script. Finally we demonstrate that
there are significant differences between traffic generation tools in terms of con-
sistent recreation of a predefined traffic pattern and therefore repeatability. For
synthetic traffic Emulab’s built-in packet generator as well as Iperf were proven
as adequate. As for replaying real traffic traces, our results show that only the
less known TCPivo tool can guarantee repeatability whereas the popular TCPre-
play tool fails to do so. In general this work could be seen as an effort, part of
a general trend of the networking research community, towards the execution of
repeatable experiments, i.e., to results that can be reproduced and validated by
other researchers.

References

1. Pawlikowski, K., Joshua Jeong, H.d., Ruth Lee, J.s.: On credibility of simulation
studies of telecommunication networks. IEEE Communications Magazine 40, 132–
139 (2002)

2. Benzel, T., Braden, R., Kim, D., Neuman, C., Joseph, A., Sklower, K., Ostrenga,
R., Schwab, S.: Design, deployment, and use of the deter testbed. In: DETER: Pro-
ceedings of the DETER Community Workshop on Cyber Security Experimentation
and Test on DETER Community Workshop on Cyber Security Experimentation
and Test 2007, p. 1. USENIX Association, Berkeley (2007)

3. Neville, S.W., Li, K.F.: The rational for developing larger-scale 1000+ machine
emulation-based research test beds. In: International Conference on Advanced In-
formation Networking and Applications Workshops, pp. 1092–1099 (2009)

4. Emulab Bibliography, http://www.emulab.net/expubs.php/
5. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,

M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pp. 255–270. USENIX Association, Boston (2002)

6. DETER. cyber-DEfense Technology Experimental Research laboratory Testbed,
http://www.isi.edu/deter/

7. Mirkovic, J., Hussain, A., Fahmy, S., Reiher, P.L., Thomas, R.K.: Accurately mea-
suring denial of service in simulation and testbed experiments. IEEE Trans. De-
pendable Sec. Comput. 6(2), 81–95 (2009)

8. Anderson, D.S., Hibler, M., Stoller, L., Stack, T., Lepreau, J.: Automatic online
validation of network configuration in the emulab network testbed. In: ICAC 2006:
Proceedings of the 2006 IEEE International Conference on Autonomic Computing,
pp. 134–142. IEEE Computer Society, Washington, DC (2006)

9. Chertov, R., Fahmy, S., Shroff, N.B.: Fidelity of network simulation and emulation:
A case study of tcp-targeted denial of service attacks. ACM Trans. Model. Comput.
Simul. 19(1), 1–29 (2008)

http://www.emulab.net/expubs.php/
http://www.isi.edu/deter/


Designing Repeatable Experiments on an Emulab Testbed 39

10. Guglielmi, M., Fovino, I.N., Garcia, A.P., Siaterlis, C.: A preliminary study of a
wireless process control network using emulation testbed. In: Proc. of the 2nd In-
ternational Conference on Mobile Lightweight Wireless Systems. ICST, Barcelona
(2010)

11. ISI, Network simulator ns-2, http://www.isi.edu/nsnam/ns/
12. Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols.

SIGCOMM Comput. Commun. Rev. 27(1), 31–41 (1997)
13. Andres Perez Garcia, M.M., Siaterlis, C.: Testing the fidelity of an emulab testbed.

In: Proc. of the 2nd workshop on Sharing Field Data and Experiment Measure-
ments on Resilience of Distributed Computing Systems, Genova, Italy (June 2010)

14. Turner, A.: Tcpreplay tool, http://tcpreplay.synfin.net/trac/
15. Feng, W.-C., Goel, A., Bezzaz, A., Feng, W.-C., Walpole, J.: Tcpivo: a high-

performance packet replay engine. In: MoMeTools 2003: Proceedings of the ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network
Research, pp. 57–64. ACM, New York (2003)

16. NLANR/DAST, Iperf: The TCP/UDP bandwidth measurement tool,
http://sourceforge.net/projects/iperf/

17. Cho, K.: WIDE-TRANSIT 150 Megabit Ethernet Trace 2008-03-18 (Anonymized)
(collection),
http://imdc.datcat.org/collection/1-05L8-9=WIDE-TRANSIT+150+Megabit
+Ethernet+Trace+2008-03-18+%28Anonymized%29

http://www.isi.edu/nsnam/ns/ 
http://tcpreplay.synfin.net/trac/
http://sourceforge.net/projects/iperf/
http://imdc.datcat.org/collection/1-05L8-9=WIDE-TRANSIT+150+Megabit+Ethernet+Trace+2008-03-18+%28Anonymized%29
http://imdc.datcat.org/collection/1-05L8-9=WIDE-TRANSIT+150+Megabit+Ethernet+Trace+2008-03-18+%28Anonymized%29

	Designing Repeatable Experiments on an Emulab Testbed
	Introduction
	The Emulab Platform and Its Features
	Experimental Results
	Experimental Setup
	Hardware Allocation Strategies
	The Event Geeration System
	Traffic Generators

	Conclusion
	References




