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Abstract. Data center interconnectivity is particularly very important and 
essential for emerging applications such as cloud computing and financial trading. 
Current data center architectures are built using Ethernet switches or IP routers - 
both with significant cost and performance deficiencies. We propose for the first 
time, extending MPLS-TP into the data-center. To this end, a new look-up 
protocol for MPLS-TP is proposed. Autonomic communication within the data 
center is possible using our look-up protocol that enables fast creation and 
deletion of LSPs. The MPLS-TP based data-center that is architected in this paper 
leads to performance betterments over both IP and Ethernet. To this end, a 
comprehensive simulations model is also presented. Operations within the data-
center using MPLS-TP are also extended to inter-data-center operations using 
LSP setup across a core network. OAM and performance issues are investigated. 

1 Introduction 

The growth of data traffic and web services has put excessive stress on current 
network infrastructure. Emerging applications are typically web-based and these 
imply the need for distributed storage and processing across the Internet – leading to 
the proliferation of the data-center. The data-center is becoming an important network 
infrastructure from the perspective of application virtualization as well as resource 
consolidation. A typical data-center consists of servers, storage elements and very fast 
switches. The latter is the key to making the data-center a success – interconnecting 
memory modules to servers as well as to the rest of the Internet is an efficient way. 
The interconnection must support the ability to provide virtualization and 
consolidation – amongst servers, amongst memories and across supported 
applications. Apart from being able to meet carrier class requirements, the switches 
should also be able to support high-bandwidth volume cross-connect, at low energy 
needs and provide low-latency guarantees. Mapping applications that reside in 
network attached storage (NAS) devices as well as those running at servers is  
daunting on account of the inability to migrate easily when one considers typical data-
center tasks such as load balancing, etc. Typical network interconnection fabrics are 
based on complex IP-routers or MPLS LSRs. The use of high-end IP-MPLS 
equipment has been known to be an overkill [1]. Particularly from both cost and 
performance standpoints, the use of IP/MPLS routers is not necessarily justified. The 
closed domain of the data-centers along with the proximity of network elements 
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within the data-center implies that use of IP/MPLS routers leads to significant routing 
overhead, which can otherwise be achieved by simple switches, provided they can 
guarantee service differentiation (QoS support) and Carrier-Class features (OAM&P 
support). To alleviate this problem, there have been proposals [2,3] to use Ethernet 
switches [4] for data-center support. The strong emphasis on carrier-class support 
means using transport-oriented versions of Ethernet – Carrier-grade Ethernet transport 
platforms. Amongst the two version of carrier-grade Ethernet, the MPLS-TP 
(transport profile) has gathered significant attention recently, especially when 
compared with the Ethernet-bridging based PBB-TE (Provider Backbone Bridged 
Traffic Engineering) standard.  

In this paper, we propose the use of MPLS-TP [6-14] as an architectural 
technology for use in the data-center. To this end, we use MPLS-TP in conjunction 
with our earlier proposed Ethernet transport technology called “Omnipresent 
Ethernet” [5] or OEthernet for short. The OEthernet technology uses network 
interconnection patterns as aids in creating a communication framework (for 
switching, routing and transport). In the OEthernet framework, any network graph is 
converted to a binary graph. This leads to binary routing and source routing – two 
well-known concepts in interconnection systems. However, to make these pragmatic, 
we propose the use of binary addresses as MPLS-TP labels. This leads to a system, 
whereby forwarding of MPLS-TP packets is instantaneous – without the need for a 
lookup table, as the corresponding bits of a label signify to which port a packet would 
be forwarded to. The binary forwarding mechanism when applied to an MPLS-TP 
framework solves the larger question of the control plane for the data-center. The 
resultant is an autonomic data-center, where LSP setup and tear down are 
accomplished through the OEthernet control plane, and forwarding is entirely based 
on binary addresses and source routing. The use of OEthernet mechanism with 
MPLS-TP makes MPLS-TP a plausible alternative for the data-center. Moreover, 
simulation results show significant cost, latency and energy efficiency improvements 
with our approach when compared with other solutions.  

This paper is organized as follows: Section II is a primer on MPLS-TP while 
Section III describes OEthernet –for the data-center. Section IV describes the use of 
MPLS-TP using OEthernet from the perspective of the data-center. Section V focuses 
on numerical evaluation, while Section VI concludes the paper.  

2 MPLS-TP Primers 

MPLS was developed to focus on improving the cost and performance issues 
associated with core IP routers. MPLS has proved successful in carriers' converged 
IP/MPLS core networks. However, MPLS is an expensive technology due to the 
higher cost of managing the routers in the core networks. Also, MPLS is not fully-
optimized for transport functions such as guaranteed QoS, protection, deterministic 
end-to-end delay, leading to new extensions that meet the transport needs. MPLS-TP 
based networks are more deterministic with the addition of features like traffic 
engineering, end-to-end QoS, full protection switching and fast restoration. Being a 
packet-based technology, MPLS-TP simplifies the networks as well as reduces the 
CAPEX and OPEX. 



400 A. Gumaste et al. 

MPLS-TP is aimed to provide fault management (fault identification, fault 
isolation, fault recovery, resiliency), configuration management (generating statistics 
of configuration of network resources, updating the records), accounting 
management, performance management (utilization, error rate) and security 
management. 

MPLS-TP supports bi-directional label switched paths (LSP). MPLS-TP provides 
end-to-end connection-oriented transport. It also provides end-to-end path protection 
and QoS with operation administration and maintenance (OAM) support. MPLS-TP 
OAM functionality is independent of the dynamic control plane, offering the services 
using only the data plane.  

 

Fig. 1. Omnipresent Ethernet Architecture and Addressing 
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Fig. 2. OEthernet Frame Format 

3 Omnipresent Ethernet in the Data-Center 

Carrier Ethernet has been the new buzzword for metropolitan networks – with active 
worldwide deployments. Carrier Ethernet is currently available in two flavors – from 
the IEEE the 802.1ah/802.1Qay (PBB/PBB-TE) and from the IETF the MPLS-TP 
with 5+ separate drafts under circulation. We proposed the Omnipresent Ethernet [5] 
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or OEthernet technology as a solution to Carrier Ethernet showing superior 
performance. In particular, the OEthernet solution is more scalable, has lower latency, 
supports multipath service provisioning and consumes lower energy as compared to 
PBB-TE/MPLS-TP variants.  

OEthernet was proposed as an end-to-end solution for communication without the 
use of IP or more blatantly with the sole use of Ethernet and the optical layer [5]. It 
has since then been investigated to provide multiple communication paradigms 
leading to benefits such as low latency, low cost, superior service support, lower 
energy requirement and resiliency [15]. Note that OEthernet has been proposed as a 
stand-alone communication paradigm, and we extend this to the domain of Carrier 
Ethernet technology, particularly from the perspective of MPLS-TP.  

The OEthernet concept involves converting any network topology to a binary 
graph – by the addition of “dummy” nodes to smoothen-out all the nodes, resulting in 
a system where each node is a  interconnection element [5]. A binary graph 
leads to binary routing i.e. the facilitation of source routing with binary addresses. A 
single bit can now tell a node (  switch) whether to go left or right. A node only 
has to process  bits in an  switch. Further, there is no need for any 
lookup. Each node is assumed to have its address – a binary value that determines its 
route from a preset node in the binary graph.   

Communication in the OEthernet framework: A source node has access to the 
destination node’s binary address through a procedure called the Ethernet 
Nomenclature System (ENS) that is central to the working of the OEthernet 
framework. Note that the ENS is not required in MPLS-TP – all one needs is to use 
OEthernet addresses for LSRs and binary values of the addresses are now embedded 
in MPLS-TP LSPs.  

To compute the route from the source to the destination, the source node uses the 
procedure described next. The source node examines both binary addresses (of itself 
and the destination). This is done by aligning the two addresses MSB onwards. All 
the leading common bits (if any) are then discarded. What remains are the source and 
destination remnant binary strings. We have now isolated the lowest common 
ancestor for the source and the destination nodes. The next step is to do a 1’s 
complement on the source remnant string – this enables us to obtain a string that 
would guide a frame from the source to the lowest common ancestor. Recall that the 
original source binary address enabled a frame to be guided from the preset reference 
node to the node under consideration – and we now want to go in the opposite 
direction, i.e. towards the reference node. But instead of going all the way, we desire 
to stop at the lowest common ancestor. The next step is to flip the LSB of the source 
remnant string. The LSB of the source remnant string is used to indicate to the  
switch at the lowest common ancestor as to what it should do with the incoming 
frame. The source remnant string with its 1’s complemented bits and the last bit 
further complemented is now conjoined to the destination remnant string to create a 
route-binary-string as shown in Fig. 1. 

In the case of OEthernet without MPLS-TP, we make use of the IEEE 802.1Qay 
but with minor differences resulting in significant performance improvements. Four 
key features distinguish the IEEE 802.1Qay from LAN/switched Ethernet: (1) 
Absence of MAC learning. (2) Turning off of Spanning Tree Protocol (STP). (3) The 



402 A. Gumaste et al. 

customer frames with or without VLAN tags are mapped to service provider tag 
(STAG and then the ITAG) – which is further mapped to the BTAG and BMAC, 
thereby allowing encapsulation of the entire frame in a service provider frame and (4) 
Frames are forwarded based on a service provider BTAG in conjunction with a 
BMAC address. In the OEthernet case [5], we adopt this methodology (of turning 
OFF STP, disabling MAC learning) and allowing the use of multiple stacked VLAN 
tags in an Ethernet frame as our basic protocol data unit (PDU) for OEthernet. 
Further, five kinds of tags are proprietarily defined as follows: Source Address-Route 
TAGs or S-ARTAGs, Route ARTAGs or R-ARTAGs, Granularity Tags or GTAGs, 
Type Tags or TTAGs and Window-TAGs or WTAGs [15]. The S-ARTAG is a series 
of VLAN tags stacked together and contains information pertaining to the address of 
the node (i.e. the route from the preset reference node to the node). A single S-
ARTAG can have 12 entries as its VID and hence can support a binary tree of 
diameter 12. If however, the binary tree has a larger diameter, then multiple S-
ARTAGs can be stacked together. The R-ARTAG is a series of VLAN tags that 
carries route information – a binary string indicating the route from the source node to 
the destination node. The R-ARTAG is the most important tag for forwarding the 
frame. Each   switch examines just 1 bit in the R-ARTAG (based on the method 
below) and forwards the frame to one of its output ports. The frame format for the 
OEthernet frame is shown in Fig. 2.  

From the perspective of MPLS-TP, our approach is to induct binary addresses as 
labels. An MPLS-TP LSP is now defined by its route from a source node to the 
destination node. Labels can be stacked together similar to MPLS-TP with each label 
depicting a path from the corresponding intermediate source node to an intermediate 
destination node. Shown in the Fig. 3 is a set of MPLS-TP LSPs that are stacked to 
provide an integrated LSP from the source to the destination. Shown in Fig. 4 is 
corresponding label stack that provides for the LSPs.  

Working: The creation of the MPLS-TP LSPs using OEthernet concepts is explained 
in Section IV. We now discuss how to use the created MPLS-TP LSPs in a network. 
At an intermediate node, the topmost label is examined. The 20-bit address is 
analyzed as follows: the first 4 bits are called pointers – they indicate which bit 
amongst the 16-remaining bits in the shim, should the switch begin to work on. If the 
value of the first 4-bits is 1111, then the label is popped; the next label would have the 
first 4-bits set to 0000 as it is “fresh” implying that is has yet not been considered 
upon. The MPLS-TP LSR would then consider the next  bits, for an -port 
LSR.  The LSR would also update the first 4-bits to mark the  bit, so 
that that next switch can begin consideration of the binary label. The last label in the 
stack is pushed into the stack after “last-label-preprocessing”. As part of last-label-
preprocessing, the first 4-bits of the bottommost label are changed from 0000 to a 
value that determines the number port count of the last LSR – the one that is the 
destination node. This value  will tell the LSR that it is the destination 
node, and to send the packet to the requisite destination port.  

Switching: At an LSR, there is no requirement for a lookup table. All that the LSR 
does, is to receive the packet correctly (usually done through cyclic redundancy check 
at layer-2) and then isolate the correct log2N bits corresponding to the LSR. Once 
these bits have been isolated, the LSR forwards the packets based on the value of the 
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 bits. There is no lookup required to compare the value of the label – thus 
saving energy and time, reducing latency and maintaining wire-speed operation.  

Note: Label swapping in the MPLS sense is not supported – the MPLS packet is 
created at the source node with multiple labels. It is assumed that the source node has 
the global topology of LSPs. This assumption is valid when we consider that (1) the 
data-center is a relatively closed domain and (2) without the knowledge of global LSP 
topology, it is not possible to enable end-to-end QoS support at the transport layer.  

 

Fig. 3. LSPs in MPLS-TP using OEthernet addressing scheme 

 

Fig. 4. Labels using MPLS-TP and OEthernet addressing scheme 
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4 Implementing MPLS-TP in the Data-Center 

In this Section, we discuss the creation of MPLS-TP LSPs using OEthernet 
technology, as well as the implementation of MPLS-TP within the data-center. A 
generic data-center is shown in Fig. 5. Observe that the topology of the data-center 
resembles a star network – several servers and NAS units are interconnected to a 
gateway through the star topology. There are multiple methods to implement such a 
star network – as a hierarchical tree, or generic shuffle-exchange architecture [16]. 
We will present an approach to convert a given data-center interconnection model 
into a binary tree. Subsequently, we will show how to implement MPLS-TP within 
the data-center.  

We first create a binary tree. For this purpose, the topology is discovered by the 
Network Management System (NMS) [17]. The gateway of the data-center that 
connects the data-center infrastructure to the rest of the Internet now becomes a 
default point of access. 

 

 

Fig. 5. Generic data-center using OEthernet switches 

The following algorithm is run by the NMS in a breadth first search manner: 
 

for ∀N 
 if D(N)<1x2, 
      replace N with N” 
 end  
end 



 Using MPLS-TP for Data-Center Interconnection 405 

The two variables  and  are defined as follows:  is an operator that denotes 
the degree of a node, while  converts any node with degree of connectivity greater 
than  to a set of nodes such that each node has a degree of connectivity  or 

. Upon converting every node in the tree to a binary-node, we apply the 
following algorithm to break cycles and create a tree.  

 
is-cycle:=sort cycle() 
 while is-cycle ≠ ∅ 
  break (cycle(i)) 
   is-cycle=is-cycle-i 
   refresh is-cycle() 
   increment (i) 
 end 

 
In the snippet above, we sort all the cycles in the graph according to their sizes in terms 
of number of edges and call this set as is-cycle. We disconnect the first cycle (the largest 
one), in the set is-cycle. We refresh the set is-cycle() to check if any cycles persist. If 
another cycle continues to persist despite the break of the previous cycle, we break the 
next largest cycle, and again check if any further cycles exist (after refreshing the set is-
cycle(). The algorithm ensures that every cycle is broken with the disconnection of the 
minimal number of edges. To break a cycle, we choose the edge that causes maximum 
damage to the cycle. To do so, each edge in every cycle is given a weight. The weight 
corresponds to the number of cycles that the edge would break, if removed. In the break 
cycle statement, we hence break the edge with the highest weight.  

The next step is to add binary addresses to a node. Giving the root an address of 
“0”, we traverse to every leaf, appending a “0”bit to the existing address of the 
ancestor if the current node is right of its immediate ancestor, or append a “1” if the 
node is left of the immediate ancestor. Hence the two descendants of the root would 
have addresses of 00 and 01 respectively.  

Subsequent to this, we create LSPs. For the creation of LSPs, each edge node has 
to perform binary-specific penultimate hop-popping operation – contrary to the 
generic MPLS-TP requirements. However, this is allowed as the Management End 
Points (MEPs) in the OEthernet case continue to be the source and destination node, 
thereby facilitating complete connectivity and fault tolerance operation.  

At the edge nodes of the tree, i.e. the leaves we have to interface the edge LSRs 
with the servers and NASs. Likewise, at the root, we have to interface the data-center 
to the rest of the Internet. Since the binary addressing and routing are internal to the 
data-center, we need to facilitate a mechanism at both the gateway of the data-center 
as well as the leaves (edge LSRs) so that the global addresses can be mapped to local 
binary addresses. This translation between globally unique IP-addresses to locally 
relevant binary addresses is done by an edge logic structure that in the OEthernet 
parlance is called as the “Thin Ethernet Logical Layer” or TELL. The TELL is a table 
that contains mapping between a destination IP address (typically IPv6) to a 
corresponding LSP or R-ARTAG from the OEthernet perspective. In the case of the 
OEthernet network as shown in [15], the mapping is between the IP addresses/MAC 
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addresses or even HTTP URLS to S-ARTAGs, since the framework supports multi-
layer communication. However, in the case of the MPLS-TP data-center, the mapping 
has to be only between the IP addresses and the S-ARTAGs. The edge LSRs create 
LSPs by examining the TELL table as shown in Fig. 6.  

 

LSP Creation: We will consider how the LSPs are created inside an MPLS-TP 
supported data-center from the perspective of both communication from the edge 
nodes as well as from the core of the Internet (through the gateway). 

At edge nodes: All the edge nodes are assumed to have at least one LSP to the 
gateway. An incoming packet whose prefix is beyond the scope of the data-center is 
encapsulated with labels that would enable it to reach the gateway (root) node. All 
such out-of-scope packets imply that the destination is outside the data-center.  

 

IPv6 LSP ID Label 1 
(20 bit value)

Label 2 
(20 bit value)

Label 3 
(20 bit value)

2010:0db8:3c4d:0015:0000:
0000:abcd:ef12

LSP1 0000110110
1000000000

0000011000
1000000000

0000111101
0110000000

2010:0db8:3c4d:0015:0000:
0000:ad13:cd13

LSP2 0000100100
1000000000

0000011110
1000000000

0000100000
1000000000

2010:0db8:3c4d:0015:0000:
0000:abc1:0011

LSP3 0000100010
1100000000

0000101100
0001100000

0000110010
1000100000

 

Fig. 6. An example of a populated TELL Table 

 

Fig. 7. MPLS-TP data-center and label creation 
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At the gateway: The TELL table at the gateway implements the mapping between 
incoming IP requests and outgoing LSPs. While we assume at least one LSP to each 
leaf (from the gateway), this assumption is not always practical for very large sized 
networks. The gateway using global LSP information then selects a set of multiple 
stacked LSPs (and hence a stack of labels) that would guide the incoming packet to 
the requisite destination node (leaf). Multicasting is handled using the multicaster 
logic used for OEthernet in [5, 15]. For multicasting, the lowest common ancestor for 
all the multicast nodes creates LSPs to each destination and replicates packets to each 
such LSP. In a future work, we also consider the creation of a multicast LSP tree, 
though this requires intelligence at intermediate nodes for selective multiplication.  

 
LSP Consolidation: As mentioned earlier, it is not always possible to have LSPs from 
the gateway to every leaf. Likewise, for inter-leaf communication, especially to 
support virtualization, virtual machine migration etc. it is not possible to have LSPs set 
up between every pair of leaves within the data-center. Hence, we use the concept of 
multiple LSPs within the data-center by using label stacking (see Fig. 3 for example). 

5 Simulation Model and Results 

We performed an extensive discrete event simulation (DES) to evaluate the 
performance of our proposed data-center interconnection mechanism using 
Omnipresent Ethernet encoded in MPLS-TP. In the model, we assume 70% of the 
leaves to be NAS and 30% to be servers (processors). All the leaves have Gigabit 
Ethernet interfaces. The number of leaves is varied from 1000 to 1 million. Traffic 
requests arrive at the gateway as service jobs and these are to be transported to the 
leaves or within the leaves (inter-leaf communication) or from the leaves to the 
gateway. LSPs are set up ahead in time for the major routes. There are 4-levels of QoS 
supported by the network. Each LSP also defines with it a granularity that can be 
implemented using a token bucket rate-limiter function. Our interest is to measure the 
performance of the MPLS-TP architected data-center using OEthernet concepts as 
compared to native data-centers using MPLS, MPLS-TP (standard) as well as IP 
routers. Requests arrive following a Poisson distribution and are characterized by a 
general holding time (since the data-center is a specialized part of the network – most 
requests are heavily granular, as opposed to regular arrivals that are exponentially 
distributed). Load is computed as the ratio of the total consumed bandwidth in the 
network, as opposed to the total bandwidth that the network can provide, resulting in a 
range of [0,1].  

Shown in Fig. 8 is a viewgraph of latency versus load for a data-center of size 1000 
nodes (leaves). For comparison, we measured the performance of data-centers with IP 
routers, conventional MPLS and MPLS-TP (without OEthernet technology) using the 
same traffic and the same topology. Observe the almost 3-orders of difference in the 
delay values between any of the other technologies and our proposed data-center 
architecture. The measurements are taken as average latency over all the source-
destination pairs and at time-ensemble, (1000 runs at the same load value). The MPLS-
TP architecture using OEthernet does not require any lookup table and the maintenance 
of a global LSP database further facilitates faster switching. As can be seen in Fig. 8, 
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the latency of our proposal is consistently better than all the other conventional 
technologies. This advantage is very important from the data-center perspective given 
that it is said that a 1-millisecond latency difference can cause a financial trading house 
over 100-million USD in a fiscal year. 
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Fig. 8. Latency results for a 1000-node data-center 

To demonstrate scale, the latency measurements are taken for a larger (1-million 
node) data-center. The measurements are consistent as can be seen in Fig. 9, whereby 
the latency difference between our proposal and existing technologies is easily 2-3 
orders of magnitude. The superior performance of OEthernet when encapsulated 
within the MPLS-TP domain adds significant functionality flavor to MPLS-TP from 
the data-center perspective.  
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Fig. 9. Latency results for a 1000,000-node data-center 

Shown in Fig. 10 is a viewgraph of energy consumption for an MPLS-TP network 
as compared to the energy consumption for our proposal. The MPLS-TP network 
requires more processing at each LSR. It can be concluded that the energy requirement 
is directly proportional to (1) the latency of the protocol – more the time spent at a 
node, more the energy consumed due to processing. and (2) lookup table size – larger 
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the table, more the energy required. Base values for energy consumption are assumed 
as shown in [5, 15]. On an average, there is a 72% energy saving using our proposal as 
opposed to a generic MPLS-TP scheme. It should also be noted that the energy 
consumption for IP-routers and MPLS LSRs is significantly more than that when we 
use MPLS-TP and hence not shown in the viewgraph.  
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Fig. 10. Energy Efficiency comparison between MPLS 

6 Conclusion 

The fast proliferation of data-center technology has implied a need for a scalable, 
acceptable and economical protocol for interconnection between servers, NAS and 
switches. We propose the use of MPLS-TP to architect the data-center. However, 
instead of using native MPLS-TP, we propose the use of our earlier proposed 
Omnipresent Ethernet technology as an enabler for faster switching, lower energy 
consumption and better scalability within the data-center. The OEthernet technology, 
through the use of binary and source routing when plugged into MPLS-TP creates a 
very fast, efficiency and lower-energy consuming network – especially suited for the 
data-center. These performance results justify the use of OEthernet technology within 
an architected MPLS-TP data-center. 
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