
I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 398–410, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Using MPLS-TP for Data-Center Interconnection

Ashwin Gumaste, Chirag Taunk, Sarvesh Bidkar, Deval Bhamare, and Tamal Das

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay, Mumbai, India - 400 076

ashwing@ieee.org,
{chiragtaunk,sarvesh,deva,tamaldas}@cse.iitb.ac.in

Abstract. Data center interconnectivity is particularly very important and
essential for emerging applications such as cloud computing and financial trading.
Current data center architectures are built using Ethernet switches or IP routers -
both with significant cost and performance deficiencies. We propose for the first
time, extending MPLS-TP into the data-center. To this end, a new look-up
protocol for MPLS-TP is proposed. Autonomic communication within the data
center is possible using our look-up protocol that enables fast creation and
deletion of LSPs. The MPLS-TP based data-center that is architected in this paper
leads to performance betterments over both IP and Ethernet. To this end, a
comprehensive simulations model is also presented. Operations within the data-
center using MPLS-TP are also extended to inter-data-center operations using
LSP setup across a core network. OAM and performance issues are investigated.

1 Introduction

The growth of data traffic and web services has put excessive stress on current
network infrastructure. Emerging applications are typically web-based and these
imply the need for distributed storage and processing across the Internet – leading to
the proliferation of the data-center. The data-center is becoming an important network
infrastructure from the perspective of application virtualization as well as resource
consolidation. A typical data-center consists of servers, storage elements and very fast
switches. The latter is the key to making the data-center a success – interconnecting
memory modules to servers as well as to the rest of the Internet is an efficient way.
The interconnection must support the ability to provide virtualization and
consolidation – amongst servers, amongst memories and across supported
applications. Apart from being able to meet carrier class requirements, the switches
should also be able to support high-bandwidth volume cross-connect, at low energy
needs and provide low-latency guarantees. Mapping applications that reside in
network attached storage (NAS) devices as well as those running at servers is
daunting on account of the inability to migrate easily when one considers typical data-
center tasks such as load balancing, etc. Typical network interconnection fabrics are
based on complex IP-routers or MPLS LSRs. The use of high-end IP-MPLS
equipment has been known to be an overkill [1]. Particularly from both cost and
performance standpoints, the use of IP/MPLS routers is not necessarily justified. The
closed domain of the data-centers along with the proximity of network elements

 Using MPLS-TP for Data-Center Interconnection 399

within the data-center implies that use of IP/MPLS routers leads to significant routing
overhead, which can otherwise be achieved by simple switches, provided they can
guarantee service differentiation (QoS support) and Carrier-Class features (OAM&P
support). To alleviate this problem, there have been proposals [2,3] to use Ethernet
switches [4] for data-center support. The strong emphasis on carrier-class support
means using transport-oriented versions of Ethernet – Carrier-grade Ethernet transport
platforms. Amongst the two version of carrier-grade Ethernet, the MPLS-TP
(transport profile) has gathered significant attention recently, especially when
compared with the Ethernet-bridging based PBB-TE (Provider Backbone Bridged
Traffic Engineering) standard.

In this paper, we propose the use of MPLS-TP [6-14] as an architectural
technology for use in the data-center. To this end, we use MPLS-TP in conjunction
with our earlier proposed Ethernet transport technology called “Omnipresent
Ethernet” [5] or OEthernet for short. The OEthernet technology uses network
interconnection patterns as aids in creating a communication framework (for
switching, routing and transport). In the OEthernet framework, any network graph is
converted to a binary graph. This leads to binary routing and source routing – two
well-known concepts in interconnection systems. However, to make these pragmatic,
we propose the use of binary addresses as MPLS-TP labels. This leads to a system,
whereby forwarding of MPLS-TP packets is instantaneous – without the need for a
lookup table, as the corresponding bits of a label signify to which port a packet would
be forwarded to. The binary forwarding mechanism when applied to an MPLS-TP
framework solves the larger question of the control plane for the data-center. The
resultant is an autonomic data-center, where LSP setup and tear down are
accomplished through the OEthernet control plane, and forwarding is entirely based
on binary addresses and source routing. The use of OEthernet mechanism with
MPLS-TP makes MPLS-TP a plausible alternative for the data-center. Moreover,
simulation results show significant cost, latency and energy efficiency improvements
with our approach when compared with other solutions.

This paper is organized as follows: Section II is a primer on MPLS-TP while
Section III describes OEthernet –for the data-center. Section IV describes the use of
MPLS-TP using OEthernet from the perspective of the data-center. Section V focuses
on numerical evaluation, while Section VI concludes the paper.

2 MPLS-TP Primers

MPLS was developed to focus on improving the cost and performance issues
associated with core IP routers. MPLS has proved successful in carriers' converged
IP/MPLS core networks. However, MPLS is an expensive technology due to the
higher cost of managing the routers in the core networks. Also, MPLS is not fully-
optimized for transport functions such as guaranteed QoS, protection, deterministic
end-to-end delay, leading to new extensions that meet the transport needs. MPLS-TP
based networks are more deterministic with the addition of features like traffic
engineering, end-to-end QoS, full protection switching and fast restoration. Being a
packet-based technology, MPLS-TP simplifies the networks as well as reduces the
CAPEX and OPEX.

400 A. Gumaste et al.

MPLS-TP is aimed to provide fault management (fault identification, fault
isolation, fault recovery, resiliency), configuration management (generating statistics
of configuration of network resources, updating the records), accounting
management, performance management (utilization, error rate) and security
management.

MPLS-TP supports bi-directional label switched paths (LSP). MPLS-TP provides
end-to-end connection-oriented transport. It also provides end-to-end path protection
and QoS with operation administration and maintenance (OAM) support. MPLS-TP
OAM functionality is independent of the dynamic control plane, offering the services
using only the data plane.

Fig. 1. Omnipresent Ethernet Architecture and Addressing

DA
2 bytes

SA
2 bytes

OEthernet VLAN Tag
(variable length)

Type/
Length
2 bytes

Data FCS

Ethertype
0x8888

S
-A

R
T

A
G

4-
bi

ts

R
-A

R
T

A
G

4-
bi

ts

G
T

A
G

1-
bi

t

W
T

A
G

1-
bi

t

S
T

A
G

1-
bi

t

--
5-

bi
ts S-ARTAG

2-32 bytes
GTAG
2 bytes

WTAG
2 bytes

STAG
2 bytes

CTAG
2 bytes

Control
2 bytes

C
T

A
G

1-
bi

t R-ARTAG
2-32 bytes

Fig. 2. OEthernet Frame Format

3 Omnipresent Ethernet in the Data-Center

Carrier Ethernet has been the new buzzword for metropolitan networks – with active
worldwide deployments. Carrier Ethernet is currently available in two flavors – from
the IEEE the 802.1ah/802.1Qay (PBB/PBB-TE) and from the IETF the MPLS-TP
with 5+ separate drafts under circulation. We proposed the Omnipresent Ethernet [5]

 Using MPLS-TP for Data-Center Interconnection 401

or OEthernet technology as a solution to Carrier Ethernet showing superior
performance. In particular, the OEthernet solution is more scalable, has lower latency,
supports multipath service provisioning and consumes lower energy as compared to
PBB-TE/MPLS-TP variants.

OEthernet was proposed as an end-to-end solution for communication without the
use of IP or more blatantly with the sole use of Ethernet and the optical layer [5]. It
has since then been investigated to provide multiple communication paradigms
leading to benefits such as low latency, low cost, superior service support, lower
energy requirement and resiliency [15]. Note that OEthernet has been proposed as a
stand-alone communication paradigm, and we extend this to the domain of Carrier
Ethernet technology, particularly from the perspective of MPLS-TP.

The OEthernet concept involves converting any network topology to a binary
graph – by the addition of “dummy” nodes to smoothen-out all the nodes, resulting in
a system where each node is a interconnection element [5]. A binary graph
leads to binary routing i.e. the facilitation of source routing with binary addresses. A
single bit can now tell a node (switch) whether to go left or right. A node only
has to process bits in an switch. Further, there is no need for any
lookup. Each node is assumed to have its address – a binary value that determines its
route from a preset node in the binary graph.

Communication in the OEthernet framework: A source node has access to the
destination node’s binary address through a procedure called the Ethernet
Nomenclature System (ENS) that is central to the working of the OEthernet
framework. Note that the ENS is not required in MPLS-TP – all one needs is to use
OEthernet addresses for LSRs and binary values of the addresses are now embedded
in MPLS-TP LSPs.

To compute the route from the source to the destination, the source node uses the
procedure described next. The source node examines both binary addresses (of itself
and the destination). This is done by aligning the two addresses MSB onwards. All
the leading common bits (if any) are then discarded. What remains are the source and
destination remnant binary strings. We have now isolated the lowest common
ancestor for the source and the destination nodes. The next step is to do a 1’s
complement on the source remnant string – this enables us to obtain a string that
would guide a frame from the source to the lowest common ancestor. Recall that the
original source binary address enabled a frame to be guided from the preset reference
node to the node under consideration – and we now want to go in the opposite
direction, i.e. towards the reference node. But instead of going all the way, we desire
to stop at the lowest common ancestor. The next step is to flip the LSB of the source
remnant string. The LSB of the source remnant string is used to indicate to the
switch at the lowest common ancestor as to what it should do with the incoming
frame. The source remnant string with its 1’s complemented bits and the last bit
further complemented is now conjoined to the destination remnant string to create a
route-binary-string as shown in Fig. 1.

In the case of OEthernet without MPLS-TP, we make use of the IEEE 802.1Qay
but with minor differences resulting in significant performance improvements. Four
key features distinguish the IEEE 802.1Qay from LAN/switched Ethernet: (1)
Absence of MAC learning. (2) Turning off of Spanning Tree Protocol (STP). (3) The

402 A. Gumaste et al.

customer frames with or without VLAN tags are mapped to service provider tag
(STAG and then the ITAG) – which is further mapped to the BTAG and BMAC,
thereby allowing encapsulation of the entire frame in a service provider frame and (4)
Frames are forwarded based on a service provider BTAG in conjunction with a
BMAC address. In the OEthernet case [5], we adopt this methodology (of turning
OFF STP, disabling MAC learning) and allowing the use of multiple stacked VLAN
tags in an Ethernet frame as our basic protocol data unit (PDU) for OEthernet.
Further, five kinds of tags are proprietarily defined as follows: Source Address-Route
TAGs or S-ARTAGs, Route ARTAGs or R-ARTAGs, Granularity Tags or GTAGs,
Type Tags or TTAGs and Window-TAGs or WTAGs [15]. The S-ARTAG is a series
of VLAN tags stacked together and contains information pertaining to the address of
the node (i.e. the route from the preset reference node to the node). A single S-
ARTAG can have 12 entries as its VID and hence can support a binary tree of
diameter 12. If however, the binary tree has a larger diameter, then multiple S-
ARTAGs can be stacked together. The R-ARTAG is a series of VLAN tags that
carries route information – a binary string indicating the route from the source node to
the destination node. The R-ARTAG is the most important tag for forwarding the
frame. Each switch examines just 1 bit in the R-ARTAG (based on the method
below) and forwards the frame to one of its output ports. The frame format for the
OEthernet frame is shown in Fig. 2.

From the perspective of MPLS-TP, our approach is to induct binary addresses as
labels. An MPLS-TP LSP is now defined by its route from a source node to the
destination node. Labels can be stacked together similar to MPLS-TP with each label
depicting a path from the corresponding intermediate source node to an intermediate
destination node. Shown in the Fig. 3 is a set of MPLS-TP LSPs that are stacked to
provide an integrated LSP from the source to the destination. Shown in Fig. 4 is
corresponding label stack that provides for the LSPs.

Working: The creation of the MPLS-TP LSPs using OEthernet concepts is explained
in Section IV. We now discuss how to use the created MPLS-TP LSPs in a network.
At an intermediate node, the topmost label is examined. The 20-bit address is
analyzed as follows: the first 4 bits are called pointers – they indicate which bit
amongst the 16-remaining bits in the shim, should the switch begin to work on. If the
value of the first 4-bits is 1111, then the label is popped; the next label would have the
first 4-bits set to 0000 as it is “fresh” implying that is has yet not been considered
upon. The MPLS-TP LSR would then consider the next bits, for an -port
LSR. The LSR would also update the first 4-bits to mark the bit, so
that that next switch can begin consideration of the binary label. The last label in the
stack is pushed into the stack after “last-label-preprocessing”. As part of last-label-
preprocessing, the first 4-bits of the bottommost label are changed from 0000 to a
value that determines the number port count of the last LSR – the one that is the
destination node. This value will tell the LSR that it is the destination
node, and to send the packet to the requisite destination port.

Switching: At an LSR, there is no requirement for a lookup table. All that the LSR
does, is to receive the packet correctly (usually done through cyclic redundancy check
at layer-2) and then isolate the correct log2N bits corresponding to the LSR. Once
these bits have been isolated, the LSR forwards the packets based on the value of the

 Using MPLS-TP for Data-Center Interconnection 403

 bits. There is no lookup required to compare the value of the label – thus
saving energy and time, reducing latency and maintaining wire-speed operation.

Note: Label swapping in the MPLS sense is not supported – the MPLS packet is
created at the source node with multiple labels. It is assumed that the source node has
the global topology of LSPs. This assumption is valid when we consider that (1) the
data-center is a relatively closed domain and (2) without the knowledge of global LSP
topology, it is not possible to enable end-to-end QoS support at the transport layer.

Fig. 3. LSPs in MPLS-TP using OEthernet addressing scheme

Fig. 4. Labels using MPLS-TP and OEthernet addressing scheme

404 A. Gumaste et al.

4 Implementing MPLS-TP in the Data-Center

In this Section, we discuss the creation of MPLS-TP LSPs using OEthernet
technology, as well as the implementation of MPLS-TP within the data-center. A
generic data-center is shown in Fig. 5. Observe that the topology of the data-center
resembles a star network – several servers and NAS units are interconnected to a
gateway through the star topology. There are multiple methods to implement such a
star network – as a hierarchical tree, or generic shuffle-exchange architecture [16].
We will present an approach to convert a given data-center interconnection model
into a binary tree. Subsequently, we will show how to implement MPLS-TP within
the data-center.

We first create a binary tree. For this purpose, the topology is discovered by the
Network Management System (NMS) [17]. The gateway of the data-center that
connects the data-center infrastructure to the rest of the Internet now becomes a
default point of access.

Fig. 5. Generic data-center using OEthernet switches

The following algorithm is run by the NMS in a breadth first search manner:

for ∀N
 if D(N)<1x2,
 replace N with N”
 end
end

 Using MPLS-TP for Data-Center Interconnection 405

The two variables and are defined as follows: is an operator that denotes
the degree of a node, while converts any node with degree of connectivity greater
than to a set of nodes such that each node has a degree of connectivity or

. Upon converting every node in the tree to a binary-node, we apply the
following algorithm to break cycles and create a tree.

is-cycle:=sort cycle()
 while is-cycle ≠ ∅
 break (cycle(i))
 is-cycle=is-cycle-i
 refresh is-cycle()
 increment (i)
 end

In the snippet above, we sort all the cycles in the graph according to their sizes in terms
of number of edges and call this set as is-cycle. We disconnect the first cycle (the largest
one), in the set is-cycle. We refresh the set is-cycle() to check if any cycles persist. If
another cycle continues to persist despite the break of the previous cycle, we break the
next largest cycle, and again check if any further cycles exist (after refreshing the set is-
cycle(). The algorithm ensures that every cycle is broken with the disconnection of the
minimal number of edges. To break a cycle, we choose the edge that causes maximum
damage to the cycle. To do so, each edge in every cycle is given a weight. The weight
corresponds to the number of cycles that the edge would break, if removed. In the break
cycle statement, we hence break the edge with the highest weight.

The next step is to add binary addresses to a node. Giving the root an address of
“0”, we traverse to every leaf, appending a “0”bit to the existing address of the
ancestor if the current node is right of its immediate ancestor, or append a “1” if the
node is left of the immediate ancestor. Hence the two descendants of the root would
have addresses of 00 and 01 respectively.

Subsequent to this, we create LSPs. For the creation of LSPs, each edge node has
to perform binary-specific penultimate hop-popping operation – contrary to the
generic MPLS-TP requirements. However, this is allowed as the Management End
Points (MEPs) in the OEthernet case continue to be the source and destination node,
thereby facilitating complete connectivity and fault tolerance operation.

At the edge nodes of the tree, i.e. the leaves we have to interface the edge LSRs
with the servers and NASs. Likewise, at the root, we have to interface the data-center
to the rest of the Internet. Since the binary addressing and routing are internal to the
data-center, we need to facilitate a mechanism at both the gateway of the data-center
as well as the leaves (edge LSRs) so that the global addresses can be mapped to local
binary addresses. This translation between globally unique IP-addresses to locally
relevant binary addresses is done by an edge logic structure that in the OEthernet
parlance is called as the “Thin Ethernet Logical Layer” or TELL. The TELL is a table
that contains mapping between a destination IP address (typically IPv6) to a
corresponding LSP or R-ARTAG from the OEthernet perspective. In the case of the
OEthernet network as shown in [15], the mapping is between the IP addresses/MAC

406 A. Gumaste et al.

addresses or even HTTP URLS to S-ARTAGs, since the framework supports multi-
layer communication. However, in the case of the MPLS-TP data-center, the mapping
has to be only between the IP addresses and the S-ARTAGs. The edge LSRs create
LSPs by examining the TELL table as shown in Fig. 6.

LSP Creation: We will consider how the LSPs are created inside an MPLS-TP
supported data-center from the perspective of both communication from the edge
nodes as well as from the core of the Internet (through the gateway).

At edge nodes: All the edge nodes are assumed to have at least one LSP to the
gateway. An incoming packet whose prefix is beyond the scope of the data-center is
encapsulated with labels that would enable it to reach the gateway (root) node. All
such out-of-scope packets imply that the destination is outside the data-center.

IPv6 LSP ID Label 1
(20 bit value)

Label 2
(20 bit value)

Label 3
(20 bit value)

2010:0db8:3c4d:0015:0000:
0000:abcd:ef12

LSP1 0000110110
1000000000

0000011000
1000000000

0000111101
0110000000

2010:0db8:3c4d:0015:0000:
0000:ad13:cd13

LSP2 0000100100
1000000000

0000011110
1000000000

0000100000
1000000000

2010:0db8:3c4d:0015:0000:
0000:abc1:0011

LSP3 0000100010
1100000000

0000101100
0001100000

0000110010
1000100000

Fig. 6. An example of a populated TELL Table

Fig. 7. MPLS-TP data-center and label creation

 Using MPLS-TP for Data-Center Interconnection 407

At the gateway: The TELL table at the gateway implements the mapping between
incoming IP requests and outgoing LSPs. While we assume at least one LSP to each
leaf (from the gateway), this assumption is not always practical for very large sized
networks. The gateway using global LSP information then selects a set of multiple
stacked LSPs (and hence a stack of labels) that would guide the incoming packet to
the requisite destination node (leaf). Multicasting is handled using the multicaster
logic used for OEthernet in [5, 15]. For multicasting, the lowest common ancestor for
all the multicast nodes creates LSPs to each destination and replicates packets to each
such LSP. In a future work, we also consider the creation of a multicast LSP tree,
though this requires intelligence at intermediate nodes for selective multiplication.

LSP Consolidation: As mentioned earlier, it is not always possible to have LSPs from
the gateway to every leaf. Likewise, for inter-leaf communication, especially to
support virtualization, virtual machine migration etc. it is not possible to have LSPs set
up between every pair of leaves within the data-center. Hence, we use the concept of
multiple LSPs within the data-center by using label stacking (see Fig. 3 for example).

5 Simulation Model and Results

We performed an extensive discrete event simulation (DES) to evaluate the
performance of our proposed data-center interconnection mechanism using
Omnipresent Ethernet encoded in MPLS-TP. In the model, we assume 70% of the
leaves to be NAS and 30% to be servers (processors). All the leaves have Gigabit
Ethernet interfaces. The number of leaves is varied from 1000 to 1 million. Traffic
requests arrive at the gateway as service jobs and these are to be transported to the
leaves or within the leaves (inter-leaf communication) or from the leaves to the
gateway. LSPs are set up ahead in time for the major routes. There are 4-levels of QoS
supported by the network. Each LSP also defines with it a granularity that can be
implemented using a token bucket rate-limiter function. Our interest is to measure the
performance of the MPLS-TP architected data-center using OEthernet concepts as
compared to native data-centers using MPLS, MPLS-TP (standard) as well as IP
routers. Requests arrive following a Poisson distribution and are characterized by a
general holding time (since the data-center is a specialized part of the network – most
requests are heavily granular, as opposed to regular arrivals that are exponentially
distributed). Load is computed as the ratio of the total consumed bandwidth in the
network, as opposed to the total bandwidth that the network can provide, resulting in a
range of [0,1].

Shown in Fig. 8 is a viewgraph of latency versus load for a data-center of size 1000
nodes (leaves). For comparison, we measured the performance of data-centers with IP
routers, conventional MPLS and MPLS-TP (without OEthernet technology) using the
same traffic and the same topology. Observe the almost 3-orders of difference in the
delay values between any of the other technologies and our proposed data-center
architecture. The measurements are taken as average latency over all the source-
destination pairs and at time-ensemble, (1000 runs at the same load value). The MPLS-
TP architecture using OEthernet does not require any lookup table and the maintenance
of a global LSP database further facilitates faster switching. As can be seen in Fig. 8,

408 A. Gumaste et al.

the latency of our proposal is consistently better than all the other conventional
technologies. This advantage is very important from the data-center perspective given
that it is said that a 1-millisecond latency difference can cause a financial trading house
over 100-million USD in a fiscal year.

1

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay
 in

 m
ic

ro
se

co
nd

s

Normalized Load

Latency for MPLS-TP

Latency for IP routers

Latency for MPLS

Latency for MPLS-TP with OEthernet

Fig. 8. Latency results for a 1000-node data-center

To demonstrate scale, the latency measurements are taken for a larger (1-million
node) data-center. The measurements are consistent as can be seen in Fig. 9, whereby
the latency difference between our proposal and existing technologies is easily 2-3
orders of magnitude. The superior performance of OEthernet when encapsulated
within the MPLS-TP domain adds significant functionality flavor to MPLS-TP from
the data-center perspective.

1

10

100

1000

10000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
el

ay
 in

 M
ic

ro
se

co
nd

s

Normalized Load

Latency MPLS-TP

Latency IP

Latency MPLS

Latency MPLS-TP with OE

Fig. 9. Latency results for a 1000,000-node data-center

Shown in Fig. 10 is a viewgraph of energy consumption for an MPLS-TP network
as compared to the energy consumption for our proposal. The MPLS-TP network
requires more processing at each LSR. It can be concluded that the energy requirement
is directly proportional to (1) the latency of the protocol – more the time spent at a
node, more the energy consumed due to processing. and (2) lookup table size – larger

 Using MPLS-TP for Data-Center Interconnection 409

the table, more the energy required. Base values for energy consumption are assumed
as shown in [5, 15]. On an average, there is a 72% energy saving using our proposal as
opposed to a generic MPLS-TP scheme. It should also be noted that the energy
consumption for IP-routers and MPLS LSRs is significantly more than that when we
use MPLS-TP and hence not shown in the viewgraph.

0

100

200

300

400

500

600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

En
er

gy
 C

on
su

m
pt

io
n

in
 K

W

Normalized Load

Energy consumption
for MPLS-TP

Energy Consumption
for MPLS-TP with
OEthernet

Fig. 10. Energy Efficiency comparison between MPLS

6 Conclusion

The fast proliferation of data-center technology has implied a need for a scalable,
acceptable and economical protocol for interconnection between servers, NAS and
switches. We propose the use of MPLS-TP to architect the data-center. However,
instead of using native MPLS-TP, we propose the use of our earlier proposed
Omnipresent Ethernet technology as an enabler for faster switching, lower energy
consumption and better scalability within the data-center. The OEthernet technology,
through the use of binary and source routing when plugged into MPLS-TP creates a
very fast, efficiency and lower-energy consuming network – especially suited for the
data-center. These performance results justify the use of OEthernet technology within
an architected MPLS-TP data-center.

References

1. Gumaste, A., Antony, T.: Data Center Networking and Cloud Computing - A Networking
Overview, Embedded Technology Brief (2009)

2. Shpiner, A., Keslassy, I.: A switch-based approach to throughput collapse and starvation in
data centers. In: 18th International Workshop on Quality of Service (IWQoS), June 16-18
(2010)

3. Farrington, N., Rubow, E., Vahdat, A.: Data Center Switch Architecture in the Age of
Merchant Silicon. In: 17th IEEE Symposium on High Performance Interconnects, August
25-27 (2009)

410 A. Gumaste et al.

4. Ibanez, G., Carral, J.A., Garcia-Martinez, A., Arco, J.M., Rivera, D., Azcorra, A.: Fast
Path Ethernet Switching - On-demand, efficient transparent bridges for data center and
campus networks. In: IEEE Workshop on Local and Metropolitan Area Networks
(LANMAN), May 5-7 (2010)

5. Gumaste, A., Mehta, S., Arora, I., Goyal, P., Rana, S., Ghani, N.: Omnipresent Ethernet—
Technology Choices for Future End-to-End Networking. Journal of Lightwave
Technology 28(8) (April 2010)

6. Niven-Jenkins, B., Brungard, D., Betts, M., Sprecher, N., Ueno, S.: Requirements of an
MPLS Transport Profile. IETF RFC 5654 (2009)

7. Bocci, M., Bryant, S., Frost, D., Levrau, L., Berger, L.: A Framework for MPLS in
Transport Networks. draft-ietf-mpls-tp-framework-12 (2010)

8. Busi, I., Allan, D.: Operations, Administration and Maintenance Framework for MPLS-TP
based Transport Networks. draft-ietf-mpls-tp-oam-framework-08, September 17 (2010)

9. Koike, Y., Paul, M.: MPLS-TP OAM Maintenance Points. draft-koike-ietf-mpls-tp-oam-
maintenance-points-01, March 8 (2010)

10. Sprecher, N., Farrel, A.: Multiprotocol Label Switching Transport Profile Survivability
Framework. draft-ietf-mpls-tp-survive-fwk-06, June 20 (2010)

11. Bocci, M., Swallow, G.: MPLS-TP Identifiers. draft-ietf-mpls-tp-identifiers-0, March 8
(2010)

12. Takacs, A., Fedyk, D., He, J.: OAM Configuration Framework. draft-ietf-ccamp-oam-
onfiguration-fwk[A1], January 28 (2010)

13. Zhang, F., Wu, B., Dai, X.: LDP Extensions for MPLS-TP PW OAM configuration. draft-
zhang-mpls-tp-pw-oam-config-00, October 15 (2009)

14. Sprecher, N., Bellagamba, E., Weingarten, Y.: OAM Analysis. draft-ietf-mpls-tp-oam-
analysis, July 04 (2010)

15. Gumaste, A., Mehta, S., Vaishampayan, R., Ghani, N.: Demonstration of Omnipresent
Ethernet - A Novel Metro End-to-End Communication System Using Binary + Source
Routing and Carrier Ethernet. Journal of Lightwave Technology 28(4), 596–607 (2010)

16. Mysore, R.N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S.,
Subramanya, V., Vahdat, A.: PortLand - A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In: Proceedings of the ACM SIGCOMM Conference, Barcelona, Spain
(August 2009)

17. Gumaste, A.: Deciphering omnipresent ethernet: An all ethernet communication system -
the control plane. In: 12th International Conference on Transparent Optical Networks
(ICTON), June 27-July 1 (2010)

	Using MPLS-TP for Data-Center Interconnection
	Introduction
	MPLS-TP Primers
	Omnipresent Ethernet in the Data-Center
	Implementing MPLS-TP in the Data-Center
	Simulation Model and Results
	Conclusion
	References

