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Abstract. In wireless access, transmitter nodes need to make individual
decisions for distributed operation and do not necessarily cooperate or
bargaining with each other. We consider a single-receiver random access
system of transmitters (users) with altruistic payoffs which are general-
ized weighted individual objectives of their throughput rewards, trans-
mission energy costs and delay costs. We compare altruistical behaviour
with selfish (Nash equilibrium), cooperative (Shapley vector) and bar-
gaining behaviour (Nash bargaining solution). We produce criteria where
altruistical behaviour is more profitable for a user than either selfish, or
cooperative, or bargaining ones.

Keywords: ALOHA, Nash equilibrium, Shapley vector, altruistical be-
haviour, bargaining solution.

1 Payoffs without Altruism

Aloha [1] and slotted Aloha [2,4] have long been used as random distributed
medium access protocols for radio channels. They are in use in both satellite as
well as cellular telephone networks for the sporadic transfer of data packets. In
these protocols, packets are transmitted sporadically by various users. If packets
are sent simultaneously by more than one user then they collide.

In this paper we focus on the following Aloha protocol model formulated in
[3]. It is assumed that multiple nodes randomly transmit packets with fixed
probabilities to a common receiver. Each transmitter has a packet queue of
infinite buffer capacity. We consider a synchronous slotted system, in which
each packet transmission takes one time slot. We assume saturated queues with
always availability of packets. Let pi denote the transmission probability of node
i from the set N of n transmitters. We assume multi-packet reception channels
with possible packet captures. The packet transmission of node i is successfully
received with probability qi|J , if nodes in set J (including node i) transmit in
the same time slot. Throughout the paper, we will specialize the results to the
particular case of the classical collision channels with qi|J = 1 for J = {i}
and qi|J = 0 for J �= {i}. Any selfish node i has the objective of choosing
the transmission probability pi to maximize the utility function ui that reflects
the difference between the throughput rewards and costs of transmission energy
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and delay per time slot, i.e the utility of node i is defined as ui = riλi − ei −
di, where λi is the throughput rate, namely the average number of successful
packet transmissions per time slot, ri is the reward for any successful packet
transmission, ei is the average transmission energy cost per time slot and di
is the average delay-type cost per time slot. We will focus on two users game.
Node (user) i transmits a packet with probability pi and it is successfully received
with probability qi|i, if the other node decides not to transmit, or captured with
probability qi|12, if the other node also transmits in the same time slot. We
assume 0 ≤ qi|12 ≤ qi|i ≤ 1 for i = 1, 2. We also assume that throughput rate for
user i is given as follows λi = pi(pîqi|12 + (1− pî)qi|i), the average transmission
energy cost ei per time slot is permanent and equals Ei, and the average delay-
type cost per time slot di is proportional of failed transmission with coefficient
Di. Thus, the payoff to users are given as follows:

u1(p1, p2) = r1p1(p2q1|12 + (1− p2)q1|1)
−D1(1− p1 + p1(1− p2q1|12 − (1− p2)q1|1))
− E1p1,

u2(p1, p2) = r2p2(p1q2|12 + (1− p1)q2|2)
−D2(1− p2 + p2(1− p1q2|12 − (1− p1)q2|2))
− E2p2.

This game is equivalent to the following bimatrix game M = (A,B) with two
pure strategies: to transmit (T) and do not transmit (N), where

A :=

( T N

T R1q1|12 − E1 −D1 R1q1|1 − E1 −D1

N −D1 −D1

)

and

B :=

( T N

T R2q2|12 − E2 −D2 −D2

N R2q2|2 − E2 −D2 −D2

)

with

R1 = r1 +D1, R2 = r2 +D2.

This game always has Nash equilibrium in pure strategies and its form is de-
termined by the fact whether the transmission by both users or each of them
separately is too expensive or accessible for them, namely, as it is given in
Table 1.

Thus, in particular the case where it is too expensive to transmit for both users
simultaneously, but transmission is preferable for each of them separately turns
out to be very competitive since two pure Nash equilibrium (T,N) and (N, T )
arise simultaneously. This situation takes place under the following conditions:

q1|12 < E1/R1 < q1|1 and q2|12 < E2/R2 < q2|2. (1)
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Table 1. Nash equilibrium

E1/E2 ≤ R2q2|12 ∈ [R2q2|12, R2q2|2] ≥ R2q2|2
≤ R1q1|12 (T, T ) (T,N) (T,N)

∈ [R1q1|12, R1q1|1] (N,T ) (N,T ), (T,N) (T,N)
≥ R1q1|1 (N,T ) (N,T ) (N,N)

Besides for the case (1) a mixed Nash equilibrium ((p1, 1−p1), (p2, 1−p2)) exists
where

p1 =
1

q2|2 − q2|12

(
q2|2 − E2

R2

)
,

p2 =
1

q1|1 − q1|12

(
q1|1 − E1

R1

)

with payoffs
(vs1, v

s
2) = (−D1,−D2).

In spite of quite competitive situation the payoffs for mixed strategies coincide
with payoffs for pure strategies where both users have just chosen do not to
transmit at all which is quite senseless since, of course, they have a chance to
improve their payoff.

2 Comparing Selfish, Cooperative and Bargaining
Solutions

In the strong competitive situation (1) with two equilibrium cooperative and
bargaining approach can be applied to improve user’s outcome.

First we consider the Shapley solution of the bargaining problem. To do so,
we note that our bimatrix game can be present as M = (A,B) where

A =

( T N

T T11 −D1 T1 −D1

N −D1 −D1

)
,

B =

( T N

T T22 −D2 −D2

N T2 −D2 −D2

)

with

Ti = qi|iRi − Ei,

Tii = qi|12Ri − Ei, i = 1, 2.

Then, in the new notation the conditions (1) are equivalent to the following ones:

T11 < 0 < T1 and T22 < 0 < T2. (2)
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Also, note that the Pareto optimal boundary is just the line segment L joining
two points: (T1 −D1,−D2) and (−D1, T2 −D2).

The security levels (maxmin) for users are given as solution of two zero-sum
games with matrix A and B. Clearly, under condition (1) (N, T ) is the saddle
point for zero-sum game with matrix A and (T,N) is the saddle point for zero-
sum game with matrix B. Thus, the security level is (−D1,−D2) which presents
status quo point (x∗, y∗). Thus, to find Shapley solution we have to find the
point (x, y) maximizing

T := (x− x∗)(y − y∗) = (x +D1)(y +D2)

with

y = −T2

T1
x+

T1T2 −D1T2 −D2T1

T1

for x ∈ [−D1, T2 −D2]. Then we have the following result.

Theorem 1. The Shapley solution for the bargaining problem (vb1, v
b
2) is given

by

vb1 =
T1

2
−D1 =

1

2
(R1q1|1 −D1)−D1,

vb2 =
T2

2
−D2 =

1

2
(R2q2|2 −D2)−D2.

Besides, bargaining solution a cooperative approach can be applied to deal with
competitive situation (1). Namely, the users have cooperatively to maximize the
joint payoff

v = v1 + v2,

so, to solve the following optimization problem:

max
p1,p2

v.

It is clear that the the cooperative problem has the following optimal strategies
(pc1, 1− pc1), (p

c
2, 1− pc2) where

pc1 =
T2

T1 − T11 + T2 − T22
,

pc2 =
T1

T1 − T11 + T2 − T22

with joint payoff

vc =
T1T2

T1 − T11 + T2 − T22
−D1 −D2.

This payoff they can share, for example, according to Shapley vector which is
given in the following theorem.
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Theorem 2. The Shapley vector for the cooperative solution ϕ = (ϕ1, ϕ2) is
given as follows:

ϕ1 =
T1T2

2(T1 − T11 + T2 − T22)
−D1,

ϕ2 =
T1T2

2(T1 − T11 + T2 − T22)
−D2.

We can compare the bargaining and cooperative solution estimating the differ-
ence of the corresponding total payoffs, i.e. v = vb1 + vb2 − vc. It is clear that

vb1 + vb2 − vc

=
T1 + T2

2
− T1T2

T1 − T11 + T2 − T22

=
T 2
1 + T 2

2 − (T1 + T2)(T11 + T22)

T1 − T11 + T2 − T22

> (by (2)) > 0.

Thus, the bargaining approach can essentially increase the quality of the network
as a whole. To estimate what it can bring to a user we have to investigate the
difference of corresponding payoffs, so values vb1−ϕ1 and vb1−ϕ1. It is clear that

vb1 − ϕ1 =
T1 − T2 − T11 − T22

T1 − T11 + T2 − T22
T1,

vb2 − ϕ2 =
T2 − T1 − T11 − T22

T1 − T11 + T2 − T22
T2.

Thus, by (2) we have the following result.

Theorem 3. (a) If

T11 + T22 ≤ T1 − T2 ≤ −T11 − T22

then both users benefits from bargaining approach compare to cooperative one,
(b) if

T1 − T2 > −T11 − T22

then only user 1 benefits from bargaining approach compare to cooperative one,,
(c) if

T1 − T2 < T11 + T22

then only user 2 benefits from bargaining approach compare to cooperative one,.

3 Payoffs with Altruism

In this section we consider the other way of user’s cooperation where in behavior
of users some altruism presents, namely, in payoff each user takes into account
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payoff of the other one with some weights (say, normalized by 1), namely, the
user payoffs are given as follows:

uJ
1 = α1u1 + α2u2, uJ

2 = β1u1 + β2u2.

where αi, βi ∈ [0, 1].
Then the game has the following bimatrix form M = (A,B) with

A =

( T N

T α1(T11 −D1) + α2(T22 −D2) −α2D2 + α1(T1 −D1)
N −α1D1 + α2(T2 −D2) −α1D1 − α2D2

)

B =

( T N

T β1(T11 −D1) + β2(T22 −D2) −β2D2 + β1(T1 −D1)
N −β1D1 + β2(T2 −D2) −β1D1 − β2D2

)
.

For this game we have that

(a) (N,N) is a Nash equilibrium if T1 ≤ 0 and T2 ≤ 0,
(b) (T, T ) is a Nash equilibrium, if α1T11 + α2T22 ≥ α2T2 and β1T11 + β2T22 ≥

β1T1,
(c) (N, T ) is a Nash equilibrium, if α1T11 + α2T22 ≤ α2T2 and T2 ≥ 0,
(d) (T,N) is a Nash equilibrium, if β1T11 + β2T22 ≤ β1T1 and T1 ≥ 0.

Also, if

T1 ≥ 0, T2 ≥ 0, β1T11 + β2T22 ≤ β1T1 and α1T11 + α2T22 ≤ α2T2 (3)

besides two pure Nash equilibrium (T,N) and (N, T ), the game has a mixed
Nash equilibrium ((p1, 1− p1), (p2, 1− p2)) where

p1 =
β2T2

β1(T1 − T11) + β2(T2 − T22)
,

p2 =
α1T1

α1(T1 − T11) + α2(T2 − T22)

with the corresponding payoffs

vJ1 =
α1α2T1T2

α1(T1 − T11) + α2(T2 − T22)
− α1D1 − α2D2,

vJ2 =
β1β2T1T2

β1(T1 − T11) + β2(T2 − T22)
− β1D1 − β2D2.

So, in the competitive situation the payoffs for mixed strategies is greater than
the payoffs for pure strategies where both users have just chosen do not to
transmit at all which tells that taking into account interest of the opponent can
improve the work of network even in selfish scenario of user’s behaviour. Also.
it is interesting that in the competitive cases (2) and (3) the domain (T11, T22)
for altruistical payoff contains the corresponding domain for the selfish payoffs,
that produces some extra advantage.

The following results allow to tell when altruistical behavior even is more
profitable for users than selfish one.
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Fig. 1. Areas of competitive solution for selfish and altruistical payoffs

Theorem 4. Let (2) hold. Then

vJ1 ≥ vs1, vJ2 ≥ vs2.

if and only if

α1α2T1T2

α1(T1 − T11) + α2(T2 − T22)
≥ (α1 − 1)D1 + α2D2,

β1β2T1T2

β1(T1 − T11) + β2(T2 − T22)
≥ β1D1 + (β2 − 1)D2,

In particular, for small delay costs D1 and D2 or where there are no these costs
at all (so, D1 = D2 = 0), the altruistical behavior is more profitable for users
than selfish one.

The following theorem compares selfish altruistical behavior with cooperative
one (note, that to escape bulky formulas here we consider only the case where
there are no delay costs at all).

Theorem 5. Let D1 = D2 = 0. Then

vJ1 ≥ vc1, vJ2 ≥ vc2.

if and only if

α1(1 − 2α2)(T1 − T11) + α2(1 − 2α1)(T2 − T22) ≥ 0,

β1(1− 2β2)(T1 − T11) + β2(1 − 2β1)(T2 − T22) ≥ 0.

In particular,
(a) if

α1, α2, β1, β2 ≥ 1/2

then selfish altruistical behavior always more profitable than cooperative one.
(b) if

α1, α2, β1, β2 < 1/2

then cooperative one is more profitable than selfish altruistical behavior.

Similarly we can compare altruistical behavior with cooperative solution.
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Theorem 6. Let D1 = D2 = 0. Then

vJ1 ≥ vb1, vJ2 ≥ vb2.

if and only if

2α1α2T2 ≥ α1(T1 − T11) + α2(T2 − T22),

2β1β2T1 ≥ β1(T1 − T11) + β2(T2 − T22).

In particular, if α1, β2 < 1/2 then bargaining one is more profitable than selfish
altruistical behavior.

The Pareto optimal boundary is just the line segment L joining two points:
(−α1D1+α2(T2−D2),−β1D1+β2(T2−D2)) and (−α2D2+α1(T1−D1),−β2D2+
β1(T1−D1)). The security level is (−α1D1−α2D2,−β1D1−β2D2) which presents
status quo point (x∗, y∗). Thus, to find Shapley solution for the bargaining prob-
lem we have to find the point (x, y) ∈ L maximizing

T := (x− x∗)(y − y∗) = (x+ α1D1 + α2D2)(y + β1D1 + β2D2)

where

y = − β1T1 − β2T2

α1T1 − α2T2
x+

(β1α2 − β2α1)(D1T2 +D2T1 − T1T2)

α1T1 − α2T2

Theorem 7. The Shapley solution for the bargaining problem (vJb1 , vJb2 ) is given
by

vJb1 =
α1β2 − α2β1

2(β2T2 − β1T1)
T1T2 − α1D1 − α2D2,

vJb2 =
α2β1 − α1β2

2(α2T2 − α1T1)
T1T2 − β1D1 − β2D2.

4 Discussion

In this paper we considered a single-receiver random access system of trans-
mitters (users) with altruistic payoffs which are a generalized weighted individ-
ual objectives of their throughput rewards, transmission energy costs and delay
costs. We compared altruistical behaviour with selfish (Nash equilibrium), coop-
erative (Shapley vector) and bargaining behaviour (Nash bargaining solution).
We produced criteria where altruistical behaviour is more profitable for a user
than either selfish, or cooperative, or bargaining ones.
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Finally we note that as the other altruistical payoffs for users we could take
weighted fairness utility ([5]), namely, the user altruistical payoffs could be given
as follows:
for α �= 1

uF
1 = α1

u1−α
1

1− α
+ α2

u1−α
2

1− α
,

uF
2 = β1

u1−α
1

1− α
+ β2

u1−α
2

1− α

and for α = 1

uF
1 = α1 ln(u1) + α2 ln(u2),

uF
2 = β1 ln(u1) + β2 ln(u2).

Here we just briefly produce the mixed equilibrium strategies for the plot where
there are no delay costs D1 and D2 at all (so, D1 = D2 = 0). Then the mixed
Nash equilibrium ((p1, 1− p1), (p2, 1− p2)) is given as follows:
for α = 1

p1 =
α1T2

(α1 + α2)(T2 − T22)
,

p2 =
β2T1

(β1 + β2)(T1 − T11)
,

for α �= 1

p1 =
T2

T2 − T22

T1 − (T1 − T11)p2

T1 −
(
1− β1α2

β2α1

)
(T1 − T11)p2

,

β1α2

β2α1

(T1 − T11)p2
T1 − (T1 − T11)p2

=
1

T2 − T22

(
α2

α1

(T2 − T22)p
1−α
2

(T1 − (T1 − T11)p2)1−α

)1/α

.
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