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Abstract. In this paper we explore the cross-layer MIMO-MAC re-
source allocation problem in interference-limited wireless networks. This
is primarily motivated by the trade-off between maximizing the through-
put of individual non-interfering links, using spatial multiplexing, and
maximizing the spatial reuse of lower rate interfering links, using spatial
multiplexing in conjunction with nulling. First, we formulate a cross-layer
optimization problem that jointly decides the scheduling and MIMO
stream allocation in order to maximize the average sum rate of a given
set of single-hop links, subject to signal-to-interference-and-noise-ratio
(SINR) constraints. Second, we characterize the problem as a non-convex
integer programming problem which is quite challenging to solve. How-
ever, we show that under low SINR regimes, an approximate problem
can be cast into a geometric programming formulation which is convex.
Finally, we characterize the optimal solution for the case of two links and
utilize the developed decision rules as a basis for a distributed iterative
MIMO link scheduling (IMLS) algorithm that achieves significant gains
for arbitrary number of links. Numerical results show that, for plausible
scenarios, IMLS achieves more than 2-fold improvement over one-link-
per-slot utilizing full spatial multiplexing gain.

Keywords: MIMO networks, convex optimization, scheduling, spatial
multiplexing, interference nulling,.

1 Introduction

Multiple-input multiple-output (MIMO) [1] is a major breakthrough in wireless
communications that has received considerable attention in the point-to-point
literature due to its substantial spectral efficiency and reliability advantages for
the same power and bandwidth. Exploring the multiple access trade-offs of differ-
ent MIMO schemes in multi-user settings, namely interference mitigation, spatial
multiplexing (SM), and diversity, has received less attention. Thus, we focus on
the MIMO-MAC resource allocation problem over the interference channel.
The problem of networking MIMO radios has started to receive recent atten-
tion in the literature |3, 4, 15,6, [7, 18, 19, [10]. Exploiting the interference reduction
advantages of smart antennas and reducing the MAC overhead constitute major
thrusts. However, optimally allocating MIMO spatial streams in network settings
has not received sufficient attention. This problem is motivated by a fundamental
trade-off between scheduling and spatial multiplexing. In this paper, we analyze
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this trade-off which reveals SINR-based decision rules that constitute a founda-
tion for future MAC protocols. It constitutes a first step towards understanding
the more general diversity-multiplexing-scheduling trade-off. Hence, our focus
in this paper is on the trade-off, problem formulation, complexity and solution
approach. Protocol design and performance comparison to other protocols lie
out of the scope of this work and is a subject of future research.

Our contribution in this paper is three-fold: i) Formulating the cross-layer
MIMO-MAC resource allocation problem, ii) Investigating convexity and casting
an approximate problem into convex geometric programming, under low SINR
and iii) Introducing Iterative MIMO Link Scheduling (IMLS) that demonstrates
significant improvement over scheduling non-interfering links with full Spatial
multiplexing gain.

First, we characterize the MIMO-MAC resource allocation problem as a non-
convex integer programming problem which is quite challenging. Hence, we cast
an approximate problem as convex geometric programming under low SINR.
Next, we characterize the optimal policy for two links and employ the decision
rules as a foundation for scheduling arbitrary number of MIMO links using IMLS.
Finally, we present numerical results for plausible scenarios that not only confirm
the trade-off at hand but also show the IMLS throughput gains.

The paper is organized as follows: In section 2, we discuss related work in the
literature. We introduce the assumptions and formulate the problem in section
3. In section 4, we analyze the complexity of the problem and formulate approx-
imate problems. Next, we develop SINR-based decision rules that characterize
the optimal solution for two links and constitute the basis for IMLS in section 5.
In section 6, we show performance results for a number of interference scenarios.
Finally, conclusions are drawn in section 7.

2 Related Work

Recent work has focused on the design of MAC protocols that exploit the unique
capabilities offered by networking MIMO nodes |3, 4, 15,16, 17, 8,19, [10]. [4] focuses
on handling the non-negligible encoding and decoding delays caused by Lucent’s
V-BLAST [18]. It introduces mechanisms for reducing the MAC overhead (e.g.
RTS/CTS) as well as parallel stop-and-wait ARQ scheme to remedy the per
packet ACK. [5] explores the role of spatial diversity schemes (e.g. space-time
coding (STC)) to combat fading and achieve robustness in MIMO-enabled ad
hoc networks. [6] introduces distributed scheduling for MIMO ad hoc networks
(DSMA) within the CSMA /CA framework where SM stream allocation depends
on the transmitter-receiver distance. In |7], SM with antenna subset selection for
data packet transmission is proposed. In [§], the authors compare the asymp-
totic network spectral efficiency in the presence and absence of channel state
information (CSI) at the transmitters. In fact, the theoretical study in [8] moti-
vated us to investigate cross-layer multiplexing-scheduling schemes that balance
this trade-off. In [9], three MIMO MAC protocols are introduced, namely SRP,
SMP and SRMP, however, the multiplexing-scheduling trade-off is not analyzed.
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Unlike our approach, the interference model is not SINR-based and there are no
insights as to which protocol is the best under what conditions.

This work extends upon our earlier work |11] in which we limited our at-
tention to the simple case of two MIMO links without solving or analyzing the
complexity of the general number of links case. In [12], we studied the problem
of cross-layer diversity and scheduling optimization for reliable communications.
Despite the fundamental differences between [12] and the problem at hand, which
focuses on multiplexing and scheduling optimization for maximizing the average
sum rate, both problems lend themselves to a somewhat similar solution ap-
proach which is quite interesting. This, in turn, calls for a unified framework for
both problems which constitutes an entry point to the generalized scheduling-
multiplexing-diversity problem in future work.

In [3], the authors present stream controlled multiple access (SCMA) for
MIMO ad hoc networks. It focuses on SM and explores the gains of stream
control and partial interference suppression. However, this work differs from [3]
with respect to the following: i) Formulating a cross-layer optimization problem
that formally captures the scheduling-spatial multiplexing trade-off, ii) Inves-
tigating complexity and formulating an approximate geometric programming
problem and iii) Developing distributed SINR-based decision rules that are in-
spired by the optimal solution for two links and serve as the basis for iteratively
scheduling the MIMO links using IMLS.

3 Joint MIMO-MAC Resource Allocation

3.1 Assumptions

We focus on the interference channel with K MIMO links involving 2K distinct
stationary nodes. Two types of interference may arise; Primary interference, e.g.
common receiver and self-interference. Secondary interference arises when a re-
ceiver, Rz, receiving from a particular transmitter, Tz, overhears other transmis-
sions intended elsewhere. In this paper, we target the more challenging secondary
interference while handling primary interference is considered complementary to
this work and lies out of its scope.

Each node is supported by M transmit antennas and NN receive antennas.
We assume that the channel state information (CSI) is known only at the re-
ceiver, not at the transmitter. Hence, we focus on open-loop (OL), as opposed
to closed-loop (CL), MIMO systems due to their practical relevance. We assume
a pessimistic interference model which accounts for interference contributed by
any transmitter at any receiver, no matter how small this interference is. This
is justified by our focus on single-hop links in a neighborhood for the purposes
of MAC analysis.

All nodes share a single frequency channel, time is divided into slots and the
channel is assumed to be constant across the K slots under investigation. We
assume fixed power (P) and modulation for all nodes. Accordingly, we focus on
optimizing a single PHY variable, namely the number of spatial streams dedi-
cated to SM, denoted X. In order to support SM in conjunction with interferer
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nulling, we assume a receiver structure that combines both SM receiver algo-
rithms, which typically rely on multi-user detection (MUD), along with adaptive
spatial nulling algorithms.

We adopt a Gaussian MIMO channel model where the channel matrix H is
perfectly known at the receiver and is deterministic [1]. It is assumed to be an
uncorrelated full-rank channel where r(H) = min(M, N). The path loss follows
exponential decay with distance, with a path loss exponent a. We model the
receiver thermal noise as additive white Gaussian noise (AWGN), with power o2
dBm. The results of this paper can be extended to frequency-flat independent
and identically distributed (iid) Rayleigh fading MIMO channels under high
SINR since the open-loop capacity is given by min(M,N) log SNR + O(1)
which is similar to the capacity of the Gaussian MIMO channel in (1) below.

It has been shown in [13] that the open-loop capacity (or link spectral effi-
ciency in bps/Hz) of a point-to-point link with M transmit, N receive anten-
nas, a deterministic Gaussian channel with full rank matrix and a SM signaling
scheme that attains full spatial multiplexing gain (SMG) (e.g. V-BLAST |[2])
grows linearly with the channel rank,

C(SNR) = min(M, N) log(1 + SNR) 1)

Thus, if we model interference as AWGN using the Gaussian approximation,
then the link spectral efficiency in a multi-user setting can be approximated as,

R(SINR) ~ min(M,N) log(1 + SINR)

3.2 Problem Formulation

In this section, we formulate a cross-layer optimization problem that strikes a
balance between activating high rate non-interfering links and simultaneously
activating interfering lower rate links to maximize the average sum link rate.
Our formulation studies K links over K slots to be able to compare to the
baseline policy, namely one link with full SMG per slot.

Given K links and K slots, we define I as the optimization objective function
that is given by the average sum link rate,

1 K K
F= 3SR, 2)
i=1 j=1

where i is the link index and j is the slot index. R;; is the bit rate supported by
link ¢ in slot j and is approximated by,

Rij = Xij lOg(]. + SINR”) (3)

where X;; is the number of SM streams of link ¢ in slot j and SINR;; is the
SINR of link 4 in slot j and is given by,
By G G (4)
2 K-lx,; 2 i
on+ D ndi DriGl

SINR;; =
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Notice that STNR;; given in (4) is per SM stream, where a SM stream may in-
clude more than one data stream in case X;; < min(M, N). GY is the path loss
gain between the transmitter of link v and receiver of link v. G, = )?' _is the re-
ceiver array gain attributed to exploiting the CSI available at the receiver to null
using the }évj streams within a single SM stream. Finally, the summation term in

the denominator (interference) assumes interferers are spatially separated from
the signal of interest to perfectly null the ( )?; —2) strongest interferers. This is a
reasonable assumption in light of state-of-the-art beamforming algorithms [17].
For instance, the optimal beam former with L antennas can null up to (L — 2)
interferers using its (L — 1) degrees of freedom (DoF) where a single DoF is
utilized to detect the signal of interest.

The problem is formulated as a constrained optimization problem that max-

imizes F' subject to SINR among other range constraints,

P1: max F (5)
X, P
s.t. SINR” > Vi, J
P;,; ={0, P} Vi, J
Xi;  Integer Vi, j

where the optimization variables are X = [Xj;], vector of number of SM streams
for link ¢ in slot j and P = [P;;], vector of binary variables representing the link-
slot assignment for link ¢ in slot j, such that P;j; = P when link ¢ is activated
in slot j, otherwise P;; = 0. 8 is a minimum requirement on the SINR that is
necessary for successful reception.

4 Problem Complexity

4.1 Non-convexity of P1

Motivated by the recent advances in convex optimization and its applications
to wireless communications [14], we investigate the convexity of P1. We exam-
ine three complexity aspects of the problem, namely the integer optimization
variables X;; and P;;, concavity of objective function F' and convexity of the
SINR constraints. Afterwards, we introduce approximate formulations to show
how efficiently the MIMO-MAC resource allocation problem can be solved.
The main challenges towards solving P1 stem from: i) The non-concavity of
F attributed to the non-concavity of R;; in the presence of interference [14], i)
The Bilinear Matrix Inequality (BMI) nature of the SINR constraints and iii)
The integer optimization variables X;; and P;;. Hence, P1 is characterized as a
non-conver integer programming problem which is quite challenging to solve.

4.2 Approximate Problems

First, we tackle the integer programming challenge. We relax variables X;; and
P;; to be real and denote the continuous variable optimization problem subject to
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the same constraints as P2. This relaxation is typically used for solving integer
programming problems and, hence, can be justified for our problem where a
continuous optimization problem is solved in each iteration of the branch and
bound algorithm.

Second, we examine the convexity of P2. Even though the SINR constraints
are non-linear, as written, they can be re-written in a bilinear form as follows.

Lemma 1. The SINR constraints are non-convex, bilinear with respect to the
Pi; and X;; optimization variables.
Proof. The SINR constraints can be written as follows,
K- [ XA,ZJ- _2]
P GiN > Xy B (02 + Py;GY) Vi, j (6)
k=1,k#i

Re-writing it in the standard form (f(z) < 0) yields,

9(Pi1, Pi2,..Pxk, Xij) =

K-[3), -2
Bo2 X+ BXi; Y. PyGp — GiNPy; <0 Vij (7)
k=1,ki

The first term of g is linear in X;; and the last term is linear in P;;. However,
the summation in the middle term includes the product of Py; and X;; and,
hence, is bilinear. In fact, the Hessian of g does not satisfy the second derivative
condition of convexity 72g(P, X) > 0 since it has a negative eigenvalue. Hence,
we conclude that g(P, X) is non-convex, bilinear.

Unfortunately, BMI problems are known to be non-convex [19] and, moreover,
there are no systematic procedures in the literature for solving BMIs. This adds
even more complexity to the problem. Notice that the above result differs from
prior results studying the convexity/linearlity of SINR constraints due to the
following reasons. SINR, convexity has been examined under different problems,
e.g. [14] studied SINR convexity with respect to antenna weights in the trans-
mitter beamforming problem. For power control problems, the SINR constraints
are simply linear in the powers |15]. Another reason is due to our focus on the
MIMO-MAC problem where optimization is with respect to two sets of vari-
ables, namely X;; and P;; Vi,j. This gives rise to bilinear terms in g(P,X) as
seen above which immediately suggests that g is no longer linear and examining
convexity is in order.

In the rest of this section, we examine low and high SINR regimes in an
attempt to circumvent the above hurdles.

We show that, under low SINR, P2 can be approximated to a convex geometric
programming problem. The MIMO rate function becomes R;; ~ X;; SINR;;,
which yields problem P3 maximizing F' = 11( Zfil Zszl Xi; SIN R;; subject to
the same constraints of the continuous variable version of P1, namely P2.
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Lemma 2. Under low SINR, the objective function F in P3 is non-linear and
non-concave.

Proof. Under low SINR, F' is approximated by,

K K ;
1 Py G N
F= K ZZ K—[,N —2] , (8)
i=1j=1 0} + Zk:Lk;Zi P Gy,

Notice that F' is non-linear in P;; and X;; Vi,j due to their contributions in
the denominator of each term in (8). Hence, examining concavity is in order.
With respect to P;;, individual terms as stated in (8) have the same structure
as the SINR in classical power control problems, known to be non-concave [16].
Moreover, the terms in (8) monotonically decrease as X;; increases. Hence, F' in
P3 is non-concave.

This, in turn, yields the following complexity result for P3.

Theorem 1. Under low SINR, the approzimate problem P8 is not convex.

Proof. The result follows directly from the non-convexity of the SINR constraints
shown in Lemma 1 and non-concavity of F' shown in Lemma 2.

It should be noted that the low SINR approximation does not reduce P3 in its
current form to a convex problem. This is in agreement with |[16] which has to
cast the SINR maximization problem into a geometric programming formulation
to establish convexity. On the contrary, the low SINR approximation directly
renders the problem of minimizing the sum of powers subject to rate constraints
linear as shown in |15].

Even though P3 is not convex in its current form, an approximate problem
can be cast into a geometric programming formulation similar to [16]. This is
attributed to the fact that X 511 NRi; is a posynomial function, where a function

f(z) is said to be posynomial if it takes the following form:

flx) = >, ok xi™™ x5?* .. al where ¢, > 0 and ag is real. This yields
a new objective function to minimize: U = KziKzl Zszl X5 SllNRij that is
posynomial.

However, this is an ”approximate” problem since U # F~!. Similarly, the SINR

constraint can be re-formulated into a posynomial form in order to reach the
approximate geometric programming problem P4 known to be convex,

P4 : min U (9)
X, P
s.t. SINR;' < g7} Vi, j
0<P; <P Vi, j

Under high SINR, the problem turns out to be more challenging and cannot
be approximated to convex geometric programming primarily because of the
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role of the stream allocation variables X;; in breaking the posynomial structure
of the objective function approximation. Accordingly, the MIMO rate function
becomes logarithmic in the SINR, i.e. R;; ~ X;; logSINR;;. We show next
that this non-linear, non-convex problem (due to the BMI nature of the SINR
constraints), denoted P5, cannot be approximated to geometric programming.

Theorem 2. Under high SINR, problem P5 cannot be approximated to a geo-
metric programming problem.

Proof. The objective function F' of P5 can be written as,

K K
1
F= ZZXU logSINR;; (10)
i=1 j=1
1 K K x
= log [ [] SINR;;” (11)
i=14=1

We propose to minimize a related function V, even though it is not exactly
equivalent to maximizing F since V # F 1.

v =1I1I1 ! (12)

Xij
i=1j=1 SINR;;"

The objective is to reach a posynomial function which facilitates geometric prob-
lem formulation. However, the role of X;; as SINR;; exponent does not yield
the posynomial structure. This confirms that, unlike P4, problem P5 cannot be
cast into a geometric programming formulation and, hence, cannot be solved
using convex optimization techniques.

In conclusion, approximate problems (P3 and P5) are not only non-convex but
also require costly integer programming solvers. At best, P3 can be approximated
to a geometric programming problem as shown in P4. It is evident by now that
P1 cannot be solved in closed form and is quite challenging to solve numerically.
Hence, in the next section, we take a drastically different approach towards this
rather challenging problem. First, we focus on K = 2 links and characterize
the optimal policy for problem P1 (based on [11)). In the rest of the paper, we
shift our attention to introducing a low-complexity distributed algorithm, for
scheduling arbitrary number of MIMO links, that is founded on the optimal
decision rules for two links.

5 Iterative MIMO Link Scheduling (IMLS)

In this section, we first present SINR-based decision rules that characterize the
optimal MIMO stream allocation and link scheduling for K = 2 links. These rules
serve as the basis for IMLS which iteratively partitions the links over successive
slots depending on the levels of interference.
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5.1 Optimal Spatial Multiplexing and Scheduling for Two Links

In this section, we solve the problem for the simple case of two links which
constitutes the basis for solving arbitrary number of links using IMLS in the next
section. This greatly simplifies the scheduling sub-problem and, hence, facilitates
solving the MIMO stream allocation sub-problem.

The decision rules derived in this section stem from the optimality of P1 and
the SINR constraints. Next, we focus on these two conditions and their direct
impact on optimizing the MIMO stream allocation (number of SM streams, X)
and link scheduling (transmit or not with fixed power P).

For K = 2 links, the scheduling policy space collapses to two simple policies,
namely Policy A: 1 link per slot and Policy B: 2 links per slot. Scheduling one
of the links exclusively in the two slots violates the requirement that each link
should be activated at least once over the K slots. Hence, the combinatorial
complexity of scheduling vanishes. Furthermore, MIMO stream allocation for,
typically, small M and N in state-of-the-art radios is solved using search which
yields upper and lower bounds on X.

5.1.1 Lower Bound on X
In this section, we address the question which establishes a lower bound on X:
When does policy B outperform policy A with respect to F'? This can be written

formally as,
Fg > Fy (13)

where Fp denotes the average sum rate in the presence of interference from the
other link and F4 denotes the average sum rate in the absence of interference.
Next, we show how to quantify Fa. In this case, all MIMO spatial streams (i.e.
SMG = min(M, N)) are utilized for improving the link rate through SM (e.g.
V-BLAST [2] which achieves full SMG) and no nulling is needed. Based on the
definition of C in (1) and the fact that under policy A each link transmits only
in 1 slot, then it can be easily shown that,

1 2

1
Fy = 2;@ =,(C1+ Gy (14)
Next, we quantify Fg where any link ¢ is activated in any slot j among the two
slots. Due to the presence of interference in each slot, a subset of MIMO streams
(X) is dedicated to SM, and the remaining degrees of freedom at the receiver

are dedicated to nulling the other interferer. Accordingly,

2 2
1 1
Fp = 2 Z Z Rij = 2(R11 + Ri2 + Ro1 + Rao) (15)

i=1 j=1

Clearly, the interplay of interference and nulling and their effect on SINR under
policy B (as opposed to SNR under policy A) and the associated smaller SMG X
yields the outcome of which policy constitutes the optimal. The above formula
could be simplified if we factor in the fact that interference under policy B,
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where all (two in this case) links are activated in each slot, is the same and
does not vary from slot to slot. This inherent characteristic of policy B yields
Ri1 = Ri2 = Ry, Ro1 = Ros = Ry and, hence, we can drop the slot index and
(13) can be re-written as,

1
Ry + Ry > 2(01 + Cy) (16)

Notice that different values of X; may or may not satisfy the above condition.
This is primarily attributed to the effect of X; on the LHS since the RHS is
independent of X;. As X, is increased from 1 to min(M, N) (i.e. higher SMG),
the LHS increases due to the role of the linear pre-log factor in (3). Our prime
interest is to find the minimum value of X; that satisfies (16) which constitutes
the lower bound (LB) on Xj.

5.1.2 Upper Bound on X
In this section, we shift our attention to reception success which is governed by
the SINR constraints in P1 and dictates the upper bound (UB) on X.

SINR; > p Vi (17)

The RHS of (17) is independent of X; whereas the LHS varies with X;. It is
straightforward to verify that as X; decreases from min(M, N) to 1 (i.e. more
streams dedicated to nulling at the receiver), SINR increases. Our objective is
to find maximum X; that satisfies (17) and constitutes the UB on X;.

The interplay of the upper bound and lower bound on X, yields the dis-
tributed SINR-based decision rules derived in the next section. Although these
rules fully characterize the optimal solution for two links, they constitute only a
sub-optimal solution for K > 2 due to comparing only two extreme scheduling
policies: Policy A (1 link/slot) and Policy B (K links/slot) and leaving many
other schedules unexamined. Nevertheless, we introduce in the next section a
novel iterative MIMO link scheduling (IMLS) algorithm based on the SINR de-
cision rules examined at individual receivers in a distributed fashion.

5.2 IMLS for Arbitrary Number of Links

5.2.1 Distributed Decision Rules

So far, we have focused on centralized optimization problems, namely P1 and
its simplified two link version studied in section 5.1, that maximize a global
objective function F'.

In this section, we shift our attention to the distributed problem and extend
the previous section to scenarios with arbitrary number of links. Given K slots,
each link strives to maximize its aggregate rate over the K slots, i.e. the dis-
tributed objective function for each link is given by F; = R; = Zszl R;;.

This enables each receiver to autonomously find a solution, i.e. number of SM
streams (X;) and link activation (P;), for its link and feed it back to its transmit-
ter. Hence, the IMLS algorithm is distributed since it involves communication
between the transmitter-receiver parties of each link with absolutely no inter-
link communication. The knowledge of number of contending links K can be
obtained through higher layers, e.g. topology control and routing mechanisms.
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Next, we show how to develop the SINR-based decision rules for arbitrary num-
ber of links based on insights distilled from the two links case studied in section 5.1.
For each link, we compare only two extreme scheduling policies to get a solution:
Policy A: 1 link per slot and Policy B: K links per slot. The rationale behind this
is two-fold. First, it greatly simplifies the problem as it eliminates the combinato-
rial complexity of the scheduling portion of the problem. Second, it opens room
for distributed IMLS which iteratively packs links into different slots depending
on the levels of interference. Along the same lines of section 5.1, we compare the
performance of policies A and B for link i (i.e. F;p > F;) as follows,

R; > C; (18)

Since link i experiences same interference in all slots under policy B, i.e. R;; =
Ris = ... = Rk, (18) reduces to,
C.
Ri > K (19)
This condition yields the LB; on X;.

The SINR constraint determines the U B; on X; which, along with LB;, yield
the following distributed decision rules:

Distributed Decision Rules executed at the receiver of link ¢:

— If LB; < UB;:
Scheduling: Activate the K links in each of the K slots
MIMO: SM with X; = UB,; streams
Nulling with )1}[ streams
— Else:
Scheduling: Activate 1 link in each slot (TDMA)
MIMO: SM with X; = min(M, N) streams

5.2.2 IMLS Description

Based on the distributed decision rules, we introduce an iterative MIMO link
scheduling (IMLS) algorithm that achieves near-maximal link packing per slot.
This is attributed to examining the feasibility of extreme policy B, which packs
all K links to one slot and, if not, iteratively partitions it to smaller link subsets
which are likely to be feasible under reduced interference conditions. This process
proceeds in a distributed manner as described next.

Fig. 1 shows the flowchart of IMLS, executed at the receiver (Rx) of link 4,
to schedule K links over minimal number of slots, denoted s. The variable s
denotes also the number of iterations until IMLS finds a solution starting from
iteration s = 0. As indicated before, IMLS commences with K links which get
partitioned over successive iterations to subsets denoted Ky < K where Ky = K.
Accordingly, the time axis over which IMLS operates is partitioned to s slots.
Each slot is preceded by a short probing interval where the K links examined in
the st" iteration probe the wireless medium with short probing packets in order
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K, links probe

Rx i sense probe
ignals in s interval?

Y
ink i scheduled
OrC?

Exit: K =K links
scheduled over s slots

N

X i examine Decision
Rules: LB, < UB;?

Rx i feedback to Tx i: Rx i feedback to Tx i:
Do not activate in s - Activate in s™ slot
slot - X; = UB; streams
¥ )
Tx i re-probe No probes for Tx 7 in
in s+/ probing interval s+1, s+2,... probing intervals
i Y Rx i sense energy N Schedule K links, 1 per
5= in s slot? slot, over K slots (TDMA)

Fig. 1. IMLS Flowchart at Rx of link 4 to schedule K links over minimal number of
slots, s

for receivers to individually examine the distributed decision rules. Hence, the
st IMLS iteration operates over the s** probing interval and s** slot.

In essence, IMLS iteratively partitions a given set of links to find maximal
subsets which can be activated simultaneously in consecutive slots. As shown in
Fig. 1, it involves four conditional statements where the first and last ones are
responsible for exit conditions, as illustrated later, whereas the third condition
constitutes the core of IMLS. Given K links that probe the medium in iteration
s, Rx i computes the LB and UB of X; and compares them to decide whether
it can be activated in the next slot or not. If LB; < UB;, then link ¢ can survive
the (K5 — 1) interferers, i.e. achieve SINR > /5 with X; = UB; and }](V streams
for nulling. Hence, it can be activated in the st* slot and does not need to probe
anymore. These Rz-based decisions are fed back to the transmitter (Tx) side for
execution in future slots and iterations. If LB; > UB;, then no solution exists
for link ¢ at present interference levels and, hence, it should not transmit in the
st slot and should re-probe again in the s 4+ 1 probing interval.

So far, we have described the fundamental operation of a single iteration.
However, transition from iteration to another in a distributed manner is a major
contributor to IMLS performance gains. Consider an arbitrary iteration with K
probing links, the third condition (decision rules) would partition K, into two
subsets: 1) Feasible Subset: which share slot s and do not need to re-probe the
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medium and ii) Infeasible Subset: which do not activate in slot s and need to
re-probe in the next iteration. In fact, this latter group constitutes Kg11 < Ky
probing links of the next iteration. This yields our first key observation: IMLS
goes through another iteration iff the Infeasible Subset is non-empty. In essence,
if all links are feasible in iteration s, then no transmitters will re-probe the
medium in iteration s+ 1. This defines our exit condition in the first conditional
statement, i.e. if an arbitrary Rz i does not sense a probing signal in the st*
probing interval, it exits with its own scheduling and MIMO stream allocation
solution along with the information that the K links are scheduled over s slots.

The second key observation stems from the other extreme, i.e. What if the
K links probing in iteration s are all infeasible? This implies that those links
cannot share the same slot and, hence, there is no need for more iterations
under same interference conditions since it will not change the infeasibility result.
Introducing criteria for further partitioning infeasible links lie out of the scope
of this work. Instead, IMLS simply falls back to 1 link per slot for the K links,
as suggested by the decision rules. This defines our exit condition in the last
conditional statement, i.e. if any Rz i does not sense any transmission in the
sth slot, it exits with its own scheduling and MIMO solution along with the s
slots needed for the K links, where the last K slots are scheduled in a TDMA
fashion.

Finally, the second conditional statement indicates that once Rx i finds a
solution, say in iteration s, it does not need to re-probe or re-solve the problem
any more, it just needs to keep track of the evolution of the algorithm for other
links, via incrementing the iteration counter and examining the exit conditions.
This is essential for all links to proceed synchronously over IMLS and exit with
consistent results, irrespective of which iteration yields their individual solutions.

It is evident that IMLS is distributed since each link takes its link activation
and MIMO stream allocation decisions independent of other links. The only
communication needed is the feedback from each receiver to its respective trans-
mitter. It should also be noted that if K is finite, the links are guaranteed to find
a solution in a finite number of iterations. For the two extremes, namely K links
are feasible and K links are infeasible, a solution is found in a single iteration.
Under typical scenarios, interference decreases from iteration to another as we
partition the links until iteration s has: i) K, = 1 which is trivial, ii) K, > 1
and feasible which activates the links in slot s and exits and iii) K; > 1 and
infeasible which yields a TDMA solution for the K, links and exits. It can be
shown that the worst case number of iterations for IMLS is I; which yields only
two feasible links in each iteration, since two is the minimum number of links
sharing a slot.

6 Performance Results

In this section, we present numerical results obtained using Matlab for: i) The
Optimality regions for two MIMO links and ii) IMLS performance for arbitrary
number of links.
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6.1 Optimality Regions for K=2 Links

We consider two links where each link is supported with M = N =8 antennas.
For ease of exposition, we focus in this section on two symmetric links where
the transmitter-receiver separation is 250m. In addition, the distances between
each receiver and the other transmitter (interferer) are equal and denoted D.
The parameter D is varied across different runs, from 500m to 5000m, in order
to model varying levels of interference. The symmetry in this scenario gives rise
to equal interference at both receivers and, hence, same solution for the MIMO-
MAC problem. Accordingly, we focus our analysis on a single link and drop the
link index 7 in Xj.

The transmit power per node, which can be split among different antennas,
is fixed at P = 20 dBm. The minimum SINR requirement S is set to 5 dB. The
path loss exponent is set to a=4 and o2 is set to -90 dBm.

Table 1. Optimal Policies for Two 8x8 Symmetric MIMO Links

D  #links LB UB Optimal Max. F'
(km) per slot on X on X X (bps/Hz)

5 2 4 8 8 9.972
3 2 4 8 8 9.965
2 2 4 8 8 9.391
1.5 2 4 4 4 6.895
1 2 4 4 4 6.67

0.75 2 4 4 4 6.148
0.65 2 4 4 4 5.661
0.6 2 4 4 4 5.315
0.55 1 8 2 8 4.98

05 1 8 2 8 4.98

First, we compute the lower bound through examining the throughput con-
straint in (16) with X growing from 1 to 8. The minimum value for X that
satisfies this constraint constitutes the lower bound. Table 1 shows the lower
bounds obtained under gradually increasing interference levels due to reducing
the receiver-interferer distance D. It is evident that the LB increases as inter-
ference increases which agrees with intuition. This is primarily attributed to the
fact that higher interference yields lower SINR which makes it impossible for
policy B to outperform policy A with small values of X.

Second, we compute the upper bound through examining the SINR constraint
in (17) with decreasing number of SM streams, from X=8 to X=1. The maxi-
mum value of X that satisfies this constraint determines the UB. Again, Table
1 shows the UB while gradually increasing interference. Unlike the LB, the UB
decreases as interference becomes more intense since more degrees of freedom
are needed for nulling which, in turn, implies smaller and smaller SMG, X.
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The decision rules in section 5.2 decide the optimal X. The first 3 rows in
Table 1 exhibit optimality with slot sharing and X =8 due to negligible interfer-
ence. For the next 5 rows, slot sharing with X=4 turns out to be the optimal
due to increasing interference. Finally, for the last two rows, TDMA with X=8
yields the maximum average sum link rate.

Fig. 2 shows the trends of F' and associated optimality regions for five MIMO-
MAC resource allocation policies. The objective function F' is plotted against
- Policy 1 represents TDMA with X=8 (corresponds to scheduling policy A)

whereas policies 2 through 5 represent slot sharing with different values of X
(correspond to scheduling policy B).
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Fig. 2. Optimality Regions for Two Symmetric 8x8 Links

Notice that policy 1 performance does not vary with D since transmissions are
interference-free. Policy 2 and 3 performance varies with D due to the impact of
interference on the SINR and, hence, on the achievable link rate. Finally, policies
4 and 5 performance does not vary with D, despite the fact that these are slot
sharing policies. The reason for this trend is attributed to the fact that these
policies have small number of SM streams (X =1,2) which leaves sufficient spatial
streams for the receiver to null the other interferer. Therefore, policies 4 and 5
completely null interference and, hence, experience no SINR variation with D.

In addition, the figure reveals different regions of optimality for different poli-
cies. For the leftmost region (D>1500 m), policy 2 achieves maximum F due to
slot sharing while using the 8x8 MIMO for SM due to the negligible interference.
For 600m < D < 1500m, policy 2 fails to maintain the SINR constraint, due
to interference buildup and, hence, its throughput falls sharply to zero. On the

other hand, the less aggressive policy 3 assumes the optimal role for this region
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due to dedicating MIMO resources to nulling. Finally, as interference dominates
for D < 550m, none of the slot sharing policies achieves the optimal and, in-
terestingly, naive TDMA with X = 8 achieves maximum F'. This suggests that
contention-free TDMA is the only resort in case of high interference, where none
of the links could guarantee their SINR minimum requirement 3 and still achieve
high link rates.

Finally, it should be noted that policies 4 and 5 are not optimal in any region.
This is attributed to the fact that these policies have small X (which reduces
the SMG) and dedicate more resources than needed for nulling a lone interferer.

6.2 IMLS Performance for K>2 Links

In this section, we analyze the performance of IMLS. In particular, we compare
three scheduling paradigms: i) Naive TDMA where 1 link is activated per slot,
ii) Slot sharing and TDMA, denoted SS/TDMA, where only the first iteration of
IMLS is executed for K links and the Feasible Subset is activated in a single slot
whereas the Infeasible Subset is scheduled in a TDMA fashion without further
iterations and iii) IMLS where multiple iterations activate different subsets of
the K links over different slots.

We consider three scenarios, randomly generated, with K=10 8x8 MIMO
links and simulation parameters similar to previous section. First, we analyze
the scenario shown in Fig. 3 where the average Tx-Rx separation d is 248m and
the average distance between any receiver and other transmitters (interferers)
D is approximately 2393m. Link indices are written next to individual links in
the figure. Large D yields low interference which permits receivers to suppress
it via dedicating a subset of the spatial streams to nulling. In fact, this scenario
turns out to be an extreme one where all receivers can share the same slot using
the following stream allocations X=[4 4 4 4 4 8 8 8 4 2|, where X; denotes
stream allocation for link . Hence, IMLS yields a solution after one iteration.
Although this scenario does not represent the typical case in ad hoc networks, it
reveals insights about the gains of cross-layer MIMO-MAC over scheduling high
rate links with 8 SM streams in an interference-free manner. Using TDMA, the
average sum link rate is given by Frpaa = 5.129 bps/Hz whereas Fiyns =
42.047 bps/ H z. This confirms the profound impact of IMLS, that is almost 8-fold
improvement over TDMA. This is attributed to low interference which not only
permits activating the 10 links simultaneously but also using minimum number
of spatial streams for nulling.

Second, scenario 2 in Fig. 4 exhibits higher interference since D is approx-
imately 1739m and d is 258m. Therefore, interference cannot be resolved in a
single iteration as in the previous example. Instead, IMLS takes four iterations.
In the first iteration, only 3 out of 10 links (links 4, 8 and 10) are feasible using X
= 8, 4, 2 streams, respectively. Next, IMLS attempts to solve the infeasible sub-
set of K1 = 7 links, namely 1, 2, 3, 5, 6, 7, 9 where s = 1. Reduced interference
enables links 2, 3, 6 to become feasible using X = 2, 2, 2 streams respectively.
For s = 2, IMLS attempts to solve the remaining infeasible Ky = 4 links, namely
1, 5, 7, 9 where links 7 and 9 manage to share a slot under reduced interference.



194 T. ElBatt

- Te , &
4000 . a®
9
3500 | Rﬁx &/‘3 Tx Fx
Fx
3000 2 T 10 Rx
[ Rf\a a5
2500 fa—a Tr Tx
Tx Bx ij
w2000 Ex
o
o
E 1500+ Tx
It
1000 F ! Fx
Py
g0 | Tx R
T
oF Tx
oy
-500

1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2600 3000 3500 4000
meters

Fig. 3. Scenariol: 10 links with average receiver-interferer distance D=2393m and av-
erage Tx-Rx distance d=248m

Finally, links 1 and 5 are examined in the last iteration, however, they cannot
share the same slot due to their high mutual interference, even in the absence of
the other 8 links which have been already scheduled in previous iterations.

Next, we compare the performance of five policies, namely TDMA,
SS/TDMA, IMLS and two variations of it. Under TDMA, the throughput per-
formance Frpya = 4.792 bps/Hz whereas SS/TDMA achieves Fgg/rpypa =
6.8632 bps/Hz, i.e. 43% improvement over TDMA. On the other hand, IMLS
yields Frprrs = 8.32 bps/Hz, that is 73% improvement over TDMA and 21%
improvement over SS/TDMA due to IMLS iterative nature which attempts to
achieve near-maximal link packing per slot.

The following IMLS variations optimize its performance and address fairness
respectively. The first variation is inspired by the observation that stream allo-
cation (X) can be further optimized for a set of feasible links (e.g. links 4, 8,
10 for s = 0) under reduced interference, i.e. after eliminating interference from
infeasible links who could not share slot 0 with these three links anyway. For
instance, plain IMLS yields X = 8,4, 2 for links 4, 8, and 10 respectively when
all 10 links were transmitting. On the other hand, optimized IMLS, denoted
IMLSI1, re-examines the decision rules with these 3 links alone, once it decides
their feasibility in iteration s = 0. This yields X = 8,4,4 for links 4, 8, and 10
respectively (notice the improvement in the SMG for link 10 due to the reduced
interference). This results in Fyyns1 = 10.1 bps/H z, i.e. 21% improvement over
plain IMLS and more than 2-fold improvement over TDMA with full SMG.
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The second IMLS variation trades throughput for fairness, depending on how
the K slots are assigned. The IMLS performance reported so far has been com-
puted over K slots, where K is always greater than the number of iterations s
upon IMLS completion as discussed earlier. This implies allocating more than
one slot to each feasible link subset identified over IMLS iterations. If m links
can share a single slot in iteration s, we assign those links m out of the K slots.
Clearly, this could lead to overall throughput improvement over the K slots due
to favoring highly packed slots, however, it could lead to unfairness with respect
to lightly packed slots (e.g. link 1 in scenario 2 cannot share a slot with any
other link and, hence, it is assigned only 1 out of K slots). An intuitive measure
of fairness in this context is the difference between the maximum number of
slots assigned to a link and the minimum number of slots assigned to a link, i.e.
f = max;(# slots out of K assigned to link ¢) - min;(# slots out of K assigned
to link ¢). As f gets far from 0, the scheduling algorithm becomes less fair. For
scenario 2 above, f =3 — 1 = 2, and hence plain IMLS exhibits low fairness.
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Fig. 4. Scenario2: 10 links with average receiver-interferer distance D=1739m and av-
erage Tx-Rx distance d=258m

An approach that achieves better fairness, at the expense of throughput loss,
is to split the K slots equally among the different subsets of links identified in
different iterations. For the example above, assigning two slots for each of the
five link subsets identified in the four iterations yields Fyarrs2 = 7.14 bps/H z,
i.e. 14% loss compared to IMLS. However, this is compensated with improved
fairness since f =2 -2 =0.

Finally, the scenario shown in Fig. 5 exhibits highest interference due to the
role of D = 490m and d = 250m. This yields no feasible links in the first iteration



196 T. ElBatt

1000 Tx
sont 10

Fx
B0 |- P

700+ Rx ?

Tx Bx
GO0 /
s00

40|

00 | ﬁ\

200t 4
T:

meters

Tx
100 - £

D 1 1 ]
-200 u] QDD 400 BDD 800 1000 1200
meters

Fig. 5. Scenario3: 10 links with average receiver-interferer distance D=490m and av-
erage Tx-Rx distance d=250m

of IMLS. Accordingly, IMLS cannot proceed with partitioning the links based on
their different slot sharing capabilities as illustrated earlier. Thus, TDMA yields
modest performance of Frpya = 5.11 bps/Hz. Extending IMLS to handle this
scenario lies out of the scope of the paper and is a subject of future research.

7 Conclusions

We studied the problem of MIMO-MAC resource allocation for the MIMO in-
terference channel. The prime motivation is to balance the trade-off between
maximizing the throughput of individual non-interfering links, using spatial mul-
tiplexing, and maximizing the spatial reuse of lower rate interfering links, using
spatial multiplexing in conjunction with nulling. We formulate a cross-layer op-
timization problem and characterize it as a non-convex integer programming
problem which is quite challenging. However, we show that under low SINR
regimes, an approximate problem can be cast into a convex geometric program-
ming formulation. Finally, we characterize the optimal solution for two links and
use the distributed decision rules as a basis for Iterative MIMO Link Scheduling
(IMLS) that achieves significant gains for arbitrary number of links. Numerical
results confirm the trade-off as well as show more than 2-fold improvement by
IMLS over TDMA with maximum spatial multiplexing gain. This work can be
extended along the following directions: i) Extend the formulation to the gener-
alized diversity-multiplexing-scheduling trade-off and ii) Develop MAC protocols
based on the decision rules and iterative MIMO link scheduling.
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