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Abstract. This paper uses a two-sided market model to study if last-
mile access providers (ISPs), should charge content providers (CPs), who
derive revenue from advertisers, for the right to access ISP’s end-users.
We compare two-sided pricing (ISPs could charge CPs for content deliv-
ery) with one-sided pricing (neutrality regulations prohibit such charges).
Our analysis indicates that number of CPs is lower, and the number of
ISPs often higher, with two- rather than one-sided pricing. From our
results the superiority of one regime over the other depends on param-
eters of advertising rates, end-user demand, CPs’ and ISPs’ costs, and
relative importance of their investments. Thus, caution should be taken
in designing neutrality regulations.
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1 Introduction

Today, an Internet Service Provider (ISP) charges only end-users, who subscribe
to that ISP for Internet access, and content providers (CPs) connected to the
Internet directly via that ISP. That is, each ISP generally charges only CPs
who buy access from it. One of the focal questions in the network neutrality
policy debate is whether current ISPs’ charging practices should continue and
be mandated by law, or ISPs ought to be allowed charging CPs for the delivery
of content to the end-users. This question is part of the larger debate on network
neutrality, which includes diverse issues such as whether service differentiation
should be allowed, or whether charges for content constitute an impingement of
freedom of speech [9,2].

In our past work [6] as well as here, we use a two-sided market model of
interactions between ISPs, end-users, and CPs, with the ISPs playing the role of
a “platform” intermediating the two sides: CPs and end-users. We model a “non-
neutral” network as a market with two-sided pricing, meaning that each ISP
charges his end-users and also charges CPs for delivering traffic to his end-users.
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0910711.
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Fig. 1. Left panel: The direction of payments. Dotted lines reflect additional payments
of the two-sided case. Ti and Ui are ISPs (transit providers) and each ISP’s group of
users, respectively. Right panel: The timing of the game G. The subgame G(M, N)
starts after M and N are chosen.

Conversely, a “neutral” network is modeled as a one-sided pricing regime in which
an ISP is allowed to charge only CPs that buy their Internet access from it. We
normalize this charge to zero, which allows us to model a neutral network as a
one-sided regime in which each platform (ISP) charges his end-users only. After
providers of both types choose to enter the market and sink irreversible entry
costs, the ISPs simultaneously and independently choose their investments, end-
user prices, and content-provider prices. Then, CPs choose their investments,
simultaneously and independently. Our end-users demand for content variety
has a flavor of the classical monopolistic competition model [3].

We explore how CP and ISP entry and investments differ with pricing regime.
In [6], the numbers of ISPs and CPs are fixed, and we compare the social welfare
in two-sided and one-sided pricing cases. In [6], we find that superior welfare
regime depends on two key parameters: (i) the ratio of advertising rate to an
end-user price sensitivity parameter, and (ii) the number of ISPs. Roughly, when
(i) is extreme (large or small), a two-sided (non-neutral) pricing is welfare su-
perior, but when (i) is mid-range, a one-sided (neutral) pricing is superior. An
intuitive explanation for this is that when either the ISP or CPs have a much
stronger ability to obtain revenue, a two-sided pricing which essentially allows
more flexible revenue sharing between provider types, which allows to achieve
a higher equilibrium welfare. Also, the parameter range for which a one-sided
market is superior increases with the number of ISPs. An explanation for this is
that with two-sided pricing, each ISP charges the CPs, and collectively the ISPs
may “over-charge”. This effect grows with the number of ISPs.

In this paper, we consider the entry decisions of potential ISPs and CPs,
thus endogenizing the number of providers of each type. Since the results of [6]
depend roughly on whether the ISP or CP market is more profitable in some
sense, allowing more providers to enter a market that is highly profitable could
alter the situation. Here we find that the two-sided (non-neutral) pricing is indeed
welfare superior for parameters similar (and likely wider) than in [6] (industry
structure is fixed). In contrast with [6], where Nash equilibrium symmetry is
assumed, in this paper we prove the symmetry. We establish the existence of
an equilibrium in the entry game in which potential ISPs and CPs make their
irreversible entry decisions.
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Our model is based on the ideas of two-sided markets, and there is a con-
siderable literature on the subject. (See surveys [10] and [1].) Other researchers
applied the ideas of two-sided markets to study network neutrality. Hermalin
and Katz [4] model network neutrality as a restriction on the product space,
and consider whether ISPs should be allowed to offer more than one grade of
service. Hogendorn [5] studies two-sided markets where intermediaries sit be-
tween “conduits” and CPs. In his context, net-neutrality means that content has
open access to conduits where an “open access” regime affords open access to the
intermediaries. Njoroge at al. [7] and [8], consider two-sided market model with
heterogeneous CPs and end-users, and the ISPs play the role of a platform. In
[8], they find that social welfare is higher in the non-neutral regime. Work [12]
discusses policy issues related to two-sided markets.

The paper is organized as follows. Section 2 presents a model that permits us
to quantify the effects of network regime on player incentives to enter the network
industry and invest. In Section 3, we analyze the two-sided pricing (non-neutral)
one-sided pricing (neutral) regimes. In section 4 we discuss our findings and
conclude. To ease the exposition, the proofs are relegated to the appendix, and
to save space, not all the proofs are included; the complete technical details
available in our technical report, see [11].

2 Model
The internet consists of local ISPs (i.e, residential ISPs who provide last-mile
access for end users), and transit ISPs that mainly serve the internet backbone.
We assume that the CPs connect to the internet via a transit ISP, whereas end-
users are attached to a local ISP. Our assumption reflects that under current
practices, the local ISPs do not charge CPs. Thus, in further analysis we abandon
the distinction between local ISPs and transit ISPs, and focus on local ISPs only,
which from now on we simply call ISPs.

First we consider the subgame G(M, N) after M CPs and N ISPs after they
entered the market. Later, we consider the game G which includes the stages in
which providers decide to enter the market.

Fig. 1 illustrates our setting. Each ISP Tn charges his attached end-users Un

(n = 1, . . . , N) an access price pn per click; each ISP has a monopoly over its
end-user base Un. Thus, to reflect the market power of local ISPs, the end-users
are divided between the ISPs, with each ISP having 1/N of the entire market.
Each ISP Tn charges each CP Cm an amount equal to qn per click. CP Cm

invests cm and ISP Tn invests tn.
We normalize the CPs’ access payment (for network attachment) to zero due

to the ISPs’ competition. To reflect the actual payment, we assume that the CP’s
access payment is subtracted from their charges to advertisers. Let Bn denote
demand of end-users Un; the Bn depends on pn and provider investments:

Bn = {μη(cv
1 + · · · + cv

M )twn } e−pn/θ, where μ =
(1 − e−kM )

M1−v
, η =

1
N1−w

. (1)

Here, θ > 0, and v, w ≥ 0 with v + w < 1, and k ∈ (0,∞). For a given network
quality (the expression in the curly brackets), the end-user demand exponentially
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decreases with pn; see [6] for the intuition about the normalization factor η =
1/N1−w. The term μ is similar except that the factor (1 − e−kM ) reflects that
the end-users prefer a higher M , i.e. more variety in content. As M increases the
“love for variety” diminishes. Let Rmn denote the end-user demand Un to Cm,
and Dm – the total demand for Cm:

Rmn =
cv
m

cv
1 + · · · + cv

M

Bn, and Dm =
∑

n

Rmn. (2)

Now we consider the game G, which includes the entry decisions of potential
providers. The order of play is as follows. First, potential ISPs decide whether
to enter; if they enter, the entry cost is te. Second, content providers observe
the number of ISP entrants, and then, sink their entry costs ce. Third, the ISPs
announce end-user prices pn (in the one-sided pricing case) and also content
provider charges qn in the two-sided case. Fourth, content providers choose their
investments cm, and ISPs – their investments tn. Each CP’s objective is to
maximize its profit ΠCm which is equal to the revenues net of its investment.

ΠCm =
N∑

n=1

(a − qn)Rmn − βcm − ce. (3)

Here a is the amount that advertisers pay to CPs per unit of end-user demand;
β > 1 is the outside option (alternative use of funds), and ce – the CP’s entry
cost. Each ISP objective is to maximize profit ΠTn:

ΠTn = (pn + qn)Bn − αtn − te. (4)

Where α > 1 and te are respectively the ISP’s outside option and entry cost.

3 Analysis

3.1 Analysis of the Subgame G(M, N)

Let ΠC(M, N) and ΠT (M, N) denote profits for each CP and ISP in the game
G(M, N). To compare one-sided and two-sided pricing (neutral and non-neutral
networks), we make the following assumptions.

(a) One-sided pricing (neutral network): First, each Tn chooses (tn, pn). Here
qn = 0. Then, each Cm chooses cm.

(b) Two-sided pricing (non-neutral network): First, each Tn chooses (tn, pn, qn).
Then, each Cm chooses cm.

Two-Sided Pricing. In G(M, N), in a network with two-sided pricing, each
ISP chooses (tn, pn, qn) and each CP chooses cm. For a given (tn, pn, qn), the
optimal cm maximizes (3). From the first order conditions,

βc1−v
m = vμη

∑

n

(a − qn)twn e−pn/θ =: βc1−v. (5)
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For that value of cm, we find that:

ΠTn(M, N) = Mμη(qn + pn)twn e−pn/θ

[
vμη

β

N∑

k=1

(a − qk)e−pk/θtwk

] v
(1−v)

− αtn.

(6)
The n-th ISP chooses (tn, pn, qn) that maximize (6). By analyzing IPSs best
response functions we find:

Proposition 1. With the two-sided pricing, in all G(M, N) equilibria tn =
t, pn = p, qn = q and cm = c.

The proof of Proposition 1 works in the following way. First, from the ISPs’
FOCs wrt pn reveal that pn = θ − a for any n in equilibrium – thus equilibrium
user prices are identical. Next, from the ISPs’ FOCs wrt qn one can infer that if
qi ≥ qj it must be that ti ≤ tj . But from the ISPs’ FOCs wrt tn we infer that if
qi ≥ qj we must have ti ≥ tj . This is possible only if qi = qj and ti = tj . Thus,
only a symmetric equilibrium could exist, and we demonstrate its existence by
construction. We find the symmetric equilibrium by construction. It has the
following form:

pn = p‡ = θ − a, and qn = q‡ = a − θπ; (7)

tn = t‡ =
[
(x‡)1−v · (y‡)v · e−(θ−a)/θ

] 1
(1−w−v)

; (8)

cm = c‡ =
[
(x‡)w · (y‡)1−w · e−(θ−a)/θ

] 1
(1−v−w) × [μηN ]

1
1−v ; (9)

where x‡ = M (μη)
1

1−v ·
(

θw

α

)
N

v
1−v , y‡ =

θv

β
π, and π =

v

N(1 − v) + v
. (10)

From (7) - (10) and Proposition 1, the equilibrium uniqueness follows immedi-
ately. Proposition 1 is proved in the appendix.

One-Sided Pricing. The game G(M, N) with one-sided pricing is similar to
one with two-sided pricing, except that qn = 0 for all n. Given a {qn = 0, pn, tn},
the one finds that the CPs’ best responses are identical and satisfy:

βc1−v
m = vμη[

∑

k

atwk e−pk/θ] =: βc1−v.

Substituting into (4) we find that

ΠTn(M, N) = Mμηpntwn e−pn/θ

[
vμηa

β
×

N∑

k=1

e−pk/θtwk

] v
(1−v)

− αtn. (11)

The ISP Tn chooses (tn, pn) that maximizes the above. Analysis of the above
payoff function leads to the following result.
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Proposition 2. With one-sided pricing, in all G(M, N) equilibria tn = t, pn =
p, qn = 0 and cm = c.

The intuition of the proof of Proposition 2 is similar to that of Proposition 1. We
use Proposition 2 to construct a unique symmetric equilibrium from the FOCs
of (11). We find:

pn = p† = θ(1 − π), and qn = q† = 0; (12)

tn = t† =
[
(x†)1−v(y†)ve−p†/θ

] 1
1−v−w

; (13)

cm = c† =
[
(x†)w(y†)1−we−p†/θ

] 1
1−v−w · [μηN ]

1
1−v ; (14)

where x† := x‡ and y† :=
av

β
. (15)

From (12) - (15) and Proposition 2, the equilibrium is unique. The proof of
Proposition 2 is omitted because of space limitations, but it is similar to the
proof of Proposition 1 provided in the appendix.

3.2 The Entry Game G

Since the equilibrium of G(M, N) exists and is unique and symmetric, in any
equilibrium in which (M, N) CPs and ISPs respectively enter, a necessary con-
dition for equilibrium is that

ΠCm(M, N) ≥ ce, and ΠCm(M + 1, N) < ce.

if M > 0 otherwise ΠCm(1, N) < ce if M = 0. Suppose that there is a unique
M(N) that satisfies the above for each N . (We show this is indeed true in our
proof of Proposition 3 below.) Since the potential CPs get to observe the number
N of ISPs that enter, another necessary condition1 for equilibrium is that

ΠTn(M(N), N) ≥ te, and ΠTn(M(N + 1), N + 1) < te

if N > 0 otherwise ΠTn(M(1), 1) < te if N = 0. Together these conditions are
necessary and sufficient for (M, N) to be an equilibrium of the game G. These
conditions lead to the following propositions.

Proposition 3. The equilibrium of the game G exists and is unique.

Proposition 4. Consider a game G̃, in which CPs and ISPs enter simulta-
neously rather than sequentially. Then, a pure strategy Nash equilibrium in G̃,
provided it exists, coincides with the equilibrium of G.

From Proposition 4, when a pure strategy Nash equilibrium in the game G̃ exists,
it is unique. The proofs of both propositions are found in the appendix.
1 If M(N) were instead a set valued function there would have to exist elements of the

sets M(N) and M(N +1) satisfying the inequality relation to support an equilibrium
with N ISPs.
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3.3 User Welfare and Social Welfare

We compute the consumer surplus (aka the end-user welfare) by taking the
integral of the demand function from the equilibrium price to infinity. This yields

WU (M, N) = NM=μηθ · [(x)w(y)v]1/(1−w−v)
e−p/[θ(1−w−v)].

3.4 Numerical Analysis

In this section, we numerically analyze some examples to illustrate the behavior
of the model. We begin by studying the profits of CPs and ISPs in the post-
entry game G(M, N) as a function of M and N .. Fig. 2 shows the profits of CPs
and ISPs for the two-sided (non-neutral) and one-sided (neutral) case. In this
example we have chosen k to be large so that (1 − e−kM ) ≈ 1. Recall that this
factor was included to model a preference among users for a larger number of
CPs, so making k large is equivalent to removing this effect. Panel (a) of Fig. 2
shows that the CPs’ profits decrease in both M and N in the two-sided case,
while the lower left panel shows that the dependence of profits on N The “X”
marks on the figure indicate the maximum number M that can enter for a given
N and still generate positive profits for the CPs. Panels (b) and (e) of Fig. 2
shows that the transit provider profits decrease in N , but are independent of M ,
both for the one- and two-sided cases. Note this independence does not hold when
k is not taken to be large. Panels (c) and (f) show the lines of the maximum
M for CPs to be profitable given N (“C-line”) and maximum N for ISPs to
be profitable given M (“T-line”). The X on each of these graphs indicates the
sequential equilibrium (M∗(N∗), N∗). In this example the sequential equilibrium
occurs at the intersection of the C-line and T-line. (In cases for which the “T-line”
has M dependence – k not large – the sequential equilibrium need not occur at
the intersection of the C-line and T-line.)

Fig. 3 studies how equilibrium consumer surplus and social welfare are effected
by the transit entry cost te (upper plots) and advertising rate a (lower plots).
The upper left plot shows that as te increases, the number of ISPs drops, though
the drop is discontinuous because the number of providers is an integer. For the
two-sided case, the social welfare decreases with the number of ISPs. Thus, when
there are more ISPs trying to charge the CPs, they collectively “over-charge” the
ISPs which in-turn discourages CP investment and reduces social welfare. In the
one-sided case, we still observe that social welfare increases as te increases and
the equilibrium number of ISPs decreases. An explanation for this is that the
equilibrium consumer price p in the one-sided case increases as the ISP market
becomes more fragmented – in other words there are more ISPs serving smaller
and smaller subscriber bases. (See formula for π and p†). Thus as fewer ISPs
enter, consumer prices go down, more usage (clicks) can occur, and thus more
CPs enter.

In the lower plots of Fig. 3, we see that as a increases, the social welfare
increases in the one-sided case. A higher a induces more CPs to enter the market.
Generally, the social welfare in the two-sided case increases as well, except in
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Fig. 2. Profits in the two-sided market as a function of M and N . Parameters are as
shown in Table 1.

“steps” where the number of equilibrium ISPs increases by 1. We also see that,
roughly, the two-sided regime becomes social welfare superior to the one-sided
regime when a is high. An explanation is that a high a creates more revenue
potential and a two-sided market permits some of that revenue to be shared
with ISPs so that they see an incentive to increase investment.
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Table 1. Baseline parameters; k is large, thus (1 − e−kM ) ≈ 1 for any M ≥ 1

Parameter v w a θ te ce α β k

Value 0.1 0.3 15 50 8 0.1 1.2 1.2 "large"

0 5 10 15 20
30

40

50

60

70

80

90

t
e

S
oc

ia
l W

el
fa

re

 

 

(3,9)

(79,10)

(6,5)

(80,5)
(10,3)

(82,3)

(16,2)

(85,2)

(16,2)
(85,2)

(35,1)

(92,1)

(35,1)

(92,1)
(35,1)

(92,1)

(35,1)

(92,1)

(35,1)

(92,1)

Non−neutral
Neutral

0 5 10 15 20
30

35

40

45

50

55

60

65

70

t
e

C
on

su
m

er
 S

ur
pl

us

 

 

(3,9)

(79,10)

(6,5)

(80,5)

(10,3)

(82,3)

(16,2)

(85,2)

(16,2)

(85,2)

(35,1)

(92,1)

(35,1)

(92,1)

(35,1)

(92,1)

(35,1)

(92,1)

(35,1)

(92,1)

Non−neutral
Neutral

(a) Social Welfare w.r.t. te (b) Consumer Surplus w.r.t. te

0 10 20 30 40
0

50

100

150

200

250

a

S
oc

ia
l W

el
fa

re

 

 

(0,0)
(0,0)

(26,1)

(31,1)

(31,1)

(64,1)

(36,1)

(99,1)

(43,1)

(136,1)

(24,2)

(174,1)

(28,2)

(214,1)

(33,2)

(255,1)

Non−neutral
Neutral
Transition

0 10 20 30 40
0

50

100

150

200

a

C
on

su
m

er
 S

ur
pl

us

 

 

(0,0)
(0,0)

(26,1)

(31,1)

(31,1)

(64,1)

(36,1)

(99,1)

(43,1)

(136,1)

(24,2)

(174,1)

(28,2)

(214,1)

(33,2)

(255,1)

Non−neutral
Neutral
Transition

(c) Social Welfare w.r.t. a (d) Consumer Surplus w.r.t. a

Fig. 3. Upper Row: The social welfare and consumer surplus as a function of te. Lower
Row: The consumer surplus as a function of a. Non-neutral (two-sided) and neutral
(one-sided) regimes are shown in both cases. A “transition” regime for which the equi-
librium numbers of providers in a neutral (one-sided) regime are introduced to a (two-
sided) regime before choosing prices and investments is also shown in the plots. Pa-
rameters other than the parameter being varied in each plot are as shown in Table 1.
The number pairs in figure show the equilibrium number of CPs and ISPs.

Panels (a) and (b) of Fig. 4 depict the social welfare with respect to the CP
entry cost ce for two different values of te = {5, 15}. The figures show that social
welfare decreases with ce in both cases. The welfare superiority of neutral vs.
non-neutral (one- vs. two-sided) is not changed significantly by changing ce –
neutral is better for te = 5 and non-neutral is better for te = 15. The last panel
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Fig. 4. Panels (a) and (b): The social welfare and consumer surplus as a function of
ce for te = 5 and te = 15 respectively. Panel (c): The social welfare as k varies while
ce = 0.1 and te = 8.

of Fig. 4 illustrates how social welfare changes with respect to k. In the non-
neutral case, for small k, no providers enter the market in equilibrium. When k
passes a threshold, 1 ISP enters. As k rises further, a 2nd ISP enters and social
welfare drops sharply, but then increases. Social welfare with respect to k in the
neutral case seems to fluctuate less.

4 Conclusions

Our results suggest that welfare superior regime depends on the following key
parameters. As in [6], we observe that a larger number of ISPs tend to reduce
social welfare in the two-sided case. An explanation is that if a large number of
ISPs try to extract revenue from each CP, the IPSs collective charges on the CPs
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exceed the socially optimal ones. This effect strengthens with a higher number
of ISPs. Thus for low ISP entry costs te, we observe a significantly lower social
welfare in the two-sided case.

A higher advertising rate a appears to favor the two-sided (non-neutral) case.
An explanation for this is that if a large portion of the network’s revenue is real-
ized by advertising, allowing the ISPs to capture some of this revenue improves
their incentive to invest, which leads to a higher social welfare. The effects of
increased a and the effect of an increased number of ISPs in the two-sided case
can interact in an interesting way. The lower panels of Fig. 3 show that the wel-
fare of a two-sided market roughly increases as a increases, but it also exhibits
step decreases every time the improved profitability of the ISP market permits
an extra ISP entrant. Changes in the content provider entry cost ce effect social
welfare in both the one- and two-sided regimes, but it seems to have much less
effect on the relative superiority of the two regimes than the parameters te or a.

Our results suggest that regulatory authorities should be cautious of restrict-
ing the pricing in the internet, and special attention ought to be paid to: the
relative ability of CPs and ISPs to earn revenue (a in our model), the concen-
tration of the ISP market (N), and the entry cost of ISPs.
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5 Appendix

5.1 Analysis of the Two-Sided Case

Consider the game G(M, N) (fixed N and M). We use ΠCm (given by (3)),
combined with Rmn defined by (2) and Bn is given by (1) to find:

ΠCm(M, N) = μηcv
m

∑

n

(a − qn)twn e−pn/θ − βcm.

For a given (pn, qn, tn), the cm that maximizes the above satisfies

cm = c =

(
vμη

β

∑

n

(a − qn)twn e−pn/θ

) 1
(1−v)

. (16)

Substituting the above, ΠTn(M, N) assuming optimal content investment is

ΠTn(M, N) = Mμη(qn + pn)twn e−pn/θ ×
[

vμη

β

N∑

k=1

(a − qk)e−pk/θtwk

] v
(1−v)

−αtn.

(17)
If the derivative of (17) w.r.t. qn is zero, then

A
v

(1−v) − (qn + pn)
v

1 − v
A

v
(1−v)−1twn e−pn/θ = 0,

where A :=
∑

k(a − qk)e−pk/θtwk . Solving the above for A we have,

A = (qn + pn)
v

1 − v
twn e−pn/θ. (18)

The two aforementioned expressions for A imply

(qn + pn)
v

1 − v
twn e−pn/θ =

∑

k

(a − qk)e−pk/θtwk , (19)

and thus (q1 + p)tw1 = (q2 + p)tw2 . Thus t1 ≤ t2 if q1 ≥ q2.
Setting the derivative of (17) w.r.t. pn is zero yields

e−pn/θA
v

(1−v) − 1
θ
(qn + pn)e−pn/θA

v
(1−v) −

(qn + pn)e−pn/θ v

1 − v
A

v
(1−v)−1 1

θ
(a − qn)twn e−pn/θ = 0.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-16.html
http://www.centerfornewwest.org/pdf/TelecomSummary.pdf
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Substituting relation (18) for A, multiplying the resulting expression by θ and
dividing it by e−pn/θA

v
(1−v) , we find pn = θ−a, which is (7). Thus in equilibrium,

all ISPs choose identical user prices.
Taking the derivative of (17) w.r.t tn and setting it to zero, we find that

F · 1
1 − v

t
wv

(1−v)
n wtw−1

n = α, (20)

where F = Mμη
[
(qn + pn)e−pn/θ

] 1
(1−v)

(
vμη

β

v

1 − v

) v
(1−v)

.

We are now ready to prove, Proposition 1, that the equilibrium of G(M, N) is
symmetric in the two-sided case.

Proof (Proposition 1). Suppose the proposition were not true and q1 > q2. Recall
that from the ISPs’ FOCs wrt qn we have (q1 + p)tw1 = (q2 + p)tw2 . Therefore

t1 < t2 when q1 > q2. (21)

From the ISPs’ FOCs wrt tn (we raise (20) to the power (1− v) and rearrange):

(q1 + p)twv
1 t

(w−1)(1−v)
1 =(q2 + p)twv

2 t
(w−1)(1−v)
2 = H,

where H =
[

α

Mwμη

](1−v) (
β

vμη

1 − v

v

)v

ep‡/θ. (22)

Thus (q1+p)tw+v−1
1 = (q2+p)tw+v−1

2 , from which we must have t1≥ t2 when q1≥
q2. But from (21) we have t1 ≤ t2 when q1 ≥ q2, which is a contradiction, unless
t1 = t2 and q1 = q2. Thus Proposition (1) is proven.

Having shown the equilibrium is unique, we turn to deriving expressions for the
equilibrium. From (19) and the fact that pn = θ − a we obtain

(qn + θ − a)
v

1 − v
twn − (a − qn)twn =

∑

k �=n

(a − qk)twk .

Thus, twn [θv + qn − a] = (1−v)
∑

k �=n(a−qk)twk . Writing this for n = 1, ...N and
summing we find

∑
n twn [θv + (qn − a)(N(1 − v) + v)] = 0. Combining this with

qn = q and tn = t we have q‡ as given in (7).
To find the optimal ISP investment t = t‡, we use qn = q and tn = t to express

ΠTn(M, N) as ΠTn(M, N) = E · tw · [Ntw]
v

(1−v) − αtn, where E is defined by

E1−v = M1−v (μη) (p + q)1−ve−p/θ

(
v(a − q)

β

)v

. (23)

Writing the partial derivative of ΠTn(M, N) wrt tn and equating it to zero, we
find:

E ·
[
wtw−1

n [tw1 + · · · + twN ]
v

(1−v) + twn
v

1 − v
wtw−1

n [tw1 + · · · + twN ]
v

(1−v)−1

]
− α = 0,
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the symmetric solution tn = t is:

E ·
[
wtw−1[Ntw]

v
(1−v) + tw

v

1 − v
wtw−1[Ntw]

v
(1−v)−1

]
− α = 0,

which simplifies to

E ·
(

N +
v

(1 − v)

)
wtwtw−1(Ntw)

v
(1−v)−1 = α. (24)

Lastly, we substitute our expressions for p‡ and q‡ into (24) to obtain

E1−v = (μη) ·
[

θN(1 − v)
N(1 − v) + v

]1−v

e
−(θ−a)

θ ·
(

v

β

θv

N(1 − v) + v

)v

= (μη) e
−(θ−a)

θ · yv ·
[

θN(1 − v)
N(1 − v) + v

]1−v

.

Then, we combine with (24) to find (8) with x‡and y‡ as defined in (10). Thus,
we demonstrated that only a symmetric equilibrium with pn = p, qn = q, tn = t
and cm = c exists, and it is unique (by construction). Finally, to calculate c‡, we
substitute our expressions for equilibrium q and t into (16) to find (9).

5.2 Equilibrium Uniqueness in G

Before proceeding, we define some notation. Let π and δ be defined as:

π :=
v

N(1 − v) + v
and δ :=

a

θ
. (25)

We assume that with today’s Internet parameters, end user prices p
†

are posi-
tive2, which gives p

†
= θ(1−π) > 0 and p‡ = θ−a > 0, and q‡ = a−θ v

N(1−v)+v =
a − θπ, from which π < 1, δ < 1 and π < δ. Also we infer π < v and decreases
with N In addition, from the expressions of the equilibrium parameters, one can
show that the average (per each provider) returns in the equilibrium of the game
G(M, N) are:

ΠC(M, N)
c

=
β(1 − v)

v
and

ΠT (M, N)
t

=
α

w
[1 − w − π]. (26)

We are ready to prove Proposition 3.

Proof (Proposition 3). Consider subgame G(M, N). Since π < δ and y‡ = y† π
δ

we have y‡ < y†. Using these equations, we obtain:

t‡ =
1
N

[
πv

(w

α

)1−v

· ( v

β
)v · θe−(θ−a)

θ · [1 − e−kM
]] 1

(1−w−v)

,

2 Despite widely available free internet access, average end-user access price is clearly
strictly positive.
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c‡ =
1
M

[
π1−w ·

(w

α

)w

· ( v

β
)1−w · θe−(θ−a)

θ · [1 − e−kM
]] 1

(1−v−w)

, (27)

t† =
1
N

[(
θw

α

)1−v

· (av

β
)v · eπ−1

[
1 − e−kM

]
] 1

(1−w−v)

,

c† =
1
M

[(
θw

α

)w

· (av

β
)1−weπ−1

[
1 − e−kM

]]
1

(1−v−w)

, (28)

and

t‡ =
(

β

α

w

v

)
· π−1 M

N
c‡; t† =

θ

a

(
β

α

w

v

)
· M

N
c†.

Expression (28) and (27) have derivatives with respect to M that either transi-
tions from being positive to being negative for one M , or is always negative. This
property combined with (26) gives us that for any fixed N there exists unique
M(N) s.t.

ΠC(M(N), N) ≥ ce and ΠC(M(N) + 1, N) < ce,

for M(N) > 0 or ΠC(1, N) < ce in the M(N) = 0 case. Moreover if M̃ > M(N),
ΠC(M̃, N) decreases with M̃ .

Next we claim dM(N)
dN ≤ 0 by the following reasoning. Assume the reverse and

let N1 < N2, and M(N1) < M(N2). Then, since (28), (27) and (26) show that
content provider profits decrease w.r.t. N for fixed M we have

ΠC(M(N2), N1) ≥ ΠC(M(N2), N2) ≥ ce.

This contradicts the fact that ΠC(M̃, N) decreases with M̃ for any M̃ > M(N1),
and thus dM(N)

dN ≤ 0 is proven. Lastly, we notice that in both regimes:

dΠT (M(N), N))
dN

=
α

w

d {[1 − w − π(N)]t(M(N), N))}
dN

< 0,

which can be shown by differentiation. (We elaborate on this below.) The unique-
ness and existence of the equilibrium follows immediately. Thus, we have proven
Proposition 3.

To verify that dΠT (M(N),N))
dN is non-positive, we use dπ

dN = − (1−v)
v π2. In the

two-sided case:

dΠT (M(N), N))
dN

=
[
1 − e−kM

] 1
(1−w−v) ∂

∂N

{
1
N

[1 − w − π] π
v

1−w−v

}

+
{

1
N

[1 − w − π] π
v

1−w−v

}
× 1

(1 − w − v)
[
1 − e−kM

] 1
(1−w−v)−1

k
dM

dN
[−]

,
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where the [−] notation is a reminder that dM
dN is nonpositive. The second curly

brackets term is positive. Expanding the first curly brackets term we get

∂

∂N

{
1
N

[1 − w − π] π
v

1−w−v

}
= − 1

N2
[1 − w − π] π

v
1−w−v +

{
1
N

[1 − w − π]
}

v

1 − w − v
π

v
1−w−v −1 dπ

dN
− 1

N
π

v
1−w−v

dπ

dN

Collecting terms, this becomes

− 1
N2

[1 − w − π] π
v

1−w−v +
{

(1 − v)
v

1
N

π
1−w

1−w−v

}{
−v [1 − w − π]

1 − w − v
+ π

}
< 0,

because from π < v < 1 the last curly bracket is negative.
The derivations to show dΠT (M(N),N))

dN is negative for the one-sided case are
similar so we omit them.

Proof (Proposition 4). Suppose there exists a pure strategy equilibrium of G̃,
and let (M̃∗, Ñ∗) denote the respective equilibrium numbers of CPs and ISPs.
Let (M∗, N∗) denote the respective number of CPs and ISPs in the unique
equilibrium of the game G. Then it must be that M̃∗ = M(Ñ∗), where M(·)
is the function described in the proof of Prop. 3. The equilibrium actions and
payoffs in the subgame G̃(M̃∗, Ñ∗) are the same as in subgame G(M̃∗, Ñ∗)
since the games are identical after the entry stage and the subgame admits a
unique equilibrium. From the proof of Prop. 3, per ISP profit ΠT (M(N), N)
decreases with N , and for any Ñ∗ > N∗, we have ΠT (M(Ñ∗), Ñ∗) < te, and
thus, Ñ∗ > N∗ cannot occur as an equilibrium of the game G̃. If Ñ∗ < N∗ − 1
another ISP will enter because the entering ISP sees profit of

ΠT (M(Ñ∗), Ñ∗ + 1) ≥ ΠT (M(Ñ∗ + 1), Ñ∗ + 1) > te

since M(·) and ΠT (·, N) are monotone. Finally, suppose Ñ∗ = N∗ − 1. Then it
must be that ΠT (M(Ñ∗), Ñ∗+1) = ΠT (M(N∗−1), N∗) < te or else another ISP
would have entered in the game G̃. But, te ≤ ΠT (M(N∗), N∗) ≤ ΠT (M(N∗ −
1), N∗) which is a contradiction.
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