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Abstract. We propose and analyze a broad family of games played
by resource-constrained players, which are characterized by the follow-
ing central features: 1) each user has a multi-dimensional action space,
subject to a single sum resource constraint; 2) each user’s utility in a
particular dimension depends on an additive coupling between the user’s
action in the same dimension and the actions of the other users; and 3)
each user’s total utility is the sum of the utilities obtained in each di-
mension. Familiar examples of such multi-user environments in commu-
nication systems include power control over frequency-selective Gaussian
interference channels and flow control in Jackson networks. In settings
where users cannot exchange messages in real-time, we study how users
can adjust their actions based on their local observations. We derive
sufficient conditions under which a unique Nash equilibrium exists and
the best-response algorithm converges globally and linearly to the Nash
equilibrium. In settings where users can exchange messages in real-time,
we focus on user choices that optimize the overall utility. We provide the
convergence conditions of two distributed action update mechanisms,
gradient play and Jacobi update.

1 Introduction

Game theory provides a formal framework for describing and analyzing the inter-
actions of multiple decision-makers. Recently, there has been a surge in research
activities that adopt game theoretic tools to investigate a wide range of modern
communications and networking problems. In resource-constrained communica-
tion networks, a user’s utility is usually not only affected by its own action but
also by the actions taken by all the other users sharing the same resources. Due
to the mutual coupling among users, the performance optimization of multi-user
communication systems is challenging. Depending on the characteristics of differ-
ent applications, numerous game-theoretical models and solution concepts have
been proposed to characterize the multi-user interactions and optimize the users’
decisions in communication networks. A variety of game theoretic solutions have
been developed to characterize the resulting performance of the multi-user inter-
actions, including Nash equilibrium (NE) and Pareto optimality [1]. The purpose
of this paper is to introduce and analyze a general framework that abstracts the
common characteristics of this family of multi-user interaction scenarios, which
includes, but is not limited to, the power control scenario. In particular, the
main contributions of this paper are as follows.
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First of all, we define the class of Additively Coupled Sum Constrained Games
(ACSCG), which captures and characterizes the key features of several com-
munication and networking applications. In particular, the central features of
ACSCG are: 1) each user has a multi-dimensional strategy that is subject to a
single sum resource constraint; 2) each user’s payoff in each dimension is im-
pacted by an additive combination of its own action in the same dimension and
a function of the other users’ actions; 3) users’ utilities are separable across dif-
ferent dimensions and each user’s total utility is the sum of the utilities obtained
within each dimension.

Second, based on the feasibility of real-time information exchange, we provide
the convergence conditions of various generic distributed algorithms in different
scenarios. When no message exchanges between users are possible and every user
maximizes its own utility, it is essential to determine whether a NE exist and if
yes, how to achieve such an equilibrium. In ACSCG, a pure NE exists because
ACSCG belongs to concave games [1] [2]. Our key contribution in this context
is that we investigate the uniqueness of pure NE and consider the best response
dynamics to compute the NE. We explore the properties of the additive coupling
among users given the sum constraint and provide several sufficient conditions
under which best response dynamics converges linearly1 to the unique NE, for
any set of feasible initialization with either sequential or parallel updates. When
users can collaboratively exchange messages with each other in real-time, we
present the sufficient convergence conditions of two alternative distributed pric-
ing algorithms, including gradient play and Jacobi update, to coordinate users’
action and improve the overall system efficiency. The proposed convergence con-
ditions generalize the results that have been previously obtained in [8]- [13] for
the multi-user power control problem and they are immediately applicable to
other multi-user applications in communication networks that fulfill the require-
ments of ACSCG.

The rest of this paper is organized as follows. Section 2 defines the model
of ACSCG. For ACSCG models, Sections 3 and 4 present several distributed
algorithms without and with real-time information exchanges, respectively, and
provide sufficient conditions that guarantee the convergence of the proposed algo-
rithms. Conclusions are drawn in Section 5. Due to space limitations, the formal
proofs and numerical examples are omitted; for these proofs and examples, the
reader is referred to [19].

2 Game Model

2.1 Strategic Games, Nash Equilibrium, and Pareto Optimality

A strategic game is a suitable model for the analysis of a game where all users
act independently and simultaneously according to their own self-interests and
with no or limited a priori knowledge of the other users’ strategies. This can be

1 A sequence x(k) with limit x∗ is linearly convergent if there exists a constant c ∈ (0, 1)
such that |x(k) − x∗| ≤ c|x(k−1) − x∗| for k sufficiently large.
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formally defined as a tuple Γ = 〈N ,A, u〉. In particular, N = {1, 2, . . . , N} is the
set of decision makers. Define A to be the joint action set A = ×n∈NAn, with
An ⊆ RK being the action set available for user n. The vector utility function
u = ×n∈Nun is a mapping from the individual users’ joint action set to real
numbers, i.e. u : A → RN . In particular, un(a) : A → R is the utility of the nth
user that generally depends on the strategies a = (an, a−n) of all users, where
an ∈ An denotes a feasible action of user n, and a−n = ×m �=nam is a vector of
the actions of all users except n. We also denote by A−n = ×m �=nAm the joint
action set of all users except n. To capture the multi-user performance tradeoff,
the utility region is defined as U = {(u1(a), . . . , uN(a))| ∃ a ∈ A}. Various
solutions, such as NE and Pareto optimality, were developed in the literature [1].
Significant research efforts have been devoted in the literature to constructing
operational algorithms in order to achieve NE and Pareto optimality in various
games with special structures of action set An and utility function un.

Nash Equilibrium: Definition, Existence, and Convergence. To avoid
the overhead associated with exchanging information in real-time, network de-
signers may prefer fully decentralized solutions in which the participating users
simply compete against other users by choosing actions an ∈ An to selfishly
maximize their individual utility functions un(an, a−n), given the actions a−n ∈
A−n. Most of these approaches focus on investigating the existence and proper-
ties of NE. NE is defined to be an action profile (a∗

1, a
∗
2, . . . , a

∗
N ) with the property

that for every player, it satisfies un(a
∗
n, a

∗−n) ≥ un(an, a
∗−n) for all an ∈ An, i.e.

given the other users’ actions, no user can increase its utility alone by changing
its action. Many of the well-known results on NE rely on specific structural prop-
erties of action set A and utility function u in the investigated multi-user inter-
actions. For an extensive discussion of the methodologies studying the existence,
uniqueness, and convergence of various equilibria in communication networks,
we refer the readers to [14].

Pareto Optimality and Network Utility Maximization. A profile of ac-
tions is Pareto optimal if there is no other profile of actions that makes every
user at least as well off and at least one user strictly better off. It is impor-
tant to note that operating at a NE will generally limit the performance of the
user itself as well as that of the entire network, because the available network
resources are not always effectively exploited due to the conflicts of interest oc-
curring among users. As opposed to the NE-based approaches, there exists a
large body of literature that focuses on studying how to compute Pareto opti-
mal solutions in large-scale networks where centralized solutions are infeasible by
optimizing a certain common objective function f(u1(a), u2(a), . . . , uN(a)). This
function represents the fairness rule based on which the system-wide resource
allocation is performed. Different objective functions, e.g. sum utility maximiza-
tion in which f(u1(a), u2(a), . . . , uN(a)) =

∑N
n=1 un(a), can provide reasonable

allocation outcomes by jointly considering fairness and efficiency. An important
example is the NUM framework that develops distributed algorithms to solve
network resource allocation problems [6]. The majority of the results in the
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existing NUM literature are based on convex optimization theory. It is well-
known that, for convex optimization problems, users can collaboratively ex-
change price signals that reflect the “cost” for consuming the constrained re-
sources and the Pareto optimal allocation that maximizes the network utility
can be determined in a fully distributed manner [7].

Summarizing, these general structural results without and with real-time mes-
sage exchange turn out to be very useful when analyzing various multi-user inter-
actions in communication networks. In the remaining part of this paper, we will
derive several structural results for a particular type of multi-user interaction
scenario.

2.2 Additively Coupled Sum Constrained Games

Definition 1. A multi-user interaction Γ = 〈N ,A, u〉 is a ACSCG if it satisfies
the following assumptions:

A1: ∀n ∈ N , action set An ⊆ RK is defined as An = 2

{
(a1n, a

2
n, · · · , aKn )

∣
∣ akn ∈ [amin

n,k , a
max
n,k ] and

K∑

k=1

akn ≤ Mn

}
. (1)

A2: There exist hk
n : R → R, fk

n : A−n → R, and gkn : A−n → R, k =
1, . . . ,K, such that

un(a) =

K∑

k=1

[
hk
n

(
akn + fk

n(a−n)
)− gkn(a−n)

]
, (2)

for all a ∈ A and n ∈ N . hk
n(·) is an increasing, twice differentiable, and strictly

concave function and fk
n(·) and gkn(·) are both twice differentiable.

The ACSCG model defined by assumptions A1 and A2 covers a broad class of
multi-user interactions. Assumption A1 indicates that each player’s action set is
a K-dimensional vector set and its action vector is sum-constrained. This rep-
resents the communication scenarios in which each user needs to determine its
multi-dimensional action in various channels or networks while the total amount
of resources it can consume is constrained. Assumption A2 implies that each
user’s utility is separable and can be represented by the summation of concave
functions hk

n minus “penalty” functions gkn across the K dimensions. In partic-
ular, within each dimension, the input of hk

n is an additive combination of user
n’s action akn and function fk

n(a−n) that depends on the remaining users’ joint
action a−n. Since akn only appears in the concave function hk

n, it implies that
each user’s utility is concave in its own action, i.e. diminishing returns per unit

2 We consider a sum constraint throughout the paper rather than a weighted-sum
constraint, because a weighted-sum constraint can be easily converted to a sum
constraint by rescaling An. Besides, we nontrivially assume that

∑K
k=1 a

max
n,k ≥ Mn.
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of user n’s invested action an, which is common for many application scenarios
in communication networks.

Summarizing, the key features of the game model defined by A1 and A2
include: each user’s action is subject to a sum constraint ; users’ utilities are
impacted by additive combinations of akn and fk

n(a−n) through concave functions
hk
n. Therefore, we term the game Γ that satisfies assumptions A1 and A2 as

ACSCG. In [19], we present several illustrative multi-user interaction examples
that belong to ACSCG, including power control in frequency-selective Gaussian
interference channel, delay minimization in Jackson networks, and asynchronous
transmission in digital subscriber lines network.

2.3 Issues Related to ACSCG

Since ACSCG represents a good abstraction of numerous multi-user resource
allocation problems, we aim to investigate the convergence properties of various
distributed algorithms in ACSCG without and with real-time message passing.

ACSCG is a concave game [1] [2] and therefore, it admits at least one pure
NE. In practice, we want to provide the sufficient conditions under which best
response dynamics provably and globally converges to a pure NE. However, the
existing literature, e.g. the diagonal strict concavity (DSC) conditions in [2]
and the supermodular game theory [3]- [5], does not provide such convergence
conditions for the general ACSCG model. On the other hand, if we want to
maximize the sum utility by enabling real-time message passing among users,
we also note that, the utility un is not necessarily jointly concave in a because
of the existence of gkn(·). Therefore, the existing algorithms developed for the
convex NUM are not immediately applicable either.

In the following sections, we will fully explore structures of ACSCG and ad-
dress the convergence properties of various distributed algorithms in two different
scenarios. Specifically, Section 3 investigates the scenarios in which each user n
can only observe {fk

n(a−n)}Kk=1 and cannot exchange any information with any
other user. Section 4 focuses on the scenarios in which each user n is able to
announce and receive information in real-time to and from the remaining users

about ∂un(a)
∂ak

m
and ∂um(a)

∂ak
n

, ∀m �= n, k = 1, . . . ,K.

3 Scenario I: No Message Exchange among Users

In communication scenarios where users cannot exchange messages to achieve
coordination, the participating users can simply choose actions to selfishly max-
imize their individual utility functions un(a) by solveing the following optimiza-
tion program:

max
an∈An

un(a). (3)

The steady state outcome of such a multi-user interaction is usually characterized
as a NE.
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3.1 Properties of Best Response Dynamics in ACSCG

In this subsection, we first focus on the scenarios in which fk
n(a−n) is the linear

combination of the remaining users’ action in the same dimension k, i.e.

fk
n(a−n) =

∑

m �=n

F k
mna

k
m (4)

and F k
mn ∈ R, ∀m,n, k. In Section 3.2, we will extend the results derived for the

functions fk
n(a−n) defined in (4) to general fk

n(a−n).
Since hk

n(·) is concave, the objective in (3) is a concave function in akn when
the other users’ actions a−n are fixed. To find the globally optimal solution of
the problem in (3), we can first form its Lagrangian

Ln(an, λ) = un(a) + λ(Mn −
K∑

k=1

akn), (5)

in which akn ∈ [amin
n,k , a

max
n,k ]. By taking the first derivatives of (5), we have

∂Ln(an, λ)

∂akn
=

∂hk
n(a

k
n +

∑
m �=n F

k
mna

k
m)

∂akn
− λ = 0. (6)

Denote

lkn(a−n, λ) �
[{∂hk

n

∂x

}−1

(λ) −
∑

m �=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (7)

in which
{∂hk

n

∂x

}−1
is the inverse function3 of

∂hk
n

∂x and [x]ab = max{min{x, a}, b}.
The optimal solution of (3) is given by a∗kn = lkn(a−n, λ

∗), where the Lagrange

multiplier λ∗ is chosen to satisfy the sum constraint
∑K

k=1 a
∗k
n = Mn.

We define the best response operator Bk
n(·) as

Bk
n(a−n) = lkn(a−n, λ

∗). (8)

We consider the best response algorithm in which each user updates its action
using the best response strategy that maximizes its utility function in (2). We
consider two types of update orders, including sequential update and parallel
update. Specifically, in sequential update, individual players iteratively optimize
in a circular fashion with respect to their own actions while keeping the actions
of their opponents fixed. At stage t, user n chooses its action according to

ak,tn = Bk
n([a

t
1, . . . , a

t
n−1, a

t−1
n+1, . . . , a

t−1
N ]). (9)

On the other hand, players adopting the parallel update revise their actions at
stage t according to

ak,tn = Bk
n(a

t−1
−n ). (10)

3 If � x = x∗ such that
∂hk

n
∂x

|x=x∗ = λ, we let
{ ∂hk

n
∂x

}−1
(λ) = −∞.
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We obtain several sufficient conditions under which best response dynamics
converges. Similar convergence conditions are proved in [9]- [11] in which hk

n(x) =
log2(σ

k
n +Hk

nnx). We consider more general functions hk
n(·) and further extend

the convergence conditions in [9]- [11]. The key differences among all the sufficient
conditions which will be provided in this section are summarized in Table 1.

Table 1. Comparison among conditions (C1)-(C6)

Conditions
Assumptions about fk

n(a−n) hk
n(x) Measure of residual Contraction

error at+1
n − at

n factor

(C1) (4) A2 1-norm 2ρ(Tmax)

(C2)
(4) and F k

mn have
A2 1-norm ρ(Tmax)

the same sign for ∀k,m �= n

(C3) (4) (13) weighted Euclidean norm ρ(Smax)

(C4) general A2 1-norm 2ρ(T̄
max

)

(C5)
∂fk

n(a−n)

∂ak′
m

have the same sign
A2 1-norm ρ(T̄

max
)

for ∀a ∈ A, k, k′,m �= n

(C6) general (13) weighted Euclidean norm ρ(S̄
max

)

General hk
n(·). The first sufficient condition is developed for the general cases

in which the functions hk
n(·) in the utilities un(·) are specified in assumption A2.

Define

[Tmax]mn �
{
maxk |F k

mn|, if m �= n
0, otherwise.

(11)

and let ρ(Tmax) denote the spectral radius of the matrix Tmax.

Theorem 1. If

ρ(Tmax) <
1

2
, (C1)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A with either
sequential or parallel updates.

Proof : This theorem is proved by showing that the best response dynamics
defined in (9) and (10) is a contraction mapping under (C1). See Appendix A
in [19] for details. �

In multi-user communication applications, it is common to have games of strate-
gic complements (or strategic substitutes), i.e. the marginal returns to any one
component of the player’s action rise with increases (or decreases) in the com-
ponents of the competitors’ actions [15]. For instance, in power control applica-
tions, increasing user n’s transmitted power creates stronger interference to the
other users and decreases their marginal achievable rates. Mathematically, if un
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is twice differentiable, strategic complementarities (or strategic substitutes) can
be described as

∂2un(an, a−n)

∂ajn∂akm
≥ 0, ∀m �= n, j, k, (or

∂2un(an, a−n)

∂ajn∂akm
≤ 0, ∀m �= n, j, k). (12)

For the ACSCG models that exhibit strategic complementarities (or strategic
substitutes), the following theorem further relaxes condition (C1).

Theorem 2. Let Γ be an ACSCG with strategic complementarities (or strategic
substitutes), i.e. F k

mn ≤ 0, ∀k,m �= n, (or F k
mn ≥ 0, ∀k,m �= n). If

ρ(Tmax) < 1, (C2)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A with either
sequential or parallel updates.

Proof : This theorem is proved by adapting the proof of Theorem 1. See Appendix
B in [19]. �
Remark 1. (Implications of conditions (C1) and (C2)) Theorem 1 and Theorem
2 give sufficient conditions for best response dynamics to globally converge to a
unique fixed point. Specifically, maxk |F k

mn| can be regarded as a measure of the
strength of the mutual coupling between user m and n. The intuition behind
(C1) and (C2) is that, the weaker the coupling among different users is, the
more likely that best response dynamics converges. Consider the extreme case
in which F k

mn = 0, ∀k,m �= n. Since each user’s best response is not impacted by
the remaining users’ action a−n, the convergence is immediately achieved after
a single best-response iteration. If no restriction is imposed on F k

mn, Theorem
1 specifies a mutual coupling threshold under which best response dynamics
provably converge. The proof of Theorem 1 can be intuitively interpreted as
follows. We regard every best response update as the users’ joint attempt to
approach the NE. Due to the linear coupling structure in (4), user n’s best
response in (7) contains a term

∑
m �=n F

k
mna

k
m that is a linear combination of

a−n. As a result, the residual error
∣
∣at+1

n − at
n

∣
∣
1
, which is the 1-norm distance

between the updated action profile at+1
n and the current action profile at

n, can be
upper-bounded using linear combinations of

∣
∣at

m−at−1
m

∣
∣
1
in which m �= n. Recall

that F k
mn can be either positive or negative. We also note that, if atm �= at−1

m , atm−
at−1
m contains both positive and negative terms due to the sum-constraint. In the

worst case, the distance
∣
∣at+1

n − atn
∣
∣
1
is maximized if

{
F k
mn

}
and

{
ak,tm − ak,t−1

m

}

are co-phase multiplied and additively summed, i.e. F k
mn

(
ak,tm − ak,t−1

m

) ≥ 0, for
∀k = 1, . . . ,K,m �= n. After an iteration, all users except n contributes to user
n’s residual error at stage t + 1 up to

∑
m �=n 2maxk

∣
∣F k

mn

∣
∣
∣
∣at

m − at−1
m

∣
∣
1
. Under

condition (C1), it is guaranteed that the residual error contracts. Theorem 2
focuses on the situations in which the signs of F k

mn are the same, ∀m �= n, k. In
this case,

{
F k
mn

}
and

{
ak,tm − ak,t−1

m

}
cannot be co-phase multiplied. Therefore,

the region of convergence enlarges and hence, condition (C2) stated in Theorem
2 is weaker than condition (C1) in Theorem 1.
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Remark 2. (Relation to the results in references [9]- [11]) Similar to [9] [10], our
proofs choose 1-norm as the distance measure for the residual errors at+1

n − at
n

after each best-response iteration. However, by manipulating the inequalities
in a different way, condition (C2) is more general than the results in [9] [10],
where they require maxk F

k
mn < 1

N−1 . Interestingly, condition (C2) recovers the
result obtained in [11] where it is proved by choosing the Euclidean norm as
the distance measure for the residual errors at+1

n − atn after each best-response
iteration. However, the approach in [11] using the Euclidean norm only applies
to the scenarios in which hk

n(·) is a logarithmic function. We prove that condition
(C2) applies to any hk

n(·) that is increasing and strictly concave.

A Special Class of hk
n(·). In addition to conditions (C1) and (C2), we also

develop a sufficient convergence condition for a family of utility functions pa-
rameterized by a negative number θ. In particular, hk

n(·) satisfies4

hk
n(x) =

{
log(αk

n + F k
nnx), if θ = −1,

(αk
n+Fk

nnx)
θ+1

θ+1 , if −1 < θ < 0 or θ < −1.
(13)

and αk
n ∈ R and F k

nn > 0. The interpretation of this type of utilities has been
addressed in [16]. It is shown that varying the parameter θ leads to different
types of fairness across αk

n + F k
nn(a

k
n +

∑
m �=n F

k
mna

k
m) for all k. In particular,

θ = −1 corresponds to the proportional fairness; if θ = −2, then harmonic mean
fairness; and if θ = −∞, then max-min fairness. In these cases, best response
dynamics in equation (7) is reduced to

lkn(a−n, λ) =
[( 1

F k
nn

)1+ 1
θ λ

1
θ − αk

n

F k
nn

−
∑

m �=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (14)

Define [Smax]mn �
⎧
⎨

⎩

∑K
k=1(F

k
mm)1+

1
θ

∑K
k=1(F

k
nn)

1+ 1
θ
maxk

{
|F k

mn|
(

Fk
nn

Fk
mm

)1+ 1
θ
}
, if m �= n

0, otherwise.
(15)

For the class of utility functions in (13), Theorem 3 gives a sufficient condition
that guarantees the convergence of the best response dynamics defined in (14).

Theorem 3. For hk
n(·) defined in (13), if

ρ(Smax) < 1, (C3)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A and with either
sequential or parallel updates.

4 If αk
n + F k

nnx ≤ 0, we let hk
n(x) = −∞. We assume for this class of hk

n(·) that for
∀a−n ∈ A−n, there exists an ∈ An such that αk

n + F k
nnx > 0 for ∀n, k.
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Proof : It can be proved by showing that the best response dynamics defined in
(14) is a contraction mapping with respect to the weighted Euclidean norm. See
Appendix C in [19] for details. �

Remark 3. (Relation between conditions (C3) and the results in reference [11])
For power control in frequency-selective Gaussian interference channel, Scutari et
al. established in [11] a sufficient condition under which the iterative water-filling
algorithm converges. The iterative water-filling algorithm essentially belongs to
best response dynamics. Specifically, in [11], Shannon’s formula leads to θ = −1
and cross channel coefficients satisfy F k

mn ≥ 0, ∀k,m �= n. Equation (14) reduces
to the water-filling formula

lkn(a−n, λ) =
[ 1

λ
− αk

n

F k
nn

−
∑

m �=n

F k
mna

k
m

]amax
n,k

amin
n,k

, (16)

and [Smax]mn = maxk F
k
mn. By choosing the weighted Euclidean norm as the

distance measure for the residual errors at+1
n − at

n after each best-response iter-
ation, Theorem 3 generalizes the results in [11] for the family of utility functions
defined in (13).

Remark 4. (Relation between conditions (C1), (C2) and (C3)) The connections
and differences between conditions (C1), (C2) and (C3) are summarized in Table
1. We have addressed the implications of (C1) and (C2) in Remark 1. Now we
discuss their relation with (C3). First of all, condition (C1) is proposed for gen-
eral hk

n(·) and condition (C3) is proposed for the class of utility functions defined
in (13). However, Theorem 1 and Theorem 3 individually establish the fact that
best response dynamics is a contraction map by selecting different vector and
matrix norms. Therefore, in general, (C1) and (C3) do not immediately imply
each other. Note that [Smax]mn ≤ ζmn ·maxk |F k

mn| in which ζmn satisfies

ζmn =

∑K
k=1(F

k
mm)1+

1
θ

∑K
k=1(F

k
nn)

1+ 1
θ

·max
k

(F k
nn)

1+ 1
θ

(F k
mm)1+

1
θ

∈
[
1,

maxk(F
k
nn/F

k
mm)1+

1
θ

mink(F k
nn/F

k
mm)1+

1
θ

]
. (17)

The physical interpretation of ζmn is the similarity between the preferences
of user m and n across the total K dimensions of their action spaces. Recall
that both Smax and Tmax are non-negative matrices and Smax is element-wise
less than or equal to maxm �=n ζmnT

max. By the property of non-negative ma-
trix and condition (C1), we can conclude ρ(Smax) ≤ ρ(maxm �=n ζmnT

max) <

maxm �=n
ζmn

2 . If users have similar preference in their available actions and the
upper bound of ζmn that measures the difference of their preferences is below
the following threshold:

maxk,m �=n(F
k
nn/F

k
mm)1+

1
θ

mink,m �=n(F k
nn/F

k
mm)1+

1
θ

< 2, (18)

we know that (C1) implies (C3) in this situation because ρ(Smax) < maxm,n ζmn ·
ρ(Tmax) < 2 · 1

2 = 1. We also would like to point out that, the LHS of (18) is a
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function of θ and the LHS ≡ 1 if θ = −1. When θ = −1, Tmax coincides with
Smax. Mathematically, in this case, (C3) is actually more general than (C2),
because it still holds even if coefficients F k

mn have different signs.

3.2 Extensions to General fk
n(·)

As a matter of fact, the results above can be extended to the more general
situations in which fk

n(·) is a nonlinear differentiable function, ∀n, k and its input
a−n consists of the remaining users’ action from all the dimensions. Accordingly,
equation (7) becomes

lkn(a−n, λ) �
[{∂hk

n

∂x

}−1

(λ)− fk
n(a−n)

]amax
n,k

amin
n,k

. (19)

The conclusions in Theorem 1, 2, and 3 can be further extended as Theorem 4,
and 5, 6 that are listed below.

For general fk
n(·), we denote

[T̄
max

]mn �
{
maxa∈A,k′

∑K
k=1

∣
∣
∣
∂fk

n(a−n)

∂ak′
m

∣
∣
∣, if m �= n

0, otherwise.
(20)

Besides, for hk
n(·) defined in (13), we define [S̄

max
]mn �

⎧
⎪⎪⎨

⎪⎪⎩

K∑

k=1

(Fk
mm)1+

1
θ

K∑

k=1

(Fk
nn)

1+ 1
θ

max
a∈A,k′

{ K∑

k=1

∣
∣
∣
∂fk

n(a−n)

∂ak′
m

∣
∣
∣
(

Fk′
nn

Fk′
mm

)1+ 1
θ
}
, if m �= n

0, otherwise.

(21)

Theorem 4. If

ρ(T̄
max

) <
1

2
, (C4)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A with either
sequential or parallel updates.

Proof : This theorem can be proved by combining the proof of Theorem 1 and
the mean value theorem for vector-valued functions. See Appendix D in [19] for
details. �
Similarly as in Theorem 2, for the general ACSCG models that exhibit strategic
complementarities (or strategic substitutes), we can relax condition (C4).

Theorem 5. For Γ with strategic complementarities (or strategic substitutes),

i.e.
∂fk

n(a−n)

∂ak′
m

≥ 0, ∀m �= n, k, k′,a ∈ A, (or
∂fk

n(a−n)

∂ak′
m

≤ 0, ∀m �= n, k, k′,a ∈ A),

if
ρ(T̄

max
) < 1, (C5)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A with either
sequential or parallel updates.
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Theorem 6. For hk
n(·) defined in (13), if

ρ(S̄
max

) < 1, (C6)

then there exists a unique NE in game Γ and best response dynamics converges
linearly to the NE, for any set of initial conditions belonging to A with either
sequential or parallel updates.

Remark 5. (Implications of conditions (C4), (C5), and (C6)) Based on the mean
value theorem, we know that the upper bound of the additive sum of first deriva-

tives
∑K

k=1

∣
∣
∣
∂fk

n(a−n)

∂ak′
m

∣
∣
∣ governs the maximum impact that user m’s action can

make over user n’s utility. As a result, Theorem 4, Theorem 5, and Theorem 6

indicate that
∑K

k=1

∣
∣
∣
∂fk

n(a−n)

∂ak′
m

∣
∣
∣ can be used to develop similar sufficient condi-

tions for the global convergence of best response dynamics. Table 1 summarizes
the connections and differences among all the aforementioned conditions from
(C1) to (C6).

Remark 6. (Impact of sum constraints) An interesting phenomenon that can be
observed from the analysis above is that, the convergence condition may depend
on the maximum constraints {Mn}Nn=1. This differs from the observation in [11]
that the presence of the transmit power and spectral mask constraints does not
affect the convergence capability of the iterative water-filling algorithm. This is
because when functions fk

n(a−n) are affine, the elements in T̄
max

and S̄
max

are
independent of the values of {Mn}Nn=1. Therefore, (C1)-(C6) are independent of
Mn for affine fk

n(a−n). However, for non-linear f
k
n(a−n), the values of {Mn}Nn=1

specify the range of users’ joint feasible action set A, and this will affect T̄
max

and S̄
max

accordingly. In other words, in the presence of non-linearly coupled
fk
n(a−n), convergence may depend on the players’ maximum sum constraints
{Mn}Nn=1.

4 Scenario II: Message Exchange among Users

In this section, our objective is to coordinate the users’ actions in ACSCG to
maximize the overall performance of the system, measured in terms of their total
utilities, in a distributed fashion. Specifically, the optimization problem we want
to solve is

max
a∈A

N∑

n=1

un(a). (22)

We will study two distributed algorithms in which the participating users ex-
change price signals that indicate the “cost” or “benefit” that its action causes
to the other users. Allocating network resources via pricing has been well-
investigated for convex NUM problems [6], where the original NUM problem
can be decomposed into distributedly solvable subproblems by setting price for
each constraint resource, and each subproblem has to decide the amount of
resources to be used depending on the charged price. However, unlike in the
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conventional convex NUM, pricing mechanisms may not be immediately appli-
cable in ACSCG if the objective in (22) is not jointly concave in a. Therefore,
we are interested in characterizing the convergence condition of different pricing
algorithms in ACSCG.

We know that for any local maximum a∗ of problem (22), there exist Lagrange
multipliers λn, ν

1
n, · · · , νNn and ν′1n , · · · , ν′Nn such that the following Karush-Kuhn-

Tucker (KKT) conditions hold for all n ∈ N :

∂un(a
∗)

∂akn
+
∑

m �=n

∂um(a∗)
∂akn

= λn + νkn − ν
′k
n , ∀n (23)

λn

( K∑

k=1

ak∗n −Mn

)
= 0, λn ≥ 0 (24)

νkn(a
k∗
n − amax

n,k ) = 0, ν
′k
n (amin

n,k − ak∗n ) = 0, νkn, ν
′k
n ≥ 0. (25)

Denote πk
mn user m’s marginal fluctuation in utility per unit decrease in user n’s

action akn within the kth dimension

πk
mn(a

k
m, ak−m) = −∂um(a)

∂akn
, (26)

which is announced by userm to user n and can be viewed as the cost charged (or
compensation paid) to user n for changing user m’s utility. Using (26), equation
(23) can be rewritten as

∂un(a
∗)

∂akn
−
∑

m �=n

πk
mn(a

k∗
m , ak∗−m) = λn + νkn − ν

′k
n . (27)

If we assume fixed prices {πk
mn} and action profile ak

−n, condition (27) gives the
necessary and sufficient KKT condition of the following problem:

max
an∈An

un(a)−
K∑

k=1

akn ·
( ∑

m �=n

πk
mn

)
. (28)

At an optimum, a user behaves as if it maximizes the differences between its
utility minus its payment to the other users in the network due to its impact
over the other users’ utilities. Different distributed pricing mechanisms can be
developed based on the individual objective function in (28) and the convergence
conditions may also vary based on the specific action update equation.

We will investigate two distributed pricing mechanisms for non-convex AC-
SCG and provide two sufficient conditions that guarantee their convergence.
Specifically, under these sufficient conditions, both algorithms guarantee that
the total utility is monotonically increasing until it converges to a feasible oper-
ating point that satisfies the KKT conditions. Similarly as in Section 3.1, we first
assume fk

n(a−n) takes the form in (4) and users update their actions in parallel.
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4.1 Gradient Play

The first distributed pricing algorithm that we consider is gradient play. The
update iterations of gradient play need to be properly redefined in presence of
real-time information exchange. Specifically, at stage t, users adopting this al-
gorithm exchange price signals {πk,t−1

mn } using the gradient information at stage
t − 1. Within each iteration, each user first determines the gradient of the ob-
jective in (28) based on the price vectors {πk,t−1

mn } and its own utility function
un(an, a

t−1
−n ). Then each user updates its action atn using gradient projection

algorithm according to

a
′k,t
n = ak,t−1

n + κ
(∂un(an, a

t−1
−n )

∂akn
−
∑

m �=n

πk,t−1
mn

)
. (29)

and

at
n = [a1,tn a2,tn · · · aK,t

n ] =
[
a

′1,t
n a

′2,t
n · · ·a′K,t

n

]‖·‖2

An

. (30)

in which the stepsize κ > 0. The following theorem provides a sufficient condition
under which gradient play will converge monotonically provided that we choose
small enough constant stepsize κ.

Theorem 7. If ∀n, k,x,y ∈ A−n,

inf
x

∂2hk
n(x)

∂2x
> −∞, and

∥
∥
∥� gkn(x) −�gkn(y)

∥
∥
∥ ≤ L′∥∥x− y

∥
∥, (C7)

gradient play converges for a small enough stepsize κ.

Proof : This theorem can be proved by showing the gradient of the objective
function in (22) is Lipschitz continuous and applying Proposition 3.4 in [17]. See
Appendix E in [19] for details. �

Remark 7. (Application of condition (C7)) A sufficient condition that guaran-
tees the convergence of distributed gradient projection algorithm is the Lips-
chitz continuity of the gradient of the objective function in (22). For example,
in the power control problem in multi-channel networks [12], we have hk

n(x) =
log2(α

k
n + Hk

nnx) and gkn(P−n) = log2(σ
k
n +

∑
m �=n H

k
mnP

k
m). For this config-

uration, we can immediately verify that condition (C7) is satisfied. Therefore,
gradient play can be applied. Moreover, as in [12], if we can further ensure that
the problem in (22) is convex for some particular utility functions, gradient play
converges to the unique optimal solution of (22) at which achieving KKT con-
ditions implies global optimality.

4.2 Jacobi Update

We consider another alternative strategy update mechanism called Jacobi update
[18]. In Jacobi update, every user adjusts its action gradually towards the best
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response strategy. Specifically, the maximizer of problem (28) takes the following
form

B
′k
n (a−n) =

{∂hk
n

∂x

}−1(
λn + νkn − ν

′k
n +

∑

m �=n

πk
mn

)−
∑

m �=n

F k
mna

k
m, (31)

in which λn, ν
k
n, and ν

′k
n are the Lagrange multipliers that satisfy complementary

slackness in (24) and (25), and πk
mn is defined in (26). In Jacobi update, at stage

t, user n chooses its action according to

ak,tn = ak,t−1
n + κ

[
B

′k
n (at−1

−n )− ak,t−1
n

]
, (32)

in which the stepsize κ ∈ (0, 1]. The following theorem establishes a sufficient
convergence condition for Jacobi update.

Theorem 8. If ∀n, k,x,y ∈ A−n,

infx
∂2hk

n(x)
∂2x > −∞, supx

∂2hk
n(x)

∂2x < 0, and∥
∥
∥� gkn(x) −�gkn(y)

∥
∥
∥ ≤ L′∥∥x− y

∥
∥,

(C8)

Jacobi update converges if the stepsize κ is sufficiently small.

Proof : This can be proved using the descent lemma and the mean value theorem.
The details of the proof are provided in Appendix F in [19]. �
Remark 8. (Relation between condition (C8) and the result in [13]) Shi et al.
considered the power allocation for multi-carrier wireless networks with non-
separable utilities. Specifically, un(·) takes the form

un(P) = ri

(
K∑

k=1

log2

(
1 +

Hk
nnP

k
n

σk
n +

∑
m �=n H

k
mnP

k
m

)
)

, (33)

in which ri(·) is an increasing and strictly concave function. Since the utilities are
non-separable, the distributed pricing algorithm proposed in [13], which in fact
belongs to Jacobi update, requires only one user to update its action profile at
each stage while keeping the remaining users’ action fixed. The condition in (C8)
gives the convergence condition of the same algorithm in ACSCG. We prove in
Theorem 7 that, if the utilities are separable, convergence can still be achieved
even if these users update their actions at the same time. Therefore, we do not
need an arbitrator to select the single user that updates its action at each stage.

5 Conclusion

In this paper, we propose and investigate a new game model, which we refer to
as additively coupled sum constrained games, in which each player is subject to
a sum constraint and its utility is additively impacted by the remaining users’
actions. The convergence properties of various generic distributed adjustment al-
gorithms, including best response, gradient play, and Jacobi update, have been
investigated. The sufficient conditions obtained in this paper generalize the ex-
isting results developed in the multi-channel power control problem and can be
extended to other applications that belong to ACSCG.
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