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Abstract. In this paper we formulate and study a capacity allocation
game between a set of receivers (players) that are interested in receiving
multicast data (video/multimedia) being streamed from a server through
a multihop network. We consider fractional multicast streaming, where
the multicast stream from the source (origin-server) to any particular
receiver (end-user) can be split over multiple paths. The receivers are
selfish and non-cooperative, but must collaboratively purchase capacities
of links in the network, as necessary for delivery of the multicast stream
from the source to the individual receivers, assuming that the multicast
stream is network coded. For this multicast capacity allocation (network
formation) game, we show that the Nash equilibrium is guaranteed to
exist in general. For a 2-tier network model where the receivers must
obtain the multicast data from the source through a set of relay nodes,
we show that the price-of-stability is at most 2, and provide a polynomial-
time algorithm that computes a Nash equilibrium whose social cost is
within a factor of 2 of the socially optimum solution. For more general
network models, we give a polynomial time algorithm that computes a
2-approximate Nash equilibrium whose cost is at most 2 times the social
optimum. Simulation studies show that our algorithms generate efficient
Nash equilibrium allocation solutions for a vast majority of randomly
generated network topologies.

Keywords: capacity allocation games, the price of stability, Nash equi-
librium, multicast networks.

1 Introduction

The last decade has witnessed an explosive growth in the number of stream-
ing video (multimedia) applications. Some of these involve live video streaming,
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while others stream video that is already available in stored format but too large
for download-and-play. Stored video streaming applications like YouTube [4] are
already contributing to a large fraction of the Internet traffic today1, and IPTV
and similar other efforts are likely to boost live video streaming through the
Internet in the coming years [3]. Streaming stored video may be unicast or mul-
ticast, depending on the application: while IPTV [2] video streaming may mostly
be multicast (broadcast), receiver-driven video streaming (like video streaming
from YouTube [4]) will typically be unicast. Streaming live video will typically
be multicast to possibly many receivers.

For multicast data delivery, use of network coding allows individual receivers
to simultaneously attain data rates that equal their maxflow capacities [6], which
in general may not be achievable through a routing-only approach. Naturally,
this makes network coding ideally suited for multicast data delivery over a multi-
hop network.

In this paper, we consider a capacity allocation game that end-users will play
in buying resources for multicast streaming data delivery. More specifically, re-
ceivers (users) buy capacities on the links of the distribution network at fixed
(possibly different for different links) per-unit cost, so as to ensure delivery of a
multicast stream (with a given source rate) from its source to the receiver. The
receivers are selfish and non-cooperative and are only interested in minimizing
their individual costs, but must collaboratively pay for capacities bought on
network links, as necessary for network coded multicast data delivery from the
data source to the individual receivers. We consider fractional multicast stream-
ing, i.e., the multicast data between the source and any particular receiver can
be split across multiple paths that exist between the source-receiver pair. The
problem we consider is a network formation game where the amount of capacity
collaboratively bought on the different links in the network must be such that
the maxflow from the source to each receiver is no less than the desired multicast
data rate. Using network coding [6], this ensures that all receivers are able to
obtain their full data rate from the source. This paper focuses on the questions
of the existence, efficiency, and computation of the equilibria of this game. Ini-
tially, we focus on the 2-tier network model where the receivers must obtain the
multicast data from the source through a set of relay nodes, and derive some
strong results by exploiting structural properties of such topologies. Later we
consider arbitrary topology networks for multicast data distribution, and study
the existence and efficiency of approximate equilibria for that case.

To measure efficiency of equilibrium, we use the common measures of the price
of anarchy and the price of stability [22] — the supremum of the ratios between
the costs of the worst and best pure Nash equilibrium, respectively, and that of
the globally optimal solution over all instances of the game.

Our Contributions. The specific technical contributions of this paper are as
follows. For our fractional multicast network formation game, we show that pure

1 It was estimated that in 2007 YouTube consumed as much bandwidth as the entire
Internet in 2000 [1].
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Nash equilibrium is guaranteed to exist in general. For the 2-tier model, defined
in Section 4, we show a tight bound of 2 on the price-of-stability, and provide
a polynomial-time algorithm that returns a Nash equilibrium whose social cost
is within a factor of 2 of the socially optimum solution. The 2-tier model is
essentially equivalent to the case where all nodes in the network are receivers,
which is itself an important special case (e.g. [17]). For more general network
topologies, we give a polynomial time algorithm that computes a 2-approximate
Nash equilibrium whose cost is at most 2 times the social optimum. Simulation
studies show that our algorithms generate efficient Nash equilibrium allocation
solutions for a vast majority of randomly generated networks. Due to lack of
space, the proofs of Theorem 1, and Theorem 5 appear in the full version of this
paper. (see http://www.ecse.rpi.edu/∼koushik/)
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Fig. 1. Example:
Fractional multicast
streaming is better
than integral multicast
streaming. Source S sends
multicast data at rate
1 to receivers A and B.
All link capacities are 1
unit in each direction;
numbers across links
are per-unit capacity
(bidirectional) purchase
costs. Optimal fractional
solution involves purchase
of 1 unit capacities on
links CA and DB, and 0.5
unit capacities on links
SC, CD, SD; total cost
= 25. Optimal integral
solution involves purchase
of 1 unit capacities along
SC, SD, CA, DB; total
cost = 30.

While network formation games have been stud-
ied in other contexts (see Section 2), the questions
we consider are new for the context of network-coded
fractional multicast streaming. Unlike integral multi-
cast, data distribution networks for socially optimal
or Nash equilibrium solutions for network-coded mul-
ticast need not be trees (Figure 1), and techniques for
integral multicast do not extend to this context (see
Section 2). Interestingly, however, we show that there
exist solutions based on tree topologies that are at
Nash equilibrium (exactly or approximately) and at-
tain a near-optimal social cost. For the 2-tier network
model, the solution is based on the minimum spanning
tree; for more general network models, it is based on
the minimum Steiner tree or polynomial-time approx-
imations of it. Despite the complexity of the problem,
our results show that there exist easily-computable
exact or approximate distribution networks where re-
ceivers have no motivation to deviate from it unilat-
erally, and yet results in the set of receivers paying
near-minimal cost as a group for multicast data deliv-
ery.

The paper is structured as follows. In Section 2,
we outline related work on this topic. In Section 3 we
describe the model and problem formulation. In Sec-
tion 4 we state and prove our main results on the ex-
istence, efficiency, and properties of Nash equilibrium
distribution topology solutions for the 2-tier network
model. We extend these results to arbitrary topology
networks in Section 5. In Section 6 we describe the
results of experiments conducted on randomly gener-
ated network topologies.
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2 Related Work

In contrast to the work presented in this paper, the models in most network
formation game literature do not allow players to reserve an arbitrary amount of
bandwidth on the links; rather, a link can either be constructed and be utilized to
full extent or won’t be constructed at all. Our game represents a more realistic
scenario by allowing players to buy certain amount of capacity (bandwidth)
on that link. This becomes particularly relevant for network coded multicast
streaming [6,18,21,23] that we consider in this paper, where the capacity that
needs to be bought on a link for successful multicast streaming is often less than
the link capacity, as well as the source data rate.

There have been several variants of “integral” network formation games where
instead of allocating capacity, an edge can be either fully present or non-existent.
One of the most important decisions when modeling network design involving
strategic agents is to determine how the total cost of the solution is going to be
split among the players. Among various alternatives [13], the most popular one
in the literature is the “fair sharing” mechanism [8,11,12,17]. In this cost sharing
mechanism, the cost of each edge of the constructed network is shared equally
by the players using that edge. Since in our model, each player is allowed to
purchase any amount of capacity on an edge, the “arbitrary sharing” model of
network formation [9,7,15,19,20] is closer to being an “integral” version of our
game. In this model, players contribute to the cost of an edge, and an edge is
present in the network if the player contributions are larger than its cost. This
model has many differences from the “fair sharing” model: e.g., the game is not a
congestion game, but the price of stability is much better than with fair sharing,
etc.

While many interesting results have been proven for network formation games
with arbitrary sharing, most do not extend to our “fractional” context where
players (multicast data users/receivers in our case) are allowed to reserve an
arbitrary amount of bandwidth on the links. For example, [9] proved that the
minimum-cost Steiner tree is always a Nash equilibrium in this integral network
formation game with arbitrary sharing, but the same does not hold for the
fractional version. Consider, for example, a graph with n receiver nodes, node
s, and an extra node v. All receivers wish to receive a rate of 1 from node s.
For any receiver node u, the cost of allocating x capacity on an edge (u, v) is x,
and the same is true for edge (v, s). The cost of allocating x capacity on an edge
(u, s) is x(2 − ε). No other edges exist in the graph. Then, the minimum-cost
Steiner tree has cost n + 1 (for this example, it is also the optimum fractional
solution, although Figure 1 shows that this is not always the case). However, the
min-cost Steiner tree in this example is not a Nash equilibrium: there must be
some receiver u who is paying for 1 capacity of edge (u, v), and at least for 1/n
capacity of edge (v, s). This player could reduce its payments to both edges by
1/n, and instead pay for 1/n capacity on edge (u, s), costing it (2 − ε)/n, and
thus strictly decreasing its cost.

Our game assumes that there is no central authority that can dictate the net-
work cost-sharing mechanism, and thus players simply purchase edge capacities
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directly. Other directions in multicast games include cooperative games and
mechanism design (see, e.g. [16] and [22, Chapters 14-15] and references therein),
where the goal is to come up with a cost-sharing mechanism with good properties
that could be implemented by a central authority.

3 System Model and Formulation

We consider a network modeled by an undirected graph G = (V,E, b), where
vertices V denote the set of nodes, and (undirected) edges E denote the set
of (bidirectional) links in the network. For each edge e ∈ E, b(e) ≥ 1 denotes
the capacity (bandwidth)2 of the corresponding link in each direction. In other
words, at full capacity b(e) units of traffic can travel on link e in one direction,
and simultaneously b(e) units of traffic can travel on e in the opposite direction.
This network is to be used for delivery of a given traffic stream of rate 1. One of
the nodes, s ∈ V is designated as the source of the traffic stream, and a subset
of the nodes, R ⊆ V are receivers (users) of the traffic stream. In our model,
all receivers must collaboratively pay for capacities of the links that are used
for carrying the traffic stream, for shared use by all receivers in R. We assume
that an edge e is associated with a cost of c(e) that buys the corresponding link,
i.e., c(e) is the cost of buying capacity of 1 of the link in each direction. If each
receiver i ∈ R pays pi(e) for edge e, then the total purchased capacity on the
corresponding link is θ(e) = (

∑
i∈R pi(e))/c(e). In other words, if the players

R pay a fraction of edge e’s cost in total, then the same fraction of e’s desired
capacity becomes available in both directions.

To formally define the game, we note that R is the set of players, and p =
(pi(e), i ∈ R, e ∈ E), or the prices paid by the receivers for the links, constitute
the player strategies. (Formally, a strategy of player i ∈ R is a function pi :
E → R≥0 that determines how much i is offering to pay for each edge.) Once
the strategies are given, the network used for multicast traffic streaming, or the
distribution network, is (V,E, θ), where the purchased capacities θ(·) depend on
the strategy vector p. We assume that each node in the network is capable of
network-coding. A necessary and sufficient condition for delivery of the given
traffic stream to all receivers is that the maxflow from the source s to each
receiver i ∈ R in distribution network (V,E, θ) is no less than the stream rate
of 1 [6]. In other words, a feasible strategy vector p is one that ensures that

fi(p) ≥ 1, (1)

holds for each receiver i ∈ R, where fi(p) denotes the maxflow from source node
s to receiver node i in distribution network (V,E, θ). The goal of each receiver
i is to receive the full rate of 1, but pay as little as possible. Formally, the cost
of player i with strategy vector p is

∑
e pi(e) if fi(p) ≥ 1, and is very large

otherwise.

2 We assume that the links are loss-free, and the terms ‘capacity’ and ‘bandwidth’ are
used synonymously.
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Among all strategies that form feasible networks, we are specifically interested
in those that are Nash equilibria. A solution is a Nash equilibrium if each receiver
does not have an incentive to unilaterally deviate from it. To state this formally,
consider a strategy vector p∗ that is feasible for all players, and let p∗

−i =
(p∗j (e), j ∈ R \ i, e ∈ E), denote the strategies of (purchase prices paid by)
all receivers other than i. Then the strategy vector p∗ is said to be a Nash
equilibrium if for any pi = (pi(e), e ∈ E) such that (pi,p

∗
−i) satisfies the

feasibilty condition (1) for receiver i, we have that
∑

e∈E p∗i (e) ≤ ∑
e∈E pi(e).

In other words, given the strategies of (prices paid by) the other receivers, and
subject to maintaining the feasibility condition fi(p) ≥ 1 that is necessary for
receiver i to receive the streamed data at the full rate, the total price paid by
receiver i is minimized at Nash equilibrium. A solution that is not feasible for
all players will never be a Nash equilibrium, since the infeasible players will have
very large cost, and will have incentive to purchase more capacity in the network
in order to become feasible.

To study the efficiency of the Nash equilibrium, we next define the social
optimum against which the Nash equilibrium solution will be compared in terms
of the total capacity purchase cost. A price vector p is said to be a social optimum
if it minimizes

∑
i∈R,e∈E pi(e) =

∑
e θ(e)c(e), subject to satisfying the feasibility

constraints (1) for all receivers i ∈ R. We will denote this solution as OPT . The
supremum of the ratio of the overall cost of the worst Nash equilibrium to that
of the social optimum over all instances of a game is defined as the price of
anarchy of the game. Similarly, the supremum of the ratio of the overall cost of
the best Nash equilibrium to that of the social optimum over all instances of a
game is defined as the price of stability of the game. In this paper, we use these
two notions to characterize the efficiency of the worst and best Nash equlibria
for the game.

4 Capacity Allocation Games on the 2-Tier Network
Model

It has been envisioned that in the near future, streaming of video over the In-
ternet will be done through the use of multiple, dedicated servers that would
relay video from the source server to the end-users [5]. This network of video
relay servers is expected to play a role similar to that of content distribution net-
works (CDN) for delivery of various kinds of non-streaming and non-real time
data (content). This relay network will deliver video from the source to the re-
ceiver through multiple relay-hops, possibly performing network coding at the
intermediate (relay) nodes/servers. This is illustrated in Figures 2-3.

In this section, we restrict our attention to the 2-tier network model. In this
model, V = {s} ∪ L ∪ R, i.e., the vertex set of the graph is composed of the
source vertex s, the set of receivers R = {r1, r2, . . . , rn}, and the set of relay
nodes L = {l1, l2, . . . , lk}. Each receiver node ri of G has exactly one incident
edge and is adjacent to a relay node of G, i.e., for each ri ∈ R there exists lj ∈ L
such that (ri, lj) ∈ E, and ri has no other incident edges in G. Each relay node
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Fig. 2. Streaming video delivery in the 2-tier net-
work model

Fig. 3.Graph representation of the
2-tier network model in Figure 2

is adjacent to one or more receiver nodes, i.e., for each lj ∈ L there exists ri ∈ R
such that (ri, lj) ∈ E. These assumptions imply that each receiver is directly
connected to exactly one relay node, from which it must receive the data being
streamed (this relay node can obtain the data from the source through other
relay nodes, however). In addition, each relay node serves at least one receiver.
This assumption can be interpreted in the following way: if a relay node has no
receiver to serve, then it does not participate in the multicast data distribution.

Note that the 2-Tier model is equivalent to the model where all nodes are
receivers, in the following sense. If G is an instance of our game in the 2-Tier
model, let G′ be a game obtained by contracting all the edges incident to a
receiver node in G. Since every relay node in G must be adjacent to a receiver,
then all nodes in G′ except s are receivers, although there may be several receiver
players located at the same node. Since every Nash equilibrium in G must have
each receiver ri purchasing 1 capacity on the edge (ri, lj), then it is easy to see
that there is a one-to-one correspondence between the Nash equilibria in G and
in G′. Below we argue about the price of stability for 2-Tier networks, but all the
arguments can easily be extended to the model where the network has arbitrary
topology, but every node except s is a receiver/player.

We prove below that if G has a 2-tier topology as described above, then there
exists a Nash equilibrium solution that does not cost much more than the cost
of the socially optimal solution. We first show, however, that there are examples
where all Nash equilibria cost a factor of 2 more than the social optimum.

Theorem 1. The price of stability of the capacity allocation game with the 2-
Tier topology is at least 2.

In the proof of Theorem 1, we show that for any ε > 0 we can construct an
instance of the capacity allocation game with the 2-Tier topology such that the
social cost of all Nash equilibria are at least (2− ε) times the social cost of OPT .

Consider the cheapest solution satisfying Condition (1) for our game, which
we denoted by OPT . Notice that OPT is exactly the optimum fractional solution
to the LP-relaxation of the classic Steiner tree problem (see, e.g. [24]), with the
terminal nodes being R∪{s} and edge costs being c(e). Since the integrality gap
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of this LP is at most 2 [24], this implies that a minimum-cost Steiner tree has
cost at most twice the cost of OPT . More precisely, if we take a Steiner tree T of
graph G with terminals R∪{s} and edge costs c(e), and set the capacity of each
edge in T to be 1, and each edge not in T to be 0, then the cost of this tree is at
most twice the cost of OPT . We show in Section 5 that we can always form a
2-approximate Nash equilibrium on a Steiner tree, and there are simple examples
where there is no Nash equilibrium that buys the minimum-cost Steiner tree.
For the 2-Tier network topology, however, notice that the minimum-cost Steiner
tree is simply the minimum spanning tree (MST) of G. This is because every
node ri of R has exactly one incident edge and is adjacent to a relay node of G,
and each relay node is adjacent to one or more receiver nodes. We next prove
that there always exists a Nash equilibrium solution that buys the minimum
spanning tree, which gives the result stated by Theorem 2, since the cost of the
minimum spanning tree is at most twice the cost of the socially optimal solution
as argued above.

The proof of Theorem 2 gives a polynomial-time algorithm that returns a
strategy profile p = (pi(e), i ∈ R, e ∈ E) that is a Nash equilibrium, and reserves
1 unit of bandwidth on the edges of the MST. Since the cost of MST is at most
2 times the cost of OPT , the price of stability is at most 2. Theorem 1 and
Theorem 2 together imply that the price of stability is 2.

Theorem 2. There is a polynomial-time algorithm that returns a Nash equi-
librium of the capacity allocation game for the 2-tier topology whose social cost
is within a factor of 2 of the cost of OPT , and thus the price of stability is at
most 2.

Proof. We prove the result by showing that there always exists a Nash equi-
librium solution that reserves 1 unit of bandwidth on the edges of the minimum
spanning tree and 0 units of bandwidth on the remaining edges. Our proof is
constructive, i.e., we explicitly form payments that purchase the minimum span-
ning tree. In our payment scheme, for each edge e of minimum-cost spanning
tree T , there is a corresponding receiver ri that reserves 1 unit of bandwidth
on it. Notice that even though the ’arbitrary-sharing’ cost-sharing scheme al-
lows receivers to share the cost of reserving 1 unit of bandwidth on the edges of
T , our payment scheme does not use this property. Therefore, in order to fully
specify the payment scheme all we need to do is to assign one receiver for each
edge e of T .

Without loss of generality, for an edge e = (i, j), we will assume that j is the
node that is closer to s on T than i. If e = (i, j) is an edge incident to a receiver,
i.e., i ∈ R, then the receiver i makes a payment on e that is sufficient to reserve
1 units of bandwidth on it. Let e = (i, j) be an edge between two relay nodes,
or a relay node and the source, i.e., i ∈ L. Let rk be an arbitrary receiver that
has a direct link to the relay node i, i.e., (rk, i) is an edge of T . Then, rk makes
a payment of c(e) on e.

Since we have fully specified the payment scheme on all the edges of T , let us
now prove that this payment scheme is indeed a Nash equilibrium. Notice that
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in our payment scheme each receiver is reserving 1 units of bandwidth on either
one or two edges of T . More precisely, each receiver ri paying for the cost of the
edge (ri, lj) incident to her node, and possibly she is also paying for the cost of
the other incident edge of lj .

Recall that any solution that is feasible for ri must satisfy Inequality (1) for
ri. If a receiver ri is only paying for the cost of her incident edge e in T , she
trivially does not have an incentive of unilateral deviation since ri does not
have any other incident edges in G, and therefore any solution where ri satisfies
Equation 1 reserves 1 unit of bandwidth on e. Suppose ri is paying for the cost
of both e = (ri, lj) incident to her node, and the cost of another incident edge f
of lj . Since the payments of the receivers R − {ri} reserve 1 unit of bandwidth
on T − {e, f}, the best response of ri must include enough capacity for a flow
of size 1 between ri and T − {e, f}. The cheapest way to obtain this capacity is
to reserve 1 unit of bandwidth along a single path between ri and T − {e, f},
and the cost of this path cannot be more than the total cost of e and f , since
otherwise T would not be a minimum spanning tree. Thus, any deviation of ri
that results in a feasible solution for ri is at least as expensive as c(e) + c(f).
Since no receiver has an incentive for unilateral deviation, the resulting payment
scheme is a Nash equilibrium.

5 Generalizations for Arbitrary Network Models

In this section, we consider our general game, with the graph G having arbitrary
topology, and an arbitrary subset of receiver nodes. The capacity allocation game
is guaranteed to have a Nash equilibrium by Theorem 3, however, the cost of
some Nash equilibria can be prohibitive by Theorem 5.

Theorem 3. Nash equilibrium in pure strategies is guaranteed to exist in the
capacity allocation game.

Proof. For each player i ∈ R, let Si denote the strategy space of player i.
Player i selects a strategy si ∈ Si when she plays the game. Let S =

∏
i∈R Si

denote the strategy space of the game. Notice that S is the product space of
the strategy spaces of the players. A strategy profile s ∈ S is an n-tuple s =
(s1, . . . , sn) such that each entry si of s is a strategy of player i. We use the
common notational convenience and write a strategy profile as s = (si, s−i)
where s−i ∈

∏
j∈R−{i} Sj . Notice that a strategy si ∈ Si of player i is a vector

of size m (with m being the number of edges in the graph), since a strategy for
a player consists of a nonnegative payment for each edge e of G. Without loss
of generality, we will assume si(e) ≤ maxe c(e). Notice that S is a nonempty,
convex, and compact set since S is a cube in Rn×m: specifically it is just the
cross product of the closed interval [0,maxe c(e)] taken nm times.

In order to prove the result, we use the technique used in Nash’s proof for
showing existence of mixed Nash equilibrium in finite games, that uses Kaku-
tani’s fixed point theorem. Our proof uses standard techniques, except for the
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part showing that the graph Γ (F ) is closed, which requires somewhat different
arguments due to the fact that our cost functions are not continuous.

Recall that Kakutani’s fixed point theorem is defined as follows:

Theorem 4 (Kakutani’s Fixed Point Theorem). Let S be a non-empty,
compact and convex subset of some Euclidean space Rn. Let F : S → 2S be a
set-valued function on S with a closed graph Γ (F ), and the property that F (s)
is nonempty and convex for all s ∈ S. Then F has a fixed point.

A set-valued function F : S → 2S is some rule that maps each element s ∈ S
to a subset of S, i.e., F (s) ⊂ S. Notice that each element of F (s) is a strat-
egy profile of the capacity allocation game. Since S is nonempty, compact,
and convex, Kakutani’s fixed point theorem states that if the function graph
Γ (F ) = {(s, t)|s ∈ S, t ∈ F (s)} (which is a subset of the product space S × S)
is a closed set, and F (s) is a nonempty and convex set for all s ∈ S, then there
exists s ∈ S such that s ∈ F (s), i.e., a fixed point.

For a strategy profile s = (si, s−i), let χi(s−i) denote the set of best responses
of player i to the strategies s−i of other players. Given the strategies s−i of
other players (which correspond to some capacity reservation on the edges of
G), each element s′i ∈ χi(s−i) is a minimum cost strategy of player i that will
ensure that a flow of size 1 can be send from the source to i in the distribution
network purchased by (s′i, s−i). It is easy to see that for each s−i we can express
χi(s−i) as the set of optimal solutions of a linear program, with only non-strict
inequalities. Therefore, χi(s−i) is a closed and convex subset of Si for all s−i ∈∏

j∈R−{i} Sj. Moreover, χi(s−i) is non-empty, since player i always has at least
one best response.

We define the mapping F : S → 2S as follows. Given a strategy profile s,
t ∈ F (s) if t is a strategy profile that can be obtained if each player i ∈ R
deviates from her strategy si to one of her best responses, i.e., to an element of
χi(s−i). Formally, we define F as F (s1, . . . , sn) = {(t1, . . . , tn)|ti ∈ χi(s−i)}. In
other words, F (s1, . . . , sn) =

∏
i∈R χi(s−i). Since F (s) is the product space of

nonempty, closed, and convex sets, then F (s) is nonempty, closed, and convex for
all s ∈ S. Therefore, if the graph Γ (F ) = {(s, t)|s ∈ S, t ∈ F (s)} is a closed set,
then by Kakutani’s fixed point theorem there exists s ∈ S such that s ∈ F (s).
Notice that s ∈ F (s) if and only if si ∈ χi(s−i) for all players i, i.e., the strategy
of all the players is a best response of them to the strategies of the other players.
Hence, a fixed point of F is a Nash equilibrium of the capacity allocation game.
Therefore, in order to complete the proof all we need to show is that Γ (F ) is a
closed set.

Let (x1, y1), (x2, y2), . . . be an arbitrary convergent sequence of points in Γ (F ),
and denote its limit by (x∗, y∗). To show that Γ (F ) is closed, all we need to
show is that (x∗, y∗) ∈ Γ (F ). Recall that Γ (F ) ⊂ S × S, and S × S is closed,
so (x∗, y∗) ∈ S × S. Therefore, all we need to show is that y∗i ∈ χi(x

∗
−i) for all

i ∈ R. In order to do this, fix some arbitrary player i.
Let Ci(s) denote the cost of player i ∈ R for strategy profile s, and let Ĉi(s)

be the cost of i’s best response to s, i.e., Ĉi(s) = mins′i∈Si
{Ci(s

′
i, s−i)}. Since
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Ci(s
′
i, s−i) is minimized if and only if s′i ∈ χi(s−i), then we can equivalently

define Ĉi as Ĉi(s) = Ci(s
′
i, s−i) for some s′i ∈ χi(s−i).

We next define a function Ci : S → R≥0 for each i ∈ R as follows: Ci(s) =

Ci(s) − Ĉi(s). Notice that Ci(s) ≥ 0 for all s ∈ S and Ci(s) = 0 if and only if
si ∈ χi(s−i). In other words, Ci(s) = 0 if and only if s is a stable strategy profile
for player i, i.e., player i does not have an incentive of unilateral deviation from
s. Notice that for any point (s, t) ∈ Γ (F ), we have that Ci(ti, s−i) = 0 since
ti ∈ χi(s−i) by definition of F . Therefore, Ci(y

k
i , x

k
−i) = 0 for all k > 0. In the

usual argument about the existence of Nash equilibrium, Ci is continuous over
S and therefore this completes the proof, since this implies that Ci(y

∗
i , x

∗
−i) = 0,

and thus that y∗i ∈ χi(x
∗
−i). In our game, however, Ci is not continuous.

Recall that Ci is defined as the difference of two functions, i.e., Ci(s) =
Ci(s) − Ĉi(s). The function Ĉi(s) is continuous on S, since for any strategy
profile s′ such that ||s − s′|| ≤ ε, we have that |Ĉi(s) − Ĉi(s

′)| ≤ ε. However,
Ci(s) is not necessarily continuous on S, since when the mincut between the
source and i becomes less than 1 in the distribution network, then the cost for
player i suddenly becomes unbounded. Let Δi be the set of strategy profiles
where player i is feasible, i.e., Δi = {s|fi(s) ≥ 1}. For any s ∈ Δi, the cost
Ci(s) is simply equal to |si| =

∑
e si(e). Thus Ci is clearly continuous on the

domain Δi. Notice that Δi can be formulated as a set of linear constraints with
non-strict inequalities and therefore, Δi is a closed (and convex) set. Since both
Ĉi and Ci are continuous on Δi, then Ci is also continuous on Δi.

Notice that for any k > 0, we have that (yki , x
k
−i) ∈ Δi, since yki is a best

response of player i to xk
−i, and thus results in a solution feasible for player

i. Since Δi is closed, then (y∗i , x
∗
−i) is also in Δi. Thus, since Ci(y

k
i , x

k
−i) = 0

for all k, and Ci is continuous on Δi, then Ci(y
∗
i , x

∗
−i) = 0. This implies that

y∗i ∈ χi(x
∗
−i). Since this is true for all i, then (x∗, y∗) ∈ Γ (F ), as desired.

Theorem 5. The price of anarchy for the capacity allocation game is N and
this bound is tight.

In network formation games on undirected graphs, bounding the price of stability
is usually a lot more challenging than bounding the price of anarchy [8,10]. The
price of stability is known to be 1 for arbitrary sharing in the discrete model,
i.e., there exists a Nash equilibrium that buys the Steiner Tree [9]. However, the
analysis for the discrete model does not carry over for capacity allocation games
(i.e., the fractional model), for which the price of stability is shown to be at least
2 in Section 4. In fact, the example in Section 2 shows that the Steiner tree is
not necessarily a Nash equilibrium for our game, and so it is not the case that
this factor of 2 arises simply because of the gap between integral and fractional
solutions. Thus, even though there always exists a Nash equilibrium that buys
the cheapest integral solution in any 2-tier topology (which is the minimum
spanning tree in this case), this is not true for general undirected networks.

Though we do not have an upper bound for the price of stability in general
undirected networks and therefore cannot guarantee the existence and efficient
computation of cheap Nash equilibrium, we prove that there always exists a
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cheap approximate Nash equilibrium that can be efficiently computed. By an α-
approximate Nash equilibrium, we mean a solution where no player can reduce
her cost by a factor of α by unilateral deviation [9].

Similar to the 2-tier topology in spirit, we start with a cheap integral fea-
sible solution T and form payments on the edges of T . The cheapest integral
solution T is the Steiner tree that connects the source and the receiver nodes;
however, the Steiner Tree is not efficiently computable. We therefore use an
approximation to Steiner Tree that does not cost more than twice the cost of
OPT. We obtain the integral solution by using the primal-dual approximation
algorithm for minimum-cost Steiner Forest problems (see, e.g. [24]). We use T
to denote the tree returned by the primal-dual algorithm with R ∪ {s} being
terminal nodes, and root it at s. Since the primal-dual algorithm uses the frac-
tional optimal solution OPT as its lower bound, the cost of the integral solution
returned by the primal-dual algorithm is not only within a factor of 2 of the
cost of the minimum-cost Steiner Tree, but also the cost of OPT. The proof
of Theorem 6 gives a polynomial-time algorithm that returns a strategy profile
p = (pi(e), i ∈ R, e ∈ E) that is a 2-approximate Nash equilibrium, and reserves
1 unit of bandwidth on the edges of T .

The rest of this section is devoted to proving Theorem 6.

Theorem 6. There is a polynomial-time algorithm that returns a 2-approximate
Nash equilibrium whose social cost is at most twice the cost of OPT .

We use the term edge block to refer to maximal length paths of T whose interior
nodes are degree 2 nonreciever nodes. Notice that each edge of T is part of an
edge block. It is easy to show that there are at most 2n − k edge blocks in T ,
where n is the number of receiver nodes, and k is the number of non-leaf receiver
nodes. Notice that the removal of an edge block e from T will divide T into 2
connected components T1(e) and T2(e). Without loss of generality we will assume
that e constitutes the cheapest path between these connected components in the
rest of the text, since otherwise we can obtain a cheaper integral solution with
this property by simply replacing the cheapest path between these 2 connected
components for e.

Our payment algorithm assigns each edge block e to a receiver ri and asks
ri to reserve 1 unit of bandwidth on all the edges of e. We use the notation
pi = {e} if edge block e is assigned to receiver ri and all other edge blocks of T
are assigned to the other receivers. Similarly, we say pi = {e, f} if edge blocks
e and f are assigned to receiver ri and all other edge blocks of T are assigned
to the other receivers. Let χi{e} and χi{e, f} denote the cheapest deviations of
receiver ri under the two possible strategies of her described above. Let |χi{e}|
and |χi{e, f}| denote the cost of these deviations to player i. We can now show
the following lemmas.

Lemma 1. For an edge block e between s and ri on T , we have that χi{e} = {e}.
Proof. For an edge block e between s and ri on T , the cheapest deviation χi{e}
of receiver ri to strategy pi = {e}, where other players are reserving 1 unit of
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bandwidth on all other edge blocks of T , must reserve enough capacity to send 1
unit of traffic between T1(e) and T2(e). The cheapest way to do this is to reserve
1 unit of bandwidth along the cheapest path between T1(e) and T2(e), and thus
|χi{e}| is at least the cost of this path. Since e constitutes the cheapest path
between T1(e) and T2(e), we have that χi{e} = {e}.
Lemma 2. For any two edge blocks e and f between s and ri on T , we have
|χi{e, f}| ≥ max{|χi{e}| , |χi{f}|}.
Proof. By Lemma 1, we know that χi{e} is the cheapest path between s and
ri if all the edge blocks of T other than e are bought by other players, and
similarly for χi{f}. By the same argument as in the previous lemma, we know
that χi{e, f} costs at least as much as the cheapest path between s and ri if all
the edge blocks of T other than e and f are bought by other players. The lemma
holds since ri can find a cheaper path between ri and s if other players buy more
edges.

Lemma 1 and Lemma 2 imply that we will form a 2-approximate Nash equi-
librium if for each receiver ri, we assign at most 2 edge blocks between ri and
s to it. This is due to the fact that if ri is assigned edge blocks e and f, then
|χi{e, f}| ≥ max{|χi{e}| , |χi{f}|} (by Lemma 2), which is exactly the maximum
of the cost of e and f by Lemma 1. Thus, the cost of ri’s best deviation |χi{e, f}|
to its current strategy costs at least half of what ri is currently paying. Since
this is true for every player, this forms a 2-approximate Nash equilibrium. All
that is left to show is that we can form such an assignment.

Recall that there are at most 2n edge blocks of T and we can make an assign-
ment where each receiver is assigned at most 2 edge blocks. However, we cannot
make an arbitrary assignment of edge blocks to receivers, since Lemma 1 and
Lemma 2 hold only if a receiver ri is assigned edge blocks that are between ri
and s. In order to make an assignment with the desired property, we will root
T at s, and loop through the edge blocks of T in the reverse BFS order from
s. For each edge block e in this order, we select an arbitrary receiver ri under
e that is not assigned 2 edge blocks yet, and assign e to ri. It is easy to show
by induction that at the time the algorithm decides the assignment of an edge
block e, there is always a receiver ri that is not assigned 2 edge blocks yet. By
the above argument, this assignment creates a 2-approximate Nash equilibrium
that purchases 1 unit of bandwidth on edges of T , and thus has cost at most
twice that of OPT .

6 Experimental Results

In this section, we experimentally evaluate, using randomly generated networks,
the performance of the algorithm used in the proof of Theorem 2 for the 2-tier net-
work model, and the algorithm used in the proof of Theorem 6 for general undi-
rectednetworks.Experimental studies indicate thatbothof the algorithmsperform
much better than the theoretical guarantees in the corresponding theorems.
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We first present the experimental results for the 2-tier network model. Let β
denotes the ratio of the cost of the Nash equilibrium (as computed by our MST-
based algorithm used in the proof on Theorem 2) to the cost of the socially
optimal solution. Recall that β ≤ 2 by Theorem 2. In the representative results
shown in Table 1, the total number of non-receiver nodes, i.e., the relay nodes
plus the source, is varied from 5 to 25. For each value of the number of nodes,
we compute the maximum and average values of β, namely βavg and βmax,
over 200 random runs (network samples). Edges are drawn between the non-
receiver nodes randomly, in the following manner: the nodes are picked one by
one, and the node picked at any step is connected to each of the nodes already
included (in previous steps) with probability p = 0.5. If the chosen node remains
unconnected at the end of the step, to maintain connectivity, an edge is drawn
between this node and a randomly chosen node that is already included. The
cost of these edges follows a uniform distribution between 1 and 100. Finally
receivers are assigned to the relay nodes randomly, such that each relay node is
associated with at least one user: first we assign one receiver to each relay node,
and then assign the remaining receiver nodes to the relay nodes randomly. The
cost of edges between the receivers and their peers follows a uniform distribution
between 1 and 5. Table 1(a) and (b) shows the results for two different numbers
of (receiver nodes/non-receiver nodes) ratios. From the results, we observe that
β value of the solution computed by our algorithm is very close to 1 on the
average, and less than 1.5 in the worst case.

Table 1. Cost-approximation values for randomly generated 2-tier networks

#non-receivers 5 10 15 20 25

βavg 1.093 1.199 1.201 1.195 1.194

βmax 1.49 1.48 1.37 1.35 1.36

(a) #receiver nodes = 2×#non-receiver

nodes

#non-receivers 5 10 15 20 25

βavg 1.079 1.174 1.162 1.147 1.130

βmax 1.37 1.42 1.34 1.29 1.28

(b) #receiver nodes = 4×#non-receiver

nodes

Next we experimentally evaluate the performance of our algorithm used in the
proof of Theorem 6 for general undirected networks (which buys a primal-dual
approximation of the Steiner Tree), to compute α-approximate Nash equilibria
that attains a cost that is within a factor of β of the cost of OPT . Recall
that both α and β are at most 2 by Theorem 6. Our experimental study on
randomly generated networks show that the observations on β are similar to
those observed for the 2-tier model, so we only show the α values in Table 2. In
these experiments, the total number of nodes (receivers, relays, and the source)
is varied from 20 to 100. For each value of the number of nodes, we compute the
maximum and average values of α, namely αavg and αmax, over 500 random runs
(network samples). Edges are drawn randomly as in the 2-tier model, but across
all nodes instead of only the non-receiver nodes. The cost of these edges follows a
uniform distribution between 1 and 100, as before. From Table 2, we observe that
α value of the solution computed by our algorithm is very close to 1 on average,
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and equals 1 for a large fraction of the networks. Therefore, for general networks,
our algorithm generates a solution that is an exact equilibrium or extremely
close to an equilibrium, and has low cost (typically within 1.5 times the socially
optimal cost). For (receiver/non-receiver) node number ratio of 2 (not shown in
the table), α was observed to be 1 in all 500 runs (network samples). Therefore,
from these results we conclude that a larger (receiver/non-receiver) node number
ratio creates better (smaller) α values.

Table 2. Equilibrium-approximation values for randomly generated general networks

#nodes 20 40 60 80 100

αavg 1.0003 1.0003 1.0002 1.0009 1.0007

αmax 1.1250 1.1429 1.0833 1.2000 1.3333

(a) #receiver nodes = 0.5×#non-receiver

nodes

#nodes 20 40 60 80 100

αavg 1.0000 1.0009 1.0000 1.0000 1.0000

αmax 1.0000 1.1667 1.0000 1.0000 1.0000

(b) #receiver nodes = #non-receiver

nodes
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