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Abstract. This paper analyzes the Paris Metro Pricing (PMP) strat-
egy for differentiating Internet service. PMP has several advantages over
other pricing schemes that guarantee quality of service (QoS) such as
simplicity and less bandwidth overhead. In this paper, we develop a sim-
ple analytical model for PMP. We first assume that there is only one
network service provider (a monopolist) serving N users and model the
user behavior and the provider’s profit. Then we derive the optimal ra-
tio of dividing a given network capacity in order to maximize the profit
of the service provider. Our results show that, by maximizing providers
profit, the subscription is also maximized which can be interpreted as a
higher satisfaction of users compared to that of not using PMP. In ad-
dition, by taking into account various network types, we show that in a
monopoly environment, it is always better to implement PMP regardless
of user populations we considered. We then further extend our model to
a duopoly setting. We found that there exist no Nash equilibrium even
when both providers do not differentiate the network service.

Keywords: Internet services, price discrimination, Paris Metro Pricing,
revenue maximization, user subscription, Nash equilibrium.

1 Introduction

The usage of the Internet was dominated by traditionally ‘typical’ data services
(e.g., e-mail, web browsing, file transfer, etc.). These services do not require
severe bandwidth overhead on the network since the traffic generated by those
applications usually tolerate relatively large packet delays. However, as we clearly
witness these days, new internet applications such as VoIP, IPTV, and many
smart phone applications can be charaterized as delay-constrained (or delay-
sensitive), and thus require higher requirements. In addition, by 2014, mobile
data traffic will double every year through 2014, increasing 39 times between
2009 and 2014, according to Cisco forecast [1]. This increase of diverse quality of
service (QoS) requirements gives the rationale to develop new methods capable
of treating the delay-constrained and non-delay-constrained traffic differently. A
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possible solution is to give priority to the delay-constrained traffic in the queues
of the network [2] but without an appropriate pricing scheme, any prioritization
is useless [3].

In this paper, we study the use of pricing mechanism called Paris Metro
Pricing (PMP) proposed by Odlyzko [4]. Under the PMP scheme, the network
is split into subnetworks. The tariff for each subnetwork is different, expecting a
lower congestion for highly priced networks. This method does not offer any QoS
guarantees, so that it is somewhat weak compared to several other approaches.
However, due to its simplicity, it is, indeed, very attractive to many practitioners.

In this regard, a few papers have examined the PMP scheme for charging
packet networks. In [5], the authors present a mathematical model in which all
packets are generated by the same kind of application and all users have the same
valuation of QoS. Even though they have showed the existence and uniqueness
of the stability using queueing theory, the assumptions seem too strong to have
practical implications. Paper [6] is the closest work to ours in that, based on
their proposed model, they tried to show whether a network service provider (a
single-constrained monopolist) can be profitable using PMP strategy. However,
there are several differences with our study. First, although they modeled the
user’s satisfaction as the utility function they only showed the surplus from
the providers perspective. In addition, the results they showed were merely for
uniform distribution. Most of the papers in which PMP is analyzed take the
uniform distribution of users as one of the assumptions for their model. However,
in [7] the authors pointed out that it is required to assess the importance of those
assumptions. In this spirit, we adopt a basic model from [8] and further extend
it so as to analyze the economic aspects of this pricing scheme and to address
the limitations of the existing papers.

The rest of the paper is organized as follows. In Section 2 we develop a sim-
plified model to reflect both the provider revenue and user behavior. In section
3 we illustrate the impact of PMP on revenue and user subscription with several
user distribution. In the subsequent section we analyze the PMP when two firms
compete for the same set of users (duopoly). Section 5 concludes the paper.

2 System Model

2.1 Single Pricing

In this section, we develop a system model based on [8] with one network which
will be used throughout the paper. Consider a communication system with a
large population of N users each charaterized by a type θ that is an independent
random variable distributed in [0, 1] with f(θ) and F (θ) as its probability density
function and cumulative distribution function respectively. A user of type θ finds
the network connection acceptable if the number of users X using the network
and the price p are such that

X

N
≤ 1− θ and p ≤ θ
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Fig. 1. The two functions y1 and y2 for the illustration of solution x∗(p) of (2)

In this expression, N is the capacity of the network. Due to our analysis
purpose, note that the capacity in the model is different from the conventional
one that uses bps. Also, we will later divide the network into two subnetworks,
each with capacity N/2. The expression interprets that a user with a large value
of θ is willing to pay quite a lot for the connection but he expects a low utilization
(or congestion) for a high quality of service. Conversely, a user with a small value
of θ does not want to pay much for his connection but is willing to tolertate high
delays. For example, we can view the users with large θ as users of VoIP and
those with small θ as web browsers.

Assume that the network connection price is p ∈ (0, 1). If the number of users
in the network at a certain time period is X , then a user of type θ connects if
the inequalities above are satisfied, i.e., if θ ∈ [p, 1−X/N ]. Since θ is distributed
in [0, 1], the probability that a random user connects is [F (1−X/N)− F (p)]+.
Accordingly, the number X of users that connect is binomial with mean N ×
[F (1−X/N)− F (p)]+, so that

X

N
≈

[
F (1− X

N
)− F (p)

]+
(1)

by the law of large numbers, since N is large. By letting x = X/N , (1) can be
expressed as

x = [F (1− x)− F (p)]
+

(2)

Let the left-hand side and the right-hand side of (2) be y1(x) and y2(x) respec-
tively. Then, for a fixed p, the solution of (2) can be illustrated as in Figure 1.

Since y1 is increasing and y2 is non-increasing, with both functions sharing
the same domain of [0, 1], a unique solution x(p) exists. By taking the derivative
of (2) with respect to p we have

dx

dp
= − f(p)

1 + f(1− x)
< 0

which shows that x is a decreasing function of p.
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Now, we solve the provider revenue (R(p)) maximization problem. In other
words, we find the price p that maximizes the product of the number of users of
the network and the price p, that is

p∗ = argmax
p

R(p) = p · x(p) (3)

Since R(p) is a continuous function with R(0) = 0 and R(1) = 0, there exists at
least one solution to the above maximization problem. Generally, it is nontrivial
to find a closed form solution for x(p), hence, for solving (3) a numerical method
is performed. Nevertheless, to illustrate, we show a simple example when θ is
uniformly distributed in [0, 1]. Equation (1), then, reduces to

X

N
≈

(
1− X

N
− p

)+

Solving this expression we find that x := X/N = (1 − p)/2. The operator can
maximize his revenues by choosing the value of p that maximizes px = p(1−p)/2.
The maximizing price is p = 1/2 and the corresponding value of px is 1/8, which
measures the revenue divided by N1.

2.2 Differentiated Pricing

Consider now a situation where Paris Metro Pricing is applied. The network
service provider divides the network into two subnetworks, each with different
capacity. That is, there exist two networks: network 1 with price p1 and capacity
Nα1 and network 2 with price p2 and capacity Nα2 (where α1 + α2 = 1).
Without loss of generality, we assume p1 > p2. The users will select one of the
two networks, based on the prices and utilizations. A user joins if there is an
acceptable network and he chooses the cheapest network if both are acceptable.
Moreover, if both networks are acceptable and, by any chance, have the same
price, a user will join the one with the smallest utilization because it offers a
marginally better QoS.

If the number of users in the two networks are X1 and X2 respectively, then a
user of type θ chooses network 2 if X2/(Nα2) ≤ 1−θ and p2 ≤ θ. The probability
that θ falls between p2 and 1−X2/(Nα2) is then[

F (1− X2

Nα2
)− F (p2)

]+

Then, x2 := X2/N is given by

x2 =

[
F (1− x2

α2
)− F (p2)

]+

1 For merely flat pricing, due to its simplicity, we were able to get results from curvi-
linear distributions (beta distribution). The pdf of the beta distribution is defined
as f(x, α, β) = xα−1(1 − x)β−1/

∫ 1

0
uα−1(1 − u)β−1 du and the results (maximum

revenue) for some instances are as follows: 0.1045 (α = 0.5, β = 0.5), 0.1176 (α = 2,
β = 5), 0.1620 (α = 5, β = 2), 0.1488 (α = 2, β = 2), and 0.1610 (α = 3, β = 3).
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A user will opt for network 1 if X1/(Nα1) ≤ 1−θ, p1 ≤ θ and X2/(Nα2) > 1−θ.
Thus, we find that x1 := X1/N is such that

x1 =

[
F (1− x1

α1
)− F (max{p1, 1− x2

α2
})
]+

To determine the prices p1 and p2 that maximize the revenue of the operator,
one needs to maximize the total revenue R obtained by both two subnetworks
over p1 and p2, mathematically it is equivalent to solving the following problem

R = max
p1,p2

p1x1 + p2x2

By solving the problem when the network capacity is divided exactly half (again
with uniform distribution of θ), one can show that the maximum occurs for
p1 = 8/13 and p2 = 11/26 and that the maximum revenue equals to 25/156.
Eventually, we may conclude that the service differentiation with Paris Metro
Pricing increases the revenue from 1/8 to 25/156, or by 28.2%. This can be one
good rationale to use PMP instead of not using it. In this regard, we show, from
another perspective, that it is recommended to use PMP. The provider who is
willing to use PMP will want to know how much additional capacity is needed
(without using PMP) in order to have as much as revenue obtained from using
PMP (In this analysis we assume that the cost of increasing the network capacity
is considerable).

Proposition 1. PMP gives an increase in revenue by 28.2% which is equivalent
to the amount when using only one network (and not using PMP) and increasing
the network capacity by 78.6% given the original capacity N

Proof. Let the increased capacity be N(1 + β). Considering the new increased
capacity gives

X

N
≈

(
1− X

N(1 + β)
− p

)+

solving for x, we have

x =
1 + β

2 + β
(1 − p)

then solving the optimization problem (3), we have the optimal revenue with
extended capacity as Rext. By equating this with the optimal revenue obtained
by PMP, Rpmp gives corresponding β as

Rext =
1

4

(
1 + β

2 + β

)
=

25

156
= Rpmp

β =
44

56
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3 Impact of PMP on Revenue and User Subscription

Since we have seen the price that maximizes the provider’s revenue and its
corresponding revenue with θ following uniform distribution, we will now see
how these values as well as the fraction of users joining the network change with
more general cdfs of θ. The rationale behind this is that uniform distribution
alone cannot represent various type of user population. For instance, there might
be a community of users in which the majorities use real-time services. On the
other hand, one user group might consist of majority of people requiring non-
delay-constrained services (e.g., email). Therefore, we need to represent these
typical user distributions and incorporate them in the study of analyzing the
impact of PMP.

In this regard, we define three additional probability distributions (f1, f3 and
f4) that capture three typical user distributions as follows (figure 2):

fi(θ) =

⎧⎨
⎩

2− 2θ if i = 1
1 if i = 2
2θ if i = 3

where θ ∈ [0, 1] for all three distributions. Also,

f4(θ) =

{
4θ if 0 ≤ θ ≤ 1

2
4− 4θ if 1

2 < θ ≤ 1

The first pdf (f1) comes from a general concave cdf of θ and stands for a network
consisting of high population of users generating non-delay-constrained traffic .
The second function comes from a general linear cdf of θ and exactly corresponds
to the uniform distribution and represents a well balanced network of users. The
third one (f3) is a pdf that represents a convex cumulative distribution function
indicating the networks where the majority of users require high QoS levels. The
last one (f4) is a pdf of a ‘S-shaped’ cdf and designates a network with majority of
users requiring intermediate QoS levels. We will denote the network environment
for each user population type as NT1, NT2, NT3, and NT4 henceforth.

To see whether PMP actually gives benefits to both providers and users we,
first, have to check whether it is always better irrespective of network environ-
ment. Secondly, even though this is true, we also have to check whether the
average surplus of using PMP over every network environment is better than
the value when it is not used. This comes from the fact that the type of user
population will change over time since users consisting the network will require
different service types at different time segment of interest. In light of this, we
derive the maximum revenue and the corresponding user participation for each
of the four user distributions. We will denote R̂1

max, R̂
2
max, R̂

3
max and R̂4

max, and
α̂1
2, α̂

2
2, α̂

3
2 and α̂4

2 as the maximum revenues and their corresponding α2 values
achieved by using PMP scheme for the distributions f1, f2, f3 and f4

3.1 Uniform Distribution

For the uniform distribution, we could express R̂2
max, p1, p2, x1, and x2 with

respect to just one variable α2 after some manipulation. Each of these values
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Fig. 2. The pdfs of θ representing each different network environment

are illustrated in Figure 3 and we find that the maximum revenue as well as the
corresponding α2 is as follows:

R̂2
max = 0.1608 , α̂2

2 = 0.43

In this example, the revenue increases by 28.6% compared to flat pricing. We
could notice, from this analysis, that α2 which maximizes revenue is in fact
slightly less than 0.5. This tells us that when using two subnetworks to apply
PMP, dividing it exactly half may not be the best choice for the network service
provider. Also, since the range of α2 that results in the revenue within 90% of
the maximum value covers about 68% (≥ 50%) of its whole interval, we could
say that the revenue is not that sensitive to the ratio of dividing a network.

Figure 3c shows how the network utilization changes as α2 increases. As you
see from the figure, the total network utilization (denoted as subscription f2 in
Fig. 3c) is at maximum when α2 = 0.43. This is the exact α2 value that max-
imizes the total revenue. This implies that, when the network service provider
maximizes his own profit, the network utilization is also maximized which is
naturally true since the more users join the network the more revenue can be
achieved (however, this does not imply that those two values have to be exactly
the same, instead it means they will tend to have similar values). Moreover, it
is easy to see from Figure 1c that whatever the value of α2 is, PMP strategy
always results in higher utilization than not performing it.

Non-uniform Distributions. In effect, if the user population is not repre-
sented by a uniform distribution, it is difficult to derive the maximum revenue
of the service provider when PMP is used. This is due to the fact that it involves
a maximization problem over three variables of α2, p1, and p2. The results for
the three non-uniform user distributions is illustrated in figure 3 and we find the
maximum revenues and corresponding α2 values as follows (for the derivation of
all the values for uniform and non-uniform distributions see [9]):

R̂1
max = 0.1512, α̂1

2 = 0.45
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(a) (b)

(c)

Fig. 3. Numerical results for the three non-uniform distribution cases (including that
of uniform distribution) : (a) Revenues with respect to α2 for each user distribution,
(b) Prices with respect to α2 for each user distribution, (c) User participation with
respect to α2 for each user distribution

R̂3
max = 0.1713, α̂3

2 = 0.45

R̂4
max = 0.1908, α̂4

2 = 0.50

From the previous section we have seen that when the network consists of a well-
balanced users, the capacity ratio between two subnetworks is not that sensitive
as long as it is close enough to the optimal ratio. We, now, try to see whether this
is also true for the rest of the three network types. The sensitivity of the total
revenue with respect to α2 can be derived from the R-α2 plots for each of the
three non-uniform distributions (Figure 3a). That is, we would like to see how
the revenue changes when the ratio of the capacities between two subnetwork is
slightly altered from the optimal value (α∗

2). From Figure 3 we could see that
the range of α2 that produces the revenue within 90% of maximum value spans
65%, 74%, and 77% of its overall interval for NT1, NT3 and NT4 respectively.
Thus, with the sensitivity of NT2 we could say that the revenue achieved in the
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(a) Maximum revenue

(b) User subscription

Fig. 4. Maximum revenues and user subscription for each user distribution

environment NT1 is relatively sensitive to the ratios of its subnetwork capacity
which should be considered for a provider when its servicing environment is of
NT1 most of the time. However, in general (and on average), determining the
proportion of the subnetworks is not that critical.

Comparing with the maximum revenues when PMP is not used, we eventually
see that no matter what type of user population may be, using PMP always pro-
duces a higher revenue for the network service providers (Figure 4a). Similarly,
PMP scheme is always favored by network users, regardless of the characteristics
of user groups as shown in Figure 4b. The users’ satisfaction is measured by the
number of users who join the network (user participation) because, based on our
system model, only the satisfied users receive the network services. In summary,
the average values of 4 network environment between using PMP and not using
PMP clearly show that PMP is, indeed, a superior pricing scheme in terms of
both the revenue and network utilization (user participation).
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Observation 1. In a network where only one network service provider (a mo-
nopolist) provides internet service, it is always better for the provider to use Paris
Metro Pricing scheme than to just provide a general service with flat pricing. In
addition, PMP scheme is always favored by the users consisting the network.

Observation 2. For a network service provider to achieve the maximum rev-
enue, determining the fraction of the capacity of the subnetworks is less critical
for all of the network environment.

4 Competition: Duopoly

In previous sections, we have noticed that a single network service provider (a
monopolist) will have an advantage for using PMP scheme. Then one might ask,
“what happens when there are two network service providers? Does the Nash
equilibrium even exist for the duopoly case?” In this section, we try to answer
this question by modeling the situation using game theory.

4.1 Three Prices

We first analyze the situation where there are two service providers with only
one using PMP. That is, one ISP (firm A) provides the service with a single
price pa and the other ISP (firm B) uses PMP with the lower price pb1 and the
higher price pb2. Both the competing firms have equal capacity where firm B
splits the two subnetworks exactly half. Then, with this situation, there are 5
possible cases as follows:

1. pa < pb1 < pb2
2. pb1 < pa < pb2
3. pb1 < pb2 < pa
4. pa = pb1 < pb2
5. pb1 < pa = pb2

Let RA and RB be the revenue (function) of the two firms respectively. From
the similar derivation as in section 2 we can obtain the revenue functions of both
firms for each of the 5 cases as follows:

1. RA = 2
3 (pa − p2a),

RB = pb1min(1−pb1

2 , 1−pa

6 ) + pb2min(1−pb2

2 , 1
2min(1−pb1

2 , 1−pa

6 ))

2. RA = pa
2
3min(1− pa,

1−pb1

2 ),

RB = pb1(1−pb1)
2 + pb2

1
2min(1− pb2,

2
3min(1 − pa,

1−pb1

2 ))

3. RA = pa
2
3min(1− pa,

1
2min(1− pb2,

1−pb1

2 )),

RB = pb1(1−pb1)
2 + pb2

1
2min(1− pb2,

1−pb1

2 )
4. RA = 1

2 (pa − p2a),

RB = pb1(1−pb1)
4 + pb2

1
2min(1− pb2,

3(1−pb1)
4 )
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5. RA = pa
1
2min(1− pa,

1−pb1

2 ),

RB = pb1(1−pb1)
2 + pb2

1
4min(1− pb2,

1−pb1

2 )

Let R∗
A and R∗

B be the optimal revenue for each firm and p∗a, p∗b1, and p∗b2 be the
corresponding prices. Then the values for each of the 5 cases are summarized in
table 1.

Based on the results, we try to find the Nash equilibrium price vector
(p̄a, p̄b1, p̄b2) such that

RA(p̄a, p̄b1, p̄b2) ≥ RA(pa, p̄b1, p̄b2) ∀pa
and

RB(p̄a, p̄b1, p̄b2) ≥ RB(p̄a, pb1, pb2) ∀pb1, pb2
However, one can verify that there are no such vector and conclude that there
exist no Nash equilibrium with three prices case.

Table 1. Optimal revenues and prices for firms A and B (three prices)

Case p∗a p∗b1 p∗b2 R∗
A R∗

B

1) 1/2 5/6 11/12 0.167 0.108
2) 3/4 1/2 5/6 0.125 0.194
3) 17/20 2/5 7/10 0.085 0.225
4) 1/2 1/2 5/8 0.125 0.180
5) 3/4 1/2 3/4 0.090 0.172

Table 2. User subscription for firms A and B (three prices)

Case x∗
a x∗

b1 x∗
b2

1) 1/3 1/12 1/24
2) 1/6 1/4 1/12
3) 1/10 3/10 3/20
4) 3/8 3/8 3/16
5) 3/16 1/4 3/16

4.2 Four Prices

We now consider the situation where the two firms both go for PMP scheme.
In other words, firm A provides a differentiated service with two prices pa1 and
pa2(> pa1) and, similarly, firm B divides the network into two subnetworks with
prices pb1 and pb2(> pb1). Now, due to the symmetry, we need only consider 6
cases which are

1. pb1 < pb2 < pa1 < pa2
2. pb1 < pa1 < pb2 < pa2
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3. pa1 < pb1 < pb2 < pa2
4. pb1 = pa1 < pb2 < pa2
5. pb1 < pa1 < pb2 = pa2
6. pb1 = pa1 < pb2 = pa2

And one can find the revenue functions of both firms for the three cases as
follows:

1. RA = pa2
1
2min(1− pa2, xa1) + pa1min(1−pa1

2 , 1−pb2

4 )

RB = pb2
1−pb2

2 + pb1
1−pb1

2

2. RA = pa2
1
2min(1− pa2, xb2) + pa1min(1−pa1

2 , x4

2 )

RB = pb2
1
2min(1 − pb2, x2) + pb1

1−pb1

2

3. RA = pa2
1
2min(1− pa2, xb2) + pa1

1−pa1

2
RB = pb2

1
2min(1 − pb2, xb1) + pb1

1
2min(1− pb1, xa1)

4. RA = pa2
1
2min(1− pa2, xb2) + pa1(

1−pa1

3 )

RB = pb2
1
2min(1 − pb2, xb1) + pb1

1−pb1

3

5. RA = pa2
1
3min(1− pa2, xa1) + pa1min(1−pa1

2 , x4

2 )

RB = pb2
1
3min(1 − pb2, x2) + pb1

1−pb1

2

6. RA = pa2
1
3min(1− pa2, xa1) + pa1(

1−pa1

3 )

RB = pb2
1
3min(1 − pb2, xb1) + pb1

1−pb1

3

where xa2, xa1, xb2, and xb1 are the number of users in the networks in which
the prices are pa2, pa1, pb2, and pb1 divided by the capacity respectively and are
as follows:

xb1 =
1

2
(1− pb1), xb2 = min(

1− pb2
2

,
xb1

2
)

xa1 = min(
1− pa1

2
,
xb2

2
), xa2 = min(

1 − pa2
2

,
xa1

2
)

For each of the three cases, the optimal revenues (R∗
A, R

∗
B ) and corresponding

prices (p∗a2, p
∗
a1, p

∗
b2, p

∗
b1) are shown in table 3.

Table 3. Optimal revenues and prices for firms A and B (four prices)

Case p∗a2 p∗a1 p∗b2 p∗b1 R∗
A R∗

B

1) 0.93 0.86 0.7 0.4 0.0927 0.225
2) 0.93 0.75 0.88 0.5 0.1217 0.1778
3) 0.94 0.5 0.88 0.76 0.1532 0.144
4) 0.84 0.5 0.67 0.5 0.1505 0.1943
5) 0.86 0.7 0.86 0.4 0.1453 0.2007
6) 0.67 0.5 0.67 0.5 0.1578 0.1578

Similar to the three prices case, we observe that there are no Nash equilibrium
price vector for this case. Thus, in the duopoly model, we conclude that there
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Table 4. User subscription for firms A and B (four prices)

Case x∗
a2 x∗

a1 x∗
b2 x∗

b1

1) 7/200 7/100 3/20 3/10
2) 3/100 1/8 3/50 1/4
3) 3/100 1/4 3/50 3/25
4) 1/12 1/3 1/6 1/3
5) 1/10 3/20 1/10 3/10
6) 2/9 1/3 2/9 1/3

are no equilibria based on the solution concept of Nash equilibrium when both
firms use PMP2. Moreover, it is interesting to notice that even when both firms
decide to provide services with single pricing there are no Nash equilibria [8].

4.3 Discussion

It is also interesting to notice that the result is model-dependent. In a related
literature, Gibbens et al. [7] showed that if there are more than one firm (in the
market) then they do not differentiate their networks in equilibrium. That is,
in a duopoly setting, the result which states that there is no equilibrium with
PMP is same as ours but the fact that there is indeed an equilibrium with single
prices is different.

The nonexistence of equilibria does not mean that there is no incentive to
differentiate the prices in the real-world duopoly setting3. For instance, assume
there are two providers each dividing the market share equally with single prices.
If firm A’s price (pA) is lower than firm B’s price (pB), clearly, firm A will increase
its profit by introducing another price, say pA2, around pB to take away some of
firm B’s market share. On the other hand, firm B will introduce a lower price,
say pB2, around pA to maximize its profit. Therefore, in reality, we might observe
the situation where there are 2 providers each with 2 prices.

5 Conclusion

In this paper, we developed a model for Paris Metro Pricing strategy and demon-
strated the profit incentive for a NSP to use PMP in a variety of scenarios. In
particular, we analyzed the consumer behavior under PMP by allowing the model
to define each users’ condition which, when satisfied, they opt for joining the net-
work. We evaluated the revenue of using PMP when there is a single provider (a
monopolist) and determined the optimal fraction of the two subnetworks to be
divided in order to maximize the profit. We have seen that using PMP, indeed,

2 We have analyzed the cases with the concept of ε-equilibrium as well but the result
did not change.

3 Here we assume that, in the real world, ISPs cannot change its level of service price
freely over time due to political and social reasons.
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increases both the revenue and subscription. Also, we have looked at a competi-
tion setting where two NSPs provide PMP. As it turned out, we noticed that in
a duopoly case there exist no (pure) Nash equilibrium even when the duopolists
go for single pricing. As directions for future research, we wish to investigate
more deeply the duopoly case where providers are capable to differentiate their
services other than just PMP scheme.
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