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Abstract. In this paper we quantify the total cost of an epidemic spread-
ing through a social network, accounting for both the immunization and
disease costs. Previous research has typically focused on determining the
optimal strategy to limit the lifetime of a disease, without considering the
cost of such strategies. In the large graph limit, we calculate the exact ex-
pected disease cost for a general random graph, and we illustrate it for the
specific example of an Erdös-Rényi network. We also give an upper bound
on the expected disease cost for finite-size graphs, and show through simu-
lation that the upper bound is tight for Erdös-Rényi networks and graphs
with exponential degree distributions. Finally, we study how to optimally
perform a one-shot immunization to minimize the social cost of a disease,
including both the cost of the disease and the cost of immunization.

Keywords: Epidemic, immunization, information cascade, random ma-
trix theory, generalized random graphs.

1 Introduction

The spread of epidemics over networks has been extensively studied since the
Kermack-McKendrick SIR (Susceptible-Infectious-Recovered) model was pro-
posed in 1927 [15]. Though initially the study of epidemics in networks was
primarily motivated by the spread of disease, the results have had far reaching
applications: the insights learned apply to many other settings where something
is spreading over a network. For example, applications such as (i) network secu-
rity, where the goal is to understand and limit the spread of computer viruses [7],
[28], [10] (ii) viral advertising, where the goal is to create an epidemic to prop-
agate interest in a product [24], [25], and (iii) information propagation, where
the goal is to understand how quickly new ideas propagate through a network
[12], [14], [5]. See [13] and [11] for comprehensive surveys of prior results. Note
that in this paper we use the language of epidemiology, however the results and
techniques can easily be seen to hold more broadly.

Typically, work in this area has focused on understanding two broad questions:
First, what is the lifetime of an epidemic, and how does it depend on the structure
of the network? Second, what is the optimal strategy to minimize/maximize
the spread of the epidemic? The first type of research looks to determine the
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“epidemic threshold” – the infection probability below which the disease will
eventually die out. In [6] and [29], the authors show that this epidemic threshold
depends on the largest eigenvalue of the adjacency matrix of the network graph,
generalizing earlier results. In a series of papers, [20], [21], [2], [1], the authors
show the absence of such an epidemic threshold in the presence of scale-free
networks; the disease will not die out if it is even the smallest bit infectious. In
the second branch of the research on modeling epidemics, the authors focus on
ways to minimize or maximize the spread of an epidemic by targeting specific
nodes. In [6], the authors use their eigenvalue model to predict which nodes are
the best to immunize; in [23], the authors use similar methods to evaluate various
immunization strategies and determine which is optimal. In contrast, [7] and
[18] focus on real-world immunization strategies, where determining the optimal
nodes to immunize might not be practical; they conclude that a good solution is
to target various types of high-degree nodes. [22] comes to a similar conclusion
in the case of scale-free networks. [17] proposes a static bond-percolation model
for studying the classic SIR model and evaluates various immunization strategies
within this model.

In this paper, we take a different, non-standard goal: instead of focusing on
the spread of an epidemic, we focus on the “social cost” of an epidemic. This
shift in focus is motivated by a growing trend in the medical community to
quantify the cost of an epidemic by looking at the direct and indirect medical
costs to both the hospitals and doctors treating and immunizing a population,
as well as the cost to individuals in the population paying for medical care. See
[4] and [26] for two examples of such studies. It is not just within the medical
community that a focus on cost of epidemics is emerging. For example, within
the computer science community [8] has recently studied the social cost of an
epidemic, although in a very different model than studied in the current paper.
In particular, their model assumes a single infected node and determines the
maximum infection (reach) from that node. Note that looking at social cost is
in general more difficult than studying the lifetime or spread of an epidemic, as
it involves the transient, not just long-term, behavior of a disease.

To study the social cost of epidemics, we use a general random graph model,
which can incorporate graphs with arbitrary degree distributions. The model
generalizes the configuration model [19], and the details are provided in Section
2. To model the spread of an epidemic we use a standard model of, e.g., [29], [6],
and [23], which is an approximation of the SIS model.

Within this context, the main contribution of the paper is the derivation of
(i) the exact cost of an epidemic in the large graph limit (Theorem 1) and (ii)
bounds on the cost of an epidemic for finite graphs (Theorem 3). To illustrate
these results, we look at an Erdös-Rényi network and graphs with an exponential
degree distribution.

To illustrate the usefulness of the cost calculations just described, we study
immunization strategies for balancing the cost of disease with the cost of immu-
nization in Section 4. In particular, we derive the optimal immunization strategy
in a simple one-shot setting where immunization happens only at time zero. Our
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results allow the study of both random and degree-based immunization strate-
gies. In this context, we derive the optimal immunization strategy in the large
graph limit, and illustrate using simulations that it still provides a near-optimal
choice for finite graphs.

2 Model Description

In this section we introduce the network model and epidemic spread model
studied in this paper.

Network model. Let there be n nodes in the population, and let A be an n× n
adjacency matrix corresponding to the network. We consider only undirected
graphs. We assume that the network is drawn from a general class of random
graphs, G. For example, the network represented by A could be a realization of
an Erdös-Rényi random graph, Gn,p, which would correspond to allowing each
edge to exist independently with probability p.

We focus on a class of random graphs, which is related to the ‘configuration’
model [19] and the, so-called, ‘general random graph’ model [9], but which is
slightly more general than each.

The construction of the graph works as follows. First, define a degree distri-
bution p(w), and obtain n i.i.d. samples w = (w1, . . . , wn). From this vector,
generate a random graph given by the adjacency matrix:

Aij = Aji =

{
1 w.p. wiwjρ

0 w.p. 1− wiwjρ
where ρ =

1∑
iwi

. (1)

Note that the expected degree of node i is
∑

j wiwjρ = wi. Since this model is
fully determined by one degree distribution p(w), for ease of reference, we call
it Gn,p(w).

To generate the Erdös-Rényi random graph, Gn,p, we would need w =
(np, np, . . . , np). With this notation, we have Gn,p = Gn,δ(w−np), where δ(·)
is the Dirac δ-function.

The advantage of this model is that it can generate a random graph with a
specified degree distribution, allowing us to examine very general random graph
models. To relate this model to the configuration model [19] and the general
random graph model [9], note that in the case of the configuration model the
degree sequence is enforced deterministically and that in the general random
graph model the expected degree sequence is fixed rather than the distribution.

Epidemic model. To model an epidemic, we consider an initial set of seed nodes
that are infected at time t = 0 and then we consider a discrete-time evolution as
follows. At t = 0, αn nodes are uniformly at random chosen to be infected. Then,
the infection spreads according to the following, standard SIS-inspired model.
Define, P (t) a vector where the ith entry is the the probability that node i is
infected at time step t. Then the evolution proceeds according to

P (t+ 1) = MP (t) (2)
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where M = (1 − γ)I + βA is termed the ‘system matrix’, γ is the probability
that a node which is infected recovers in within the current time-step, and β is
the infection rate, i.e., if a node has k infected neighbors then the probability it
is infected in the current time-step is βk + o(k).

This model is an approximation of the SIS (Susceptible-Infected-Susceptible)
model where each node gets infected/infectious and then recovers to become
susceptible to the disease again, using the approximation and independence as-
sumptions made in [29], [6] and [23]. We give a more detailed analysis of the
approximations inherent in this model in the extended version of this paper [3].

3 Cost of Disease

The primary goal of this paper is to derive an expression for the cost of an
epidemic. Thus, we first need to model the cost of a disease. To do this, we assume
a simple model where, cd, is defined as the cost of an individual being infected
during a time-step. Thus, cd captures both the direct costs to the individual for
medication, doctor visits, etc., as well as secondary costs such as missed work.
We note that this model leaves open the question of how exactly to determine
the parameter cd. This is ongoing work in the medical community; see [4] and
[26] for example studies in this area. In future work, we look to incorporate these
results into determining the per-time cost of disease, but for the purposes of this
paper, we leave it a general parameter of the model.

Given this model for the cost of disease to an individual, we can begin to
calculate the cost of an epidemic. Define CD, the ‘disease cost’, as the expected
(averaged over the random spread) per node disease cost of an epidemic during
its entire course when a fraction α < 1 of the nodes are infected at time t = 0.
Note that the expected per node disease cost in a given time-step t is simply
1TP (t)

n . Furthermore, since P (0) = α1 and P (t) = M t−1P (0), we can express
the disease cost per node as

CD =
1

n

[
1T

( ∞∑
t=0

M t

)
1αcd

]
. (3)

When the infinite sum converges, i.e., when ||M || < 1, we have

CD =
1

n
αcd ·

[
1T (I −M)−11

]
. (4)

We emphasize that, when the underlying graph is drawn randomly from Gn,p(w),
say, the above CD is a random variable.

The remainder of this section focuses on understanding (4). Though we can-
not explicitly calculate it in all settings, it turns out that when n → ∞ it con-
verges almost surely to a deterministic constant which we can explicitly compute.
Throughout, we use the Erdös-Rényi network as an illustrative example.
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3.1 Exact Disease Cost for Large n

We first state a result for general random graphs.

Theorem 1. For Gn,p(w) where p(w) has finite variance and M is almost surely
stable

lim
n→∞CD(n) = αcd

(
1 + F 2

γ
− F 2

γ − β − β
√〈w〉/F

)
a.s.

F =

∫ ∞

1

wp(w)dw

γ
√〈w〉/β − Fw

and 〈w〉 =
∫ ∞

1

wp(w)dw

We omit the proof for brevity; see the extended version of this paper, [3], for
details. However, in order to demonstrate the idea of the above proof, we show
the calculation of the expected per node disease cost for the case of an Erdös-
Rényi network, where p(w) = δ(w − np). The proof for the general model is
parallel but requires more detailed technical arguments.

Theorem 2. For Gn,δ(w−np) with γ > βnp, M is a.s. stable and

lim
n→∞CD(n) =

αcd

β
√〈w〉

(
F

1−√〈w〉F

)
a.s.

where F =
γ −√γ2 − 4β2〈w〉

2β
√〈w〉 and 〈w〉 = np.

Proof. We can write the system matrix M as

M = (1− γ)I + βA = (1− γ − βp)I + β (A− p11T + pI)︸ ︷︷ ︸
=G

+βp11T

= (1− γ)I + βG+ βp11T .

Note that G is a zero-mean matrix with i.i.d. lower triangular entries (taking
the values −p with probability 1−p and the value 1−p with probability p). The
variance of the entries of G are

eG2
ij = p2(1− p) + (1− p)2p = p− p2 (5)

Using the Matrix Inversion Lemma, we have

1T (I −M)−11 = 1T

⎛
⎜⎝(γ + βp)I − βG︸ ︷︷ ︸

=B

−βp11T

⎞
⎟⎠

−1

1 = 1TB−11− 1TB−111TB−11

− 1
βp

+ 1TB−11
.

Let

s =
1

n
1TB−11 =

1

n
1T ((γ + βp)I − βG)

−1
1,
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then

CD(n) =
αcd
n

[
1T (I −M)−11

]
=

(
αcds

1− βpns

)
and

lim
n→∞CD(n) = lim

n→∞

(
αcds

1− βpns

)
. (6)

Let H = 1√
(p−p2)n

G. Then H is a symmetric matrix whose lower triangular

entries are i.i.d. random variables with zero-mean and 1
n variance. Such a random

matrix is called a Wigner matrix. We use the following Lemma to finish the
calculation. ��
Lemma 1. Let H be a symmetric n× n random matrix whose lower triangular
entries are i.i.d. random variable with zero-mean and 1

n variance. Then

lim
n→∞

1

n
1T (xI −H)−11 = lim

n→∞ e
1

n
tr(xI −H)−1a.s.

=

{
x−√

x2−4
2 , |x| ≥ 2

∞, otherwise

We remark that the complex function limn→∞ e 1
n tr(zI −H)−1 = e 1

z−λ is often
called the Stieltjes transform of the random matrix H (or of its eigenvalue dis-
tribution). For a more detailed introduction to random matrices and Stieltjes
transform, we refer the reader to [27]. It remains to calculate s.

lim
n→∞ s = lim

n→∞
1

n
1T ((γ + βp)I − βG)

−1
1

= lim
n→∞

1

β
√
(p− p2)n3

⎛
⎝1T

(
γ + βp

β
√
(p− p2)n

I −H

)−1

1

⎞
⎠

Using Lemma 1, we get

lim
n→∞ s = lim

n→∞

γ+βp

β
√

(p−p2)n
−
√

(γ+βp)2

β2(p−p2)n − 4

2β
√
(p− p2)n

= lim
n→∞

γ + βp−√(γ + βp)2 − 4β2(p− p2)n

2β2(p− p2)n
. (7)

Since M is stable a.s., γ > βnp. Continuing from (7) and removing o(n) and
o(p) terms, we get

lim
n→∞ s =

γ −√γ2 − 4β2〈w〉
2β2〈w〉 =

F

β
√〈w〉 a.s. (8)

where 〈w〉 = np and finally

lim
n→∞CD(n) = lim

n→∞

(
αcds

1− βpns

)
=

αcd

β
√〈w〉

(
F

1−√〈w〉F

)
a.s. (9)

��
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3.2 Bounds for General n

The prior section provided exact calculation of the disease cost in the case of
large n. We now provide bounds for finite n. Note that these bounds hold for all
graphs, not only the random graphs described in Section 2.

Theorem 3. For a graph with stable system matrix M , the cost of disease per
node satisfies

CD ≤ αcd
1− λmax(M)

(10)

Proof. From Perron-Frobenius theorem, it follows that

−1 < −λmax(M) ≤ λmin(M) ≤ λmax(M) = |λmax(M)| < 1 (11)

Note that (I−M)−1 is a positive definite matrix since all eigenvalues are positive.
From (11), we have

1

1− λ(M)
≤ 1

1− λmax(M)

and

1T (I −M)−11 ≤ 1T
(

I

1− λmax(M)

)
1 (12)

This follows from the fact that if A and B are positive definite matrices with
eigenvalues λA ≤ λB for all eigenvalues λA and λB, then xTAx ≤ xTBx. The
bound follows. ��
We note that the necessary and sufficient condition required for the disease
to die out and the social cost to converge are the same, i.e., λmax(M) < 1.
Also, the bound only depends on λmax(M) from the disease propagation model,
which is popularly known as the disease threshold. It is interesting that the same
parameter of the disease plays the central role in both tapering off the disease
and its total cost.

Comparison of Theorem 1 and Theorem 3
Theorem 1 involves the entire eigen-distribution of M , whereas Theorem 3 is
dependent only on the maximum eigenvalue of M . We show here, through simu-
lation, that in the case of an exponential p(w) and for an Erdös-Rényi network,
the upper bound in Theorem 3 is rather tight.

Define p(w) = λe−λw ; i.e., p(w) is exponentially distributed with parameter
λ. According to Theorem 1, the cost of the disease in the limit of large n will be

lim
n→∞CD(n) = αcd

⎛
⎝1 + F 2

γ
− F 2

γ − β − β
F

√
1
λ

⎞
⎠

where

F =

∫ ∞

1

wλe−λwdw

γ
β

√
1
λ − Fw

,



Minimizing the Social Cost of an Epidemic 601

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

λ

C
d
(n

)

 

 

Empirical
Theorem 1
Theorem 3

(a) Exponential p(w)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

p

C
d
(n

)

 

 

Empirical
Theorem 1
Theorem 3

(b) Erdös-Rényi

Fig. 1. Comparison of Theorem 1 and Theorem 3

as 〈w〉 = 1/λ. Using the parameters n = 1000, α = 0.2, β = 0.002, γ = 0.5, and
cd = 10, we solve for F numerically and show the cost of the disease in the limit
of large n as a function of the graph parameter λ in Figure 1a. We also plot the
upper bound from Theorem 3 for comparison. The maximum eigenvalue for each
λ was calculated as the average maximum eigenvalue of 10 realizations of M .

Now let p(w) = δ(w−np), for an Erdös-Rényi network. Using the parameters
n = 1000, α = 0.2, β = 0.008, γ = 0.6, and cd = 10, we calculate F and Cd(n)
according to Theorem 2 and plot the result as a function of the graph parameter
p in Figure 1b. Again, we also plot the upper bound from Theorem 3 for com-
parison. We note that for any probability p(n), λmax = (1+O(1))max (

√
Δ,np),

where Δ denotes the maximum degree, almost surely [9], [16].
Note that the upper bound is tight, regardless of the parameter λ or p, in-

dicating that only the maximum eigenvalue of M , rather than the entire eigen-
distribution, plays the central role in determining the cost of the disease.
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4 Minimizing Social Cost with Immunization

The key impact of the cost calculations in Section 3 is to allow decisions that
trade off immunization costs with disease cost. To illustrate this, in this section
we study a simple example of such an optimization.

We define the “social cost” of an epidemic as the sum of the disease cost
and the immunization cost. For simplicity, we assume that immunization or
vaccination will occur at t = 0 and any immunized node will remain immune
for all time, thus incurring a single immunization cost. This cost could represent
the cost of a vaccine to an individual or the cost of quarantining. If the node is
infected in the starting state and is selected to be immunized, it is quarantined.
If it is susceptible, it is vaccinated. We assume that the cost of quarantining and
the cost of vaccinating are the same, cv.

We can incorporate the immunization process into the random graph model
itself. Recall the original graph generation model, where the distribution p(w) is
sampled n times to create the degree vector w. Let us first consider a randomized
immunization procedure where πn nodes are chosen uniformly at random for
immunization. Then, the random graph is formed by sampling p(w) only for the
nodes that remain after the immunization. The nodes that are immunized are
simply removed from the adjacency matrix A describing the network and the
system matrix M , yielding M̃ and Ã. Using this procedure gives e[dim M̃ ] =
(1−π)n := ñ. For a degree-based immunization scheme, we can simply truncate
the degree distribution and sample as before.

In general, any one-shot immunization scheme simply results in a transforma-
tion of p(w) and the social cost calculations in Section 3 still apply. For simplicity,
in this paper, we focus on the case of random immunization of a fraction π of
the nodes. The question is how to optimally choose π.

4.1 Social Cost Calculation

To determine the optimal immunization probability, we first need to incorporate
the cost of vaccination into the calculations from Section 3. Define the per node
social cost for a particular graph as:

S(M, M̃) =
1

n

[
(dimM − dim M̃)cv +

(
1T (I − M̃)−11

)
αcd

]
(13)

Considering a random immunization on a class of graphs G, we define the ex-
pected social cost SG(π) as a function of the fraction π of nodes removed as
follows:

SG(π) = πcv + (1− π)CD (n(1− π)) (14)

Thus, applying the results from Section 3, we obtain results for SG(π). We illus-
trate this with the Erdös-Rényi case. Using Theorem 2 for G = Gn,δ(w−np), we
have that, as n → ∞,
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Fig. 2. Social cost simulations for different values of C on Erdös-Rényi network as a
function of the immunization probability π. The optimal immunization probability in
each case is highlighted with a red circle.
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SG(π) → πcv +
αcd

β
√
(1 − π)np

(
F

1−√(1− π)npF

)
a.s. (15)

where F =
γ −√γ2 − 4β2(1− π)np

2β
√
(1 − π)np

.

Using
√
1− x ≈ 1− x

2 , we get F ≈ β
√

(1−π)np

γ . Thus

S(π) ≈ πcv +
α(1 − π)cd

γ − (1− π)βnp
(16)

4.2 Optimal Immunization

To determine the optimal choice of π in the random immunization scheme for a
large network, we use the social cost as calculated in Section 4.1. We illustrate
this through the Erdös-Rényi case. For convenience, we normalize cd = 1 and
cv = C, and consider the per node cost as given in equation ((16)).

Minimizing S(π) over π, we obtain the approximate optimal random immu-
nization, π∗. Define a = α

γ and b = αγ
(γ−βnp)2

, and note that a < b always.

π∗ =

⎧⎪⎪⎨
⎪⎪⎩
1 C ≤ a < b

1− γ−
√

γα/C

βnp a < C < b

0 a < b ≤ C

(17)

To illustrate the above, we simulate a disease propagating on an Erdös-Rényi
graph, with n = 100000, p = 1.27× 10−4, α = 0.2, β = 0.02, and γ = 0.39. We
use a low C = 0.1282, medium C = 1, and high C = 18.46. The simulated cost
as a function of π is shown in Figure 2, together with the approximate calculated
cost as given in ((16)). Note that the simulation is of the disease propagating
according to the SIS model, whereas SG(π) as shown is an approximation on
the per node social cost assuming infinite size graphs. In addition, the infection
propagation model makes several assumptions explored further in [3]. However,
note that the optimal π for both the bound and the simulation is very close,
indicating the usefulness of the model for immunization decisions.

5 Conclusion and Future Work

In this paper, rather than taking the approach of previous work, which has typ-
ically focused on determining the optimal strategy to limit the lifetime of a dis-
ease, without considering the cost of such strategies, we look at the total “social
cost” of an epidemic, including the cost of immunization and the cost to an in-
dividual being infected for a finite amount of time. Determining the social cost
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of an epidemic is a harder problem than estimating its lifetime, as it depends on
the transient behavior of the epidemic, not just its steady state. This approach
can help quantify the efficacy of immunization decisions from an economic stand-
point for decision-making bodies like the CDC. It can also be applied to the dual
problem, where the desire is to maximize the spread of information while keeping
advertising costs low.

We model the physical interaction of individuals (and hence the transmission
of disease) as an undirected random graph using a new random graph model and
a dynamical system based on the popular SIS model. Within this framework,
we derive the exact cost of an epidemic in the large graph limit (Theorem 1)
and bounds on the cost of an epidemic for finite graphs (Theorem 3). The exact
cost depends on the entire eigendistribution of the system matrix, whereas the
upper bound depends only on the largest eigenvalue. Despite its simpler form,
the upper bound appears to be tight, as shown by our simulations of Erdös-
Rényi networks and graphs with exponential degree distributions. Our analysis
makes use of ideas and techniques from random matrix theory, differentiating
this work from previous work on the spread of epidemics. The key impact of our
theorems calculating and bounding the disease cost is to allow decisions that
trade off immunization costs with disease cost - as shown by our calculation
of the social cost based on a one-shot random immunization strategy for an
Erdös-Rényi network.

We note that the graph model proposed in Section 2 is a generalization of
existing models and can capture any class of random graphs defined by an ex-
pected degree distribution. As such, it may be applicable to other areas outside
of the scope of this paper and is worth further investigation.

To extend this work, we would like to investigate both theoretical and practical
refinements of our model. We note that the linear model of disease propagation
used here requires independence assumptions that do not hold in general and it
would be worthwhile to explore other models that describe infection more ac-
curately. We can also extend our model to include other classic disease models,
such as the SIR model and more complicated models of infection. With regard
to immunization, we would like to examine a more dynamic strategy where indi-
viduals vaccinate themselves at different points in time based on their currently
available information (fraction of friends infected, etc.). Moreover, a case study
with real data from communicable diseases like influenza or herpes would provide
more insight into the accuracy and predictive power of these models in real-world
scenarios, as well as help refine the cost of disease which we have assumed is a
single parameter, cd.
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