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Abstract. A network of cognitive transmitters is considered. Each trans-
mitter has to decide his power control policy in order to maximize energy-
efficiency of his transmission. For this, a transmitter has two actions to
take. He has to decide whether to sense the power levels of the oth-
ers or not (which corresponds to a finite sensing game), and to choose
his transmit power level for each block (which corresponds to a com-
pact power control game). The sensing game is shown to be a weighted
potential game and its set of correlated equilibria is studied. Interest-
ingly, it is shown that the general hybrid game where each transmitter
can jointly choose the hybrid pair of actions (to sense or not to sense,
transmit power level) leads to an outcome which is worse than the one
obtained by playing the sensing game first, and then playing the power
control game. This is an interesting Braess-type paradox to be aware of
for energy-efficient power control in cognitive networks.

1 Introduction

In fixed communication networks, the paradigm of peer-to-peer communications
has known a powerful surge of interest during the the two past decades with ap-
plications such as the Internet. Remarkably, this paradigm has also been found
to be very useful for wireless networks. Wireless ad hoc and sensor networks
are two illustrative examples of this. One important typical feature of these
networks is that the terminals have to take some decisions in an autonomous
(quasi-autonomous) manner. Typically, they have to choose their power con-
trol and resources allocation policy. The corresponding framework, which is the
one of this paper, is the one of distributed power control or resources allocation.
More specifically, the scenario of interest is the case of power control in cognitive
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networks. Transmitters are assumed to be able to sense the power levels of neigh-
boring transmitters and adapt their power level accordingly. The performance
metric for a transmitter is the energy-efficiency of the transmission [5] that is,
the number of bits successfully decoded by the receiver per Joule consumed at
the transmitter.

The model of multiuser networks which is considered is a multiple access chan-
nel with time-selective non-frequency selective links. Therefore, the focus is not
on the problem of resources allocation but only on the problem of controlling
the transmit power over quasi-static channels. The approach of the paper is re-
lated to the one of [8][7] where some hierarchy is present in the network in the
sense that some transmitters can observe the others or not; also the problem is
modeled by a game where the players are the transmitters and the strategies are
the power control policies. One the differences with [8][7] is that every transmit-
ter can be cognitive and sense the others but observing/sensing the others has
a cost. Additionally, a new type of power control games is introduced (called
hybrid power control games) in which an action for a player has a discrete com-
ponent namely, to sense or not to sense, and a compact component namely, the
transmit power level. There are no general results for equilibrium analysis in
the game-theoretic literature. This is a reason why some results are given in the
2-player case only, as a starting point for other studies. In particular, it is shown
that it is more beneficial for every transmitter to choose his discrete action first
and then his power level. The (finite) sensing game is therefore introduced here
for the first time and an equilibrium analysis is conducted for it. Correlated
equilibria are considered because they allow the network designer to play with
fairness, which is not possible with pure or mixed Nash equilibria.

This paper is structured as follows. A review of the previous results regarding
the one-shot energy efficient power control game is presented in Sec. 2. The
sensing game is formally defined and some equilibrium results are stated in Sec.
3. A detailed analysis of the 2-players sensing is provided in Sec. 4 and the
conclusion appears in Sec. 5.

2 Review of Known Results

2.1 Review of the One-Shot Energy-Efficient Power Control Game
(Without Sensing)

We review a few key results from [6] concerning the static non-cooperative PC
game. In order to define the static PC game some notations need to be intro-
duced. We denote by Ri the transmission information rate (in bps) for user i and
f an efficiency function representing the block success rate, which is assumed
to be sigmoidal and identical for all the users; the sigmoidness assumption is a
reasonable assumption, which is well justified in [11][4]. Recently, [3] has shown
that this assumption is also justified from an information-theoretic standpoint.
At a given instant, the SINR at receiver i ∈ K writes as:

SINRi =
pi|gi|2∑

j �=i pj |gj |2 + σ2
(1)
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where pi is the power level for transmitter i, gi the channel gain of the link
between transmitter i and the receiver, σ2 the noise level at the receiver, and f
is a sigmodial efficiency function corresponding to the block success rate. With
these notations, the static PC game, called G, is defined in its normal form as
follows.

Definition 2.1 (Static PC game). The static PC game is a triplet G =
(K, {Ai}i∈K, {ui}i∈K) where K is the set of players, A1, ...,AK are the corre-
sponding sets of actions, Ai = [0, Pmax

i ], Pmax
i is the maximum transmit power

for player i, and u1, ..., uk are the utilities of the different players which are
defined by:

ui(p1, ..., pK) =
Rif(SINRi)

pi
[bit/J]. (2)

In this game with complete information (G is known to every player) and ratio-
nal players (every player does the best for himself and knows the others do so
and so on), an important game solution concept is the NE (i.e., a point from
which no player has interest in unilaterally deviating). When it exists, the non-
saturated NE of this game can by obtained by setting ∂ui

∂pi
to zero, which gives

an equivalent condition on the SINR: the best SINR in terms of energy-efficiency
for transmitter i has to be a solution of xf ′(x)− f(x) = 0 (this solution is inde-
pendent of the player index since a common efficiency function is assumed, see
[4] for more details). This leads to:

∀i ∈ {1, ...,K}, p∗i =
σ2

|gi|2
β∗

1− (K − 1)β∗ (3)

where β∗ is the unique solution of the equation xf ′(x)− f(x) = 0. By using the
term “non-saturated NE” we mean that the maximum transmit power for each
user, denoted by Pmax

i , is assumed to be sufficiently high not to be reached at
the equilibrium i.e., each user maximizes his energy-efficiency for a value less
than Pmax

i (see [8] for more details). An important property of the NE given
by (3) is that transmitters only need to know their individual channel gain |gi|
to play their equilibrium strategy. One of the interesting results of this paper is
that it is possible to obtain a more efficient equilibrium point by repeating the
game G while keeping this key property.

2.2 Review of the Stackelberg Energy-Efficient Power Control
Game (With Sensing)

Here we review a few key results from [7]. The framework addressed in [7] is that
the existence of two classes of transmitters are considered: those who can sense
and observe the others and those who cannot observe. This establishes a certain
hierarchy between the transmitters in terms of observation. A suited model to
study this is the Stackelberg game model [13]: some players choose their transmit
power level (these are the leaders of the power control game) and the others
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observe the played action and react accordingly (these are the followers of the
game). Note that the leaders know they are observed and take this into account
for deciding. This leads to a game outcome (namely a Stackelberg equilibrium)
which Pareto-dominates the one-shot game Nash equilibrium (given by (3)) when
there is no cost for sensing [8]. However, when the fraction of time to sense is
taken to be α > 0, the data rate is weighted by (1 − α) and it is not always
beneficial for a transmitter to sense [7]. The equilibrium action and utility for
player i when he is a game leader (L) are respectively given by

pLi =
σ2

|gi|2
γ∗(1 + β∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗ (4)

where γ∗ is the unique solution of x
[
1− (K−1)β∗

1−(K−2)β∗x
]
f ′(x) − f(x) = 0 and

uL
i =

|gi|2
σ2

1− (K − 1)γ∗β∗ − (K − 2)β∗

γ∗(1 + β∗)
f(γ∗). (5)

On the other hand, if player i is a follower (F) we have that:

pFi =
σ2

|gi|2
β∗(1 + γ∗)

1− (K − 1)γ∗β∗ − (K − 2)β∗ (6)

and

uF
i = (1− α)

|gi|2
σ2

1− (K − 1)γ∗β∗ − (K − 2)β∗

β∗(1 + γ∗)
f(β∗). (7)

3 A New Game: The K−Player Sensing Game

3.1 Sensing Game Description

In the two hierarchical power control described above, the transmitter is, by con-
struction, either a cognitive transmitter or a non-cognitive one and the action
of a player consists in choosing a power level. Here, we consider that all trans-
mitters can sense, the power level to be the one at the Stackelberg equilibrium,
and the action for a player consists in choosing to sense (S) or not to sense (NS).
This game is well defined only if at least one player is a follower (i.e., he senses)
and one other is the leader (i.e., he does not sense). We assume in the following
that the total number of transmitters is K + 2, where K transmitters are con-
sidered as usual players and the two last are a follower and a leader. Define the
K−player sensing game as a triplet:

G = (K, (S)i∈K , (Ui)i∈K) (8)

where the actions set are the same for each player i ∈ K, sense or not sense:
S = (S,NS). The utility function of each player i ∈ K depends on his own
channel state gi and transmission rate Ri but also on the total number of players
F playing the sensing action and the number of players that non sense denoted
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L. Denote US
i (F,L) the utility of player i when playing action sensing S whereas

F − 1 other players are also sensing and L other players are non-sensing. The
total number of player is F + L = K.

US
i (F,L) =

giRi

σ2

f(β∗)
Nβ�(N + γ�

L+1)
(
N2−Nβ� − [(N+β�)L+ (F + 1)β�] γ�

L+1

)

UNS
i (F,L) =

giRi

σ2

f(γ∗
L)

Nγ�
L+1(N + β�)

(
N2−Nβ� − [(N+β�)L+ (F + 1)β�] γ�

L+1

)

with γ∗
L solution of x(1 − εLx)f

′(x) = f(x) with:

εL =
(K + 2− L)β�

N2 −N(K + 1− L)β�
. (9)

3.2 The Sensing Game Is a Weighted Potential Game

The purpose of this section is to show that the sensing game may be an exact
potential game. However, this holds under restrictive assumptions on the channel
gains. It is then shown, as a second step, that the game is a weighted potential
game. For making this paper sufficiently self-containing we review important
definitions to know on potential games.

Definition 3.1 (Monderer and Shapley 1996 [9]). The normal form game
G is a potential game ) if there is a potential function V : S −→ R such that

Ui(si, s−i)− Ui(ti, s−i) = V (si, s−i)− V (ti, s−i), (10)

∀i ∈ K, si, ti ∈ S〉 (11)

Theorem 3.2. The sensing game G = (K, (S)i∈K , (Ui)i∈K) is an exact poten-
tial game if and only if one of the two following conditions is satisfied.

1) ∀i, j ∈ K Rigi = Rjgj

2) ∀i, j ∈ K, si, ti ∈ Si, ∀sj , tj ∈ Sj , ∀sk ∈ SK\{i,j}
UT (ti, sj, sk)− US(si, sj, sk)

+US(si, tj , sk)− UT (ti, tj , sk) = 0

The Proof is given in the Appendix 4.
The potential functions of our game depends on which condition is satisfied in

the above theorem. Suppose that the first condition is satisfied ∀i, j ∈ K Rigi =
Rjgj. Then the Rosenthal’s potential function writes :

Φ(F,L) =

F∑

i=1

US(i,K − i) +

L∑

j=1

UNS(K − j, j)
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Theorem 3.3 (Potential Game [9]). Every finite potential game is isomor-
phic to a congestion game.

Definition 3.4 (Monderer and Shapley 1996 [9]). The normal form game
G is a weighted potential game if there is a vector (wi)i∈K and a potential func-
tion V : S −→ R such that:

Ui(si, s−i)− Ui(ti, s−i) = wi(V (si, s−i)− V (ti, s−i)),

∀i ∈ K, si, ti ∈ Si

Theorem 3.5. The sensing game G = (K, (Si)i∈K , (Ui)i∈K) is a weighted po-
tential game with the weight vector:

∀i ∈ K wi =
Rigi
σ2

(12)

The Proof is given in the Appendix 5.

3.3 Equilibrium Analysis

First of all, note that since the game is finite (i.e., both the number of players
and the sets of actions are finite), the existence of at least one mixed Nash
equilibrium is guaranteed [10]. Now, since we know that the game is weighted
potential we know that there is at least one pure Nash equilibrium [9]. Indeed,
the following theorem holds.

Theorem 3.6. The equilibria of the above potential game is the set of maximiz-
ers of the Rosenthal potential function [12].

{S = (S1, . . . , SK)|S ∈ NE} = arg max
(F,L)

Φ(F,L)

= arg max
(F,L)

⎡

⎣
F∑

i=1

U(S, i,K − i) +

L∑

j=1

U(NS,K − j, j)

⎤

⎦

The proof follows directly the one of Rosenthal’s theorem [12].
We may restrict our attention to pure and mixed Nash equilibria. However,

as it will be clearly seen in the 2-player case study (Sec. 4.2), this may pose a
problem of fairness. This is the main reason why we study the set of correlated
equilibria of the sensing game. We introduce the concept of correlated equilib-
rium [1] in order to enlarge the set of equilibrium utilities. Every utility vector
inside the convex hull of the equilibrium utilities is a correlated equilibrium. The
convexification property of the correlated equilibrium allow the system to better
chose an optimal sensing. The concept of correlated equilibrium is a general-
ization of the Nash equilibrium. It consist in the stage game G extended with
a signalling structure Γ . A correlated equilibrium (CE) of a stage game corre-
spond to a Nash equilibrium (NE) of the same game extended with an adequate
signalling structure Γ . A canonical correlated equilibrium is a probability distri-
bution Q ∈ Δ(A), A = A1 × ...×AK over the action product of the players that
satisfy some incentives conditions.
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Definition 3.7. A probability distribution Q ∈ Δ(A) is a canonical correlated
equilibrium if for each player i, for each action ai ∈ Ai that satisfies Q(ai) > 0
we have:

∑

a−i∈A−i

Q(a−i | ai)ui(ai, a−i)

≥
∑

a−i∈A−i

Q(a−i | ai)ui(bi, a−i),

∀bi ∈ Ai

The result of Aumann 1987 [2] states that for any correlated equilibrium, it
correspond a canonical correlated equilibrium.

Theorem 3.8 (Aumann 1987, prop. 2.3 [2]). The utility vector u is a cor-
related equilibrium utility if and only if there exists a distribution Q ∈ Δ(A)
satisfying the linear inequality contraint 13 with u = EQU .

The convexification property of the correlated equilibrium allow the system to
better chose an optimal sensing. Denote E the set of pure or mixed equilibrium
utility vectors and Conv E the convex hull of the set E.

Theorem 3.9. Every utility vector u ∈ Conv E is a correlated equilibrium util-
ity of the sensing game.

Any convex combination of Nash equilibria is a correlated equilibrium. As exam-
ple, let (U j)j∈J a family of equilibrium utilities and (λj)j∈J a family of positive
parameters with

∑
j∈J λj = 1 such that:

U =
∑

j∈J

λjU j (13)

Then U is a correlated equilibrium utility vector.

4 Detailed Analysis for the 2-Player Case

4.1 The 2-Player Hybrid Power Control Game

In the previous section, we consider the sensing game as if the players do not
chose their own power control policy. Indeed, when a player chooses to sense, he
cannot choose its own power control because, it would depend on whether the
other transmitters sense or not. We investigate the case where the players are
choosing their sensing and power control policy in a joint manner. It enlarges the
set of actions of the sensing game and it turns that, as a Braess-type paradox,
that the set of equilibria is dramatically reduced. The sensing game with power
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control has a stricly dominated strategy: the sensing strategy. It implies that the
equilibria of such a game boils down to the Nash equilibrium without sensing.

We consider that the action set for player i consists in choosing to sense or
not and the transmit power level. The action set of player i writes :

Ai = {Si, NSi} × [0, P̄i] (14)

Before to characterize the set of equilibria of such a game, remark that the two
pure equilibria of the previous matrix game are no longer equilibria. Indeed,
assume that player 2 will not sense its environment and transmit using the
leading power pL2 . Then player 1 best response would be to play the following
transmit power pF1 as for the classical Stackelberg equilibrium. Nevertheless in
the above formulation, the player 1 has a sensing cost α that correspond to the
fraction of time to sense its environment. In this context, player 1 is incited to
play the following transition power without sensing. The strategy (S1, p

F
1 ) and

(NS2, p
L
1 ) is not an equilibrium of the game with Discrete and Compact Action

Set.

Theorem 4.1. The unique Nash equilibrium of the Power Control and Sensing
Game is the Nash equilibrium without sensing.

Proof. This result comes from the cost of sensing activity. Indeed, the strategy
(S1, p1) is always dominated by the strategy (NS1, p1). It turns out that the
sensing is a dominated actions for both players 1 and 2. Thus every equilibria
is of the form (NS1, p1), (NS2, p2) with the reduced action spaces p1 ∈ [0, P̄1]
and p2 ∈ [0, P̄2]. The previous analysis applies in that case, showing that the
unique Nash equilibrium of the Power Control and Sensing Game is the Nash of
the game without sensing (p∗1, p

∗
2). ��

As a conclusion, we see that letting the choice to the transmitters to choose
jointly their discrete and continuous actions lead to a performance which is less
than the one obtained by choosing his discrete action first, and then choosing his
continuous action. This is the reason why we assume, from now on, the existence
of a mechanism imposing this order in the decision taking.

4.2 The 2-Player Sensing Game

We consider the following two players-two strategies matrix game where play-
ers 1 and 2 choose to sense the channel (action S) or not (action NS) before
transmitting his data. We denote by xi the mixed strategy of user i, that is the
probability that user i takes action S (sense the channel). Sensing activity pro-
vide the possibility to play as a follower, knowing in advance the action of the
leaders. Let α denote the sensing cost, we compare the strategic behavior of sens-
ing by considering the equilibrium utilities at the Nash and at the Stackelberg
equilibria as payoff functions.
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R1g1f(β∗)(1−β∗)

σ2β∗
,

R2g2f(β∗)(1−β∗)

σ2β∗

R1g1f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)
,

(1 − α)
R2g2f(β∗)(1−γ∗β∗)

σ2β∗(1+γ∗)

(1 − α)
R1g1f(β∗)(1−γ∗β∗)

σ2β∗(1+γ∗)
,

R2g2f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)

(1 − α)
R1g1f(β∗)(1−β∗)

σ2β∗
,

(1 − α)
R2g2f(β∗)(1−β∗)

σ2β∗

S1

NS1

NS2 S2

Fig. 1. The Utility Matrix of the Two-Player Sensing Game

The equilibria of this game are strongly related to the sensing parameter α.

Theorem 4.2. The matrix game has three equilibria if and only if

α <
β∗ − γ∗

1− β∗γ∗ (15)

Let us characterize the three equilibria. From Appendix 1, is it easy to see that:

α <
β∗ − γ∗

1− β∗γ∗ ⇐⇒

(1− α)
R1g1f(β

∗)(1 − γ∗β∗)
σ2β∗(1 + γ∗)

>
R1g1f(β

∗)(1 − β∗)
σ2β∗

We conclude that the joint actions (NS1, NS2) and (S1, S2) are not Nash Equi-
libria:

U1(NS1, NS2) < U1(S1, NS2) (16)

U2(NS1, NS2) < U2(NS1, S2) (17)

U1(S1, S2) < U1(NS1, S2) (18)

U2(S1, S2) < U2(S1, NS2) (19)

The sensing parameter determines which one of the two options is optimal be-
tween leading and following.

Corollary 4.3. Following is better than leading if and only if

α <
f(β∗)− f(γ∗) + f(β∗)

β∗ − f(γ∗)
γ∗

f(β∗)1+β∗
β∗

(20)

The proof is given in Appendix 3.
The above matrix game has two pure equilibria (NS1, S2) and (S1, NS2).

There is also a completely mixed equilibrium we compute using the indifference
principle. Let (x, 1 − x) a mixed strategy of player 1 and (y, 1 − y) a mixed
strategy of player 2. We aim at characterize the optimal joint mixed strategy
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x∗ = y∗ =
(1− α) f(β

∗)
β∗ (1− β∗)− f(γ∗)

γ∗
1−γ∗β∗
1+β∗

(1− α) f(β
∗)

β∗ (1− β∗)− f(γ∗)
γ∗

1−γ∗β∗
1+β∗ + f(β∗)

β∗ (1− β∗)− (1− α) f(β
∗)

β∗
1−γ∗β∗
1+γ∗

(x∗, y∗) satisfying the indifference principle (see Appendix 2 for more details).
The above joint mixed strategy (x∗, 1 − x∗) and (y∗, 1 − y∗) is an equilibrium
strategy. The corresponding utilities are computed in Appendix 2. and writes
with Δ defined in(4.2).

U1(x
∗, y∗) =

R1g1
σ2

Δ

U2(x
∗, y∗) =

R2g2
σ2

Δ

Δ =
(1− α) f(β

∗)
β∗ (1− β∗) f(β

∗)
β∗ (1− β∗)− f(γ∗)

γ∗
1−γ∗β∗
1+β∗ (1− α) f(β

∗)
β∗

1−γ∗β∗
1+γ∗

(1− α) f(β
∗)

β∗ (1− β∗)− f(γ∗)
γ∗

1−γ∗β∗
1+β∗ + f(β∗)

β∗ (1− β∗)− (1− α) f(β
∗)

β∗
1−γ∗β∗
1+γ∗

The equilibrium utilities are represented on the following figure. The two pure
Nash equilibrium utilities are represented by a circle whereas the mixed Nash
utility is represented by a square.

U2(x
∗, y∗)

U2(S1, NS2)

U2(NS1, S2)

U2(S1, S2)

U2(NS1, NS2)

U1(x
∗, y∗)

U1(S1, NS2)

U1(NS1, S2)U1(S1, S2)

U1(NS1, NS2)

Fig. 2. The Equilibrium and Feasible Utilities
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We also provide a characterization of the equilibria for the cases where α is
greater or equal than β∗−γ∗

1−β∗γ∗ .

Corollary 4.4. The matrix game has a unique equilibrium if and only if

α >
β∗ − γ∗

1− β∗γ∗ (21)

It has a infinity of equilibria if and only if

α =
β∗ − γ∗

1− β∗γ∗ (22)

First note that if the sensing cost is too high, the gain in terms of utility at
Stackelberg instead of Nash equilibrium would be dominated by the loss of utility
due to the sensing activity. In that case, the Nash equilibrium would be more
efficient. Second remark that in case of equality, the action profiles (NS1, NS2),
(NS1, S2), (S1, NS2) and every convex combination of the corresponding payoffs
are all equilibrium payoffs.

Now that we have fully characterized the pure and mixed equilibria of the
game, let us turn our attention to correlated equilibria.

Theorem (3.8) allows us to characterize the correlated equilibrium utility using
the system of linear inequalities (13). We investigate the situation where the
stage game has three Nash equilibria and following is better than leading. We
suppose that the parameter α satisfies.

α < min(
β∗ − γ∗

1− β∗γ∗ ,
f(β∗)− f(γ∗) + f(β∗)

β∗ − f(γ∗)
γ∗

f(β∗)1+β∗
β∗

) (23)

Note that the analysis is similar in the case where Leading is better than Fol-
lowing. However, if the parameter α > β∗−γ∗

1−β∗γ∗ we have seen that the stage game
has only one Nash equilibrium corresponding to play the Nash equilibrium power
in the one-shot game. In such a case, no signalling device can increase the set
of equilibria. The unique correlated equilibrium is the Nash equilibrium. We
characterize an infinity of correlated equilibria.

Theorem 4.5. Any convex combination of Nash equilibria is a correlated equi-
librium. In particular if there exists a utility vector u and a parameter λ ∈ [0, 1]
such that:

u1 = λU1(S1, NS2) + (1− λ)U1(NS1, S2) (24)

u2 = λU2(S1, NS2) + (1− λ)U2(NS1, S2) (25)

Then u is a correlated equilibrium.

The above result state that any distribution Q defined as follows with λ ∈ [0, 1] is
a correlated equilibrium. The canonical signalling device which should be added
to the game consist in a lottery with parameter λ over the actions (S1, NS2)
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0 1 − λ

λ 0S1

NS1

NS2 S2

and (NS1, S2) and of signalling structure such that each player receives her
component. For example, if (S1, NS2) is chosen the player 1 receives the signal
“play S1” whereas player 2 receives the signal “play NS2”.

The correlated equilibrium utilities are represented by the bold line. The sig-
nalling device increase the achievable utility region by adding the light gray area.

U2(x
∗, y∗)

U2(S1, NS2)

U2(NS1, S2)

U2(S1, S2)

U2(NS1, NS2)

U1(x
∗, y∗)

U1(S1, NS2)

U1(NS1, S2)U1(S1, S2)

U1(NS1, NS2)

Correlated Equilibria

Fig. 3. The Correlated Equilibria

5 Conclusion

In this paper we have introduced a new power control game where the action
of a player is hybrid, one component is discrete while the other is continuous.
Whereas the general study of these games remains to be done, it turns out that in
our case we can prove the existence of a Braess paradox which allows us to restrict
our attention to two separate games played consecutively: a finite game where the
players decide to sense or not and a compact game where the transmitter chooses
his power level. We have studied in details the sensing game. In particular, it is
proved it is weighted potential. Also, by characterizing the correlated equilibria of
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this game we show what is achievable in terms of fairness. Much work remains to
be done to generalize all these results to games with arbitrary number of players
and conduct simulations in relevant wireless scenarios.
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Appendix 1

α <
β∗ − γ∗

1− β∗γ∗

⇐⇒ 1− γ∗β∗ − β∗ − γ∗

(1− γ∗β∗)
< 1− α

⇐⇒ (1− β∗)(1 + γ∗) < (1− α)[(1 − β∗)(1 + γ∗) + γ∗ + β∗]

⇐⇒ f(β∗)
β∗ (1 − β∗) < (1− α)

f(β∗)
β∗

1− β∗γ∗

1 + γ∗

⇐⇒ R1g1f(β
∗)(1 − β∗)

σ2β∗ < (1− α)
R1g1f(β

∗)(1− γ∗β∗)
σ2β∗(1 + γ∗)
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Appendix 2

R1g1f(β
∗)(1 − β∗)

σ2β∗ · y∗
+

R1g1f(γ
∗)(1 − γ∗β∗)

σ2γ∗(1 + β∗)
· (1 − y

∗
)

= (1 − α)
R1g1f(β

∗)(1 − γ∗β∗)
σ2β∗(1 + γ∗)

· y∗ + (1 − α)
R1g1f(β

∗)(1 − β∗)
σ2β∗ · (1 − y∗)

⇐⇒ y∗ · [R1g1f(β
∗)(1 − β∗)

σ2β∗ − (1 − α)
R1g1f(β

∗)(1 − γ∗β∗)
σ2β∗(1 + γ∗)

+(1 − α)
R1g1f(β

∗)(1 − β∗)
σ2β∗ − R1g1f(γ

∗)(1 − γ∗β∗)
σ2γ∗(1 + β∗)

]

= (1 − α)
R1g1f(β

∗)(1 − β∗)
σ2β∗ − R1g1f(γ

∗)(1 − γ∗β∗)
σ2γ∗(1 + β∗)

⇐⇒ y∗ =
(1 − α) f(β∗)

β∗ (1 − β∗) − f(γ∗)
γ∗ 1−γ∗β∗

1+β∗

(1 − α) f(β∗)
β∗ (1 − β∗) − f(γ∗)

γ∗ 1−γ∗β∗
1+β∗ + f(β∗)

β∗ (1 − β∗) − (1 − α) f(β∗)
β∗ 1−γ∗β∗

1+γ∗

Replacing the above y∗ into the indifference equation, we obtain the utility of
player 1 at the mixed equilibrium.

U1(x
∗, y∗) =

R1g1f(β∗)(1−β∗)

σ2β∗

R1g1f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)
− R1g1

σ2
f(γ∗)

γ∗

1−γ∗β∗

1+β∗

R1g1
σ2 (1 − α) f(β∗)

β∗

1−γ∗β∗

1+γ∗

R1g1
σ2 (1 − α) f(β∗)

β∗
(1 − β∗) − R1g1

σ2
f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ R1g1

σ2
f(β∗)

β∗
(1 − β∗) − R1g1

σ2 (1 − α) f(β∗)
β∗

1−γ∗β∗

1+γ∗

+

R1g1
σ2 (1 − α) f(β∗)

β∗
(1 − β∗)R1g1

σ2
f(β∗)

β∗
(1 − β∗) − R1g1f(β∗)(1−β∗)

σ2β∗

R1g1f(γ∗)(1−γ∗β∗)

σ2γ∗(1+β∗)

R1g1
σ2 (1 − α) f(β∗)

β∗
(1 − β∗) − R1g1

σ2
f(γ∗)

γ∗

1−γ∗β∗

1+β∗
+ R1g1

σ2
f(β∗)

β∗
(1 − β∗) − R1g1

σ2 (1 − α) f(β∗)
β∗

1−γ∗β∗

1+γ∗

=
R1g1

σ2

(1 − α) f(β∗)
β∗

(1 − β∗) f(β∗)
β∗

(1 − β∗) − f(γ∗)
γ∗

1−γ∗β∗

1+β∗
(1 − α) f(β∗)

β∗

1−γ∗β∗

1+γ∗

(1 − α) f(β∗)
β∗

(1 − β∗) − f(γ∗)
γ∗

1−γ∗β∗

1+β∗
+ f(β∗)

β∗
(1 − β∗) − (1 − α) f(β∗)

β∗

1−γ∗β∗

1+γ∗

The same argument applies:

U2(x
∗
, y

∗
) =

R2g2

σ2

(1 − α) f(β∗)
β∗ (1 − β∗) f(β∗)

β∗ (1 − β∗) − f(γ∗)
γ∗ 1−γ∗β∗

1+β∗ (1 − α) f(β∗)
β∗ 1−γ∗β∗

1+γ∗

(1 − α) f(β∗)
β∗ (1 − β∗) − f(γ∗)

γ∗ 1−γ∗β∗
1+β∗ + f(β∗)

β∗ (1 − β∗) − (1 − α) f(β∗)
β∗ 1−γ∗β∗

1+γ∗

Appendix 3

α <
f(β∗)− f(γ∗) + f(β∗)

β∗ − f(γ∗)
γ∗

f(β∗)1+β∗
β∗

⇐⇒ 1− α >
f(β∗)1+β∗

β∗ − f(γ∗)1+γ∗
γ∗

f(β∗)1+β∗
β∗

⇐⇒ (1 − α)
f(β∗)
β∗

1− γ∗β∗

1 + β∗ >
f(γ∗)
γ∗

1− γ∗β∗

1 + γ∗

Appendix 4

The proof comes from the theorem of Monderer and Shapley 1996 (see Sandholm
”Decomposition of Potential” 2010)
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Theorem 5.1. The game G is a potential game if and only if for every players
i, j ∈ K, every pair of actions si, ti ∈ Si and sj , tj ∈ Sj and every joint action
sk ∈ SK\{i,j}, we have that

Ui(ti, sj , sk)− Ui(si, sj , sk) + Ui(si, tj , sk)− Ui(ti, tj, sk) +

Uj(ti, tj , sk)− Uj(ti, sj, sk) + Uj(si, sj , sk)− Uj(si, tj , sk) = 0

Let us prove that the two conditions provided by our theorem are equivalent to
the one of Monderer and Shapley’s theorem. We introduce the following notation
defined for each player i ∈ K and each action T ∈ S.

wi = Rigi (26)

UT (ti, tj, sk) =
UT
i (ti, tj , sk)

wi
(27)

For every players i, j ∈ K, every pair of actions si, ti ∈ Si and sj , tj ∈ Sj and
every joint action sk ∈ SK\{i,j}, we have the following equivalences:

Ui(ti, sj , sk)− Ui(si, sj , sk)

+Ui(si, tj , sk)− Ui(ti, tj , sk)

+ Uj(ti, tj , sk)− Uj(ti, sj, sk)

+Uj(si, sj , sk)− Uj(si, tj , sk) = 0

⇐⇒ wi(U
T (ti, sj , sk)− US(si, sj , sk)

+US(si, tj , sk)− UT (ti, tj , sk))

+ wj(U
T (ti, tj , sk)− US(ti, sj , sk)

+US(si, sj , sk)− UT (si, tj, sk)) = 0

⇐⇒ (wi − wj)(U
T (ti, sj , sk)− US(si, sj , sk)

+US(si, tj , sk)− UT (ti, tj , sk)) = 0

⇐⇒

⎧
⎪⎨

⎪⎩

wi = wj

UT (ti, sj , sk)− US(si, sj , sk)

+US(si, tj , sk)− UT (ti, tj , sk) = 0

Thus the sensing game is a potential game if and only if one of the two following
condition is satisfied:

∀i, j ∈ K Rigi = Rjgj (28)

∀i, j ∈ K, si, ti ∈ Si, ∀sj , tj ∈ Sj , ∀sk ∈ SK\{i,j} (29)

UT (ti, sj , sk)− US(si, sj, sk) (30)

+US(si, tj , sk)− UT (ti, tj , sk) = 0 (31)

Appendix 5

The proof of this theorem follows the same line of the previous theorem. It
suffices to show that the auxiliary game defined as follows is a potential game.
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G̃ = (K, (S)i∈K , (Ũi)i∈K) (32)

Where the utility are defined by the following equations with wi =
Rigi
σ2 .

Ũi(si, s−i) =
Ui(si, s−i)

wi
(33)

From the above demonstration, it is easy to show that, for every players i, j ∈ K,
every pair of actions si, ti ∈ Si and sj , tj ∈ Sj and every joint action sk ∈
SK\{i,j}:

Ũi(ti, sj , sk)− Ũi(si, sj , sk) (34)

+ Ũi(si, tj , sk)− Ũi(ti, tj , sk) (35)

+ Ũj(ti, tj , sk)− Ũj(ti, sj , sk) (36)

+ Ũj(si, sj , sk)− Ũj(si, tj , sk) = 0 (37)

We conclude that the sensing game is a weighted potential game.


	“To Sense” or “Not to Sense”in Energy-Efficient Power Control Games
	Introduction
	Review of Known Results
	Review of the One-Shot Energy-Efficient Power Control Game (Without Sensing)
	Review of the Stackelberg Energy-Efficient Power Control Game (With Sensing)

	A New Game: The K-Player Sensing Game
	Sensing Game Description
	The Sensing Game Is a Weighted Potential Game
	Equilibrium Analysis

	Detailed Analysis for the 2-Player Case
	The 2-Player Hybrid Power Control Game
	The 2-Player Sensing Game

	Conclusion
	References




