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Abstract. In this paper, a model for multi-hop power line communication is stud-
ied in which a number of smart sensors, e.g., smart meters, seek to minimize the
delay experienced during the transmission of their data to a common control cen-
ter through multi-hop power line communications. This problem is modeled as a
network formation game and an algorithm is proposed for modeling the dynamics
of network formation. The proposed algorithm is based on a myopic best response
process in which each smart sensor can autonomously choose the path that con-
nects it to the control center through other smart sensors. Using the proposed
algorithm, the smart sensors can choose their transmission path while optimizing
a cost that is a function of the overall achieved transmission delay. This transmis-
sion delay captures a tradeoff between the improved channel conditions yielded
by multi-hop transmission and the increase in the number of hops. It is shown
that, using this network formation process, the smart sensors can self-organize
into a tree structure which constitutes a Nash network. Simulation results show
that the proposed algorithm presents significant gains in terms of reducing the
average achieved delay per smart sensor of at least 28.7% and 60.2%, relative to
the star network and a nearest neighbor algorithm, respectively.

1 Introduction

The use of power lines as a means for communications has been adopted by utility
companies for many decades in order to transmit control and monitoring data in power
systems. Recently, power line communication (PLC) has emerged as a key technology
that enables the delivery of new applications such as broadband Internet, telephony,
automation, remote metering, as well as in-home delivery of a variety of data and mul-
timedia services [1, 2, 3, 4]. While the full potential of PLC is yet to be exploited in
the market, it is expected that PLC will play a major role as an enabler for efficient
communications in the emerging smart grid and “Internet of things” networks.

In particular, within large-scale networks such as the smart grid, PLC is one of the
main candidate technologies that can be used to ensure data communication between the
smart sensors that are typically used to collect data (e.g., household loads, monitoring
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data, maintenance, prices inquiry, etc.) and transmit it to a control center or other cen-
tral nodes within the network [2]. In this respect, enabling such PLC-based applications
faces a variety of challenges such as channel modeling, medium access, security, effi-
cient data transmission, and advanced network planning. For instance, in [4], a survey
of smart grid applications for PLC is provided. The authors discuss a variety of usage
scenarios for PLC such as advanced metering infrastructure, vehicle-to-grid commu-
nications, and substations interconnection in the medium voltage part of the grid. The
work in [5] discusses the use of relaying techniques, such as decode-and-forward, for
improving the capacity and coverage of an in-home broadband PLC network. In [6], the
authors propose a space-time coding technique for improving retransmissions through
repeaters using PLC channels. Performance analysis of a variety of channel models for
PLC is done in [7, 8, 9, 10] and the references therein. The use of PLC for demand re-
sponse in the smart grid is analyzed in [11]. An extensive treatment of communications
and other networking issues in the smart grid is found in [2].

In essence, PLC can operate on either broadband or narrowband frequencies [1].
Depending on the mode of operation, the potential PLC applications can vary. While
broadband PLC is suitable for Internet services, in-home entertainment, or demand
response applications, narrowband PLC is bound to be used for advanced metering,
vehicle-to-grid networking, as well as other smart grid applications [1, 2, 4]. In par-
ticular, narrowband PLC is a suitable means for interconnecting the smart sensors that
are used for control, load monitoring, price inquiry, and other metering purposes in the
smart grid. In fact, narrowband PLC has been widely used for advanced metering in-
frastructure in Europe [4]. One of the key challenges of adopting narrowband PLC as a
communication technology between the sensors of the smart grid stems from the lim-
ited capacity of PLC channels which decreases quickly with distance as discussed in [1,
Chap. 5] and [7]. Overcoming these limitations in existing PLC networks is typically
done by dimensioning the network, prior to deployment, so as to ensure a reasonable
capacity for every point-to-point PLC communication [1, 7].

However, for large-scale heterogeneous networks, such as the smart grid, a pre-
determined dimensioning may not be possible. For example, the deployment of smart
meters is restricted by the locations of the related homes or businesses, irrespective of
the communication technology that will be adopted between these meters. Hence, the
ability to control the potential PLC capacity within a large cyber-physical network such
as the smart grid faces several constraints and practical restrictions. In such networks,
the PLC capacity limitations can lead to large delays or limited coverage, which con-
stitute key quality-of-service (QoS) requirements for most smart grid applications [12].
As a result, it is of central interest to design intelligent and advanced algorithms that en-
able narrowband PLC communication in networks such as the smart grid or the Internet
of things, while maintaining a reasonable QoS (e.g., low delays) given the large-scale,
heterogeneous, and decentralized nature of these networks.

The main contribution of this paper is to propose a novel multi-hop protocol for
narrowband PLC communication suitable for cyber-physical networks such as the smart
grid. Hence, our objective is to develop an algorithm that enables multi-hop PLC com-
munication between a number of smart sensors that need to send their data (e.g., meter
readings, load reports, control and monitoring data, power quality, or pricing
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information) to a common access point (e.g., a control center or a repeater). For this
purpose, we formulate a network formation game in which the smart sensors are the
players and the strategy of each smart sensor is to select the preferred next hop for
transmitting its data, using narrowband PLC. Then, we propose a network formation
algorithm which enables the smart sensors to take distributed decisions regarding their
PLC transmission path while minimizing their cost function which captures the over-
all experienced transmission delay. Using the proposed algorithm, the smart sensors can
self-organize into a Nash network, i.e., a stable tree structure which connects them to the
common control center or repeater. Simulation results show that the proposed algorithm
yields a significant reduction of the average delay per smart sensor when compared to
the star network or a nearest neighbor approach.

The rest of this paper is organized as follows: Section 2 presents the system model. In
Section 3, we formulate the network formation game between the smart sensors while
in Section 4, we present the proposed algorithm. Simulation results are presented and
analyzed in Section 5. Finally, conclusions are drawn in Section 6.

2 System Model

Consider an area of a smart grid network composed of M physically interconnected
smart sensors, e.g., smart meters, and let M denote the set of all of these smart sensors.
Each smart sensor in the set M needs to communicate different information such as
meter readings, load reports, pricing inquiries, event detection data, or network repair
information to a common access point (CAP). This access point can be either a control
center installed by the grid operator or a repeater that connects this area to other parts
of the smart grid. In order to communicate, these smart sensors operate using high
data rate (HDR) narrowband power line communication. Hence, all frequencies used
throughout this paper are chosen from within the typical narrowband PLC values which
range between 3 kHz and 148.5 kHz in Europe and up to 500 kHz in the USA [1].

We consider that the CAP allows each smart sensor i ∈ M to communicate using a
channel having a bandwidth W , assumed to be the same for all smart sensors, without
loss of generality. To do so, the CAP divides its range of frequencies FCAP,1 ≤ |f | ≤
FCAP,2 into KCAP � FCAP,2−FCAP,1

W channels with equal bandwidth W . Subsequently, the
CAP assigns each one of these channels to a requesting smart sensor i ∈ M. We let
KCAP denote the set of all KCAP channels that the CAP offers. Each channel k ∈ KCAP

is defined by a range of frequencies Fk,1 ≤ |f | ≤ Fk,2 = Fk,1 + W . We consider
a general case in which the CAP assigns the channels randomly depending on when a
certain smart sensor requests to communicate. Further, hereinafter, we assume that the
CAP is able to provide one channel for every smart sensor in the network and, thus,
M ≤ KCAP. Nonetheless, the analysis can be easily extended to the case in which
M > KCAP by adding extra control centers or by adopting advanced techniques for
multiple PLC access which are outside the scope of this paper.

In narrowband PLC communication, the colored background noise has a (double
sided) power spectral density N(f) which decreases for increasing frequencies and can
be expressed by [1, Chap. 5] (in W/Hz):

N(f) = 1/2 · 10γ−4·10−5f , (1)
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(a) Region 1, Fk,1 ≤ |f | ≤ Fk,2 (b) Region 2,Fk,limit≤ |f |≤Fk,2

Fig. 1. Two regions (dependent on the frequency range FB
i,k) used for finding the capacity of a

PLC transmission, based on (2)-(4), for a smart sensor i using a certain channel k

where γ is normally distributed with mean −8.64 and standard deviation 0.5. As ob-
served in [7], the value of γ is often estimated from measurements and has a worst case
(high noise) value of −7.64 and a best case (low noise) value of −9.64.

Each smart sensor i ∈ N has a transmit power of Pi and needs to send Li packets
of R bits each to the CAP. In this respect, given the noise in (1) the capacity Ck

i,CAPof
any point-to-point PLC communication link between a smart sensor i ∈ N and the
CAP, using a channel k ∈ KCAP is given by the so-called water-filling solution [7],[1,
Chap. 5]:

Ck
i,CAP =

∫
f∈FB

i,k

1/2 log2

[
B

N(f)

]
df, (2)

where FB
i,k is the range of frequencies for channel k (i.e., within Fk,1 ≤ |f | ≤ Fk,2 =

Fk,1 +W ) for which we have:
N(f) ≤ B, (3)

where B is the solution to

Pi,re = Pi · 10−κdi,CAP =

∫
f∈FB

i,k

[B −N(f)] . (4)

Here, κ is the attenuation factor which ranges between 40 dB/km and 100 dB/km and
di,CAP is the distance between smart sensor i and the CAP. Note that, (2), (3), and (4)
are derived based on the assumption that the transfer function H(f) is chosen such
that, within the frequency range of channel k, the channel gain is equal to one1, i.e.,
|H(f)|2 = 1. However, (2)-(4) can be easily modified to accommodate any other trans-
fer function H(f) as shown in [7].

As discussed in [1, Chap. 5], the solution to (2)-(4) can be found by splitting the
problem into the two regions of Figure 1 in order to find the frequency range FB

i,k. In
the first region shown in Figure 1(a), the level B is larger than the noise level and, thus,
this region corresponds to the case in which the received signal power is relatively large,

1 This consideration on the transfer function is inspired from the channel filter of the well-known
CENELEC A-band [7].
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i.e., there exists enough power to fill the entire frequency region. In contrast, the second
region, shown in Figure 1(b), has a level B smaller than the noise level within a portion
of the frequency range. This region corresponds to the case in which the received signal
power is relatively small (due to attenuation) and, hence, it is used to fill the portion of
the spectrum with a small noise level, i.e., below B.

The expression of the capacity in (2) differs between the two regions. In order to
compute the expression within each region, it is of interest to find the critical distance
d̃ki,CAP such that for di,CAP ≤ d̃ki,CAP the operation is in Region 1 and for di,CAP > d̃ki,CAP
the operation is in Region 2. In other words, the critical distance represents the distance
after which we move from the analysis of Region 1, i.e., Figure 1(a), to that of Region 2,
i.e., Figure 1(b). For the transmission between a smart sensor i ∈ M to the CAP over a
channel k ∈ KCAP, this critical distance d̃ki,CAP can be given by [7]:

d̃ki,CAP = −κ−1 · log10
[
(W − 2)N(Fk,1)− 2N(Fk,2)

4 · 10−5 · ln 10 · Pi

]
, (5)

where N(f) is given by (1).
In Region 1 where di,CAP ≤ d̃ki,CAP, as clearly seen from Figure 1(a), FB

i,k is simply
the entire frequency band available at channel k, i.e., Fk,1 ≤ |f | ≤ Fk,2. Therefore,
given the critical distance in (5), determining the capacity in Region 1 is straightforward
and can be computed from (2) and (4) as follows [7]:

Ck
i,CAP = (1 + log2 B + 3.3γ)W + 6.65 · 10−5 · (F 2

k,2 − F 2
k,1

)
, (6)

where B is given by:

B =
[N(Fk,1)−N(Fk,2)]

9.2 · 10−5 ·W +
10−κdi,CAP · Pi

2W
. (7)

In Region 2 where di,CAP > d̃ki,CAP, FB
i,k is a region such that Fk,limit ≤ |f | ≤ Fk,2,

where Fk,limit > Fk,1 is the point after which we have (3) verified (see Figure 1(b)).
In this case, determining the capacity using (2)-(4) requires finding Fk,limit first. While
the computation can be analytically complex as discussed in [7], first, one can find an
expression that links the distance and Fk,limit as follows [7]:

Pi · 10−κdi,CAP − 2.2 · 104N(Fk,2) = −2Fk,limitN(Fk,limit)

+2N(Fk,limit)(Fk,2 − 1.1 · 104) (8)

An analytical solution for (8) in which Fk,limit is a real number expressed as a function
of di,CAP can be found as a function of the “Lambert W” function, as follows:

Fk,limit = (Fk,2 − 1.1 · 104)− WL(g(di,CAP)10
(Fk,2−1.1·104)4·10−5

)

4 · 10−5 ln 10
(9)

where WL(·) is the “Lambert W” function and g(di,CAP) is given by

g(di,CAP) = 9.2 · 10−5(Pi · 10−γ−κdi,CAP − 1.1 · 104−4·10−5·Fk,2), (10)
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Then, by using (9) and (2), we can find a closed-form expression for the capacity in
Region 2 as follows:

Ck
i,CAP = (Fk,2 − Fk,limit) log2 (10

−4·10−5

Fk,limit)

+6.65 · 10−5(F 2
k,2 − F 2

k,limit) (11)

Given any smart sensor i ∈ M that needs to send Li packets of R bits each to the CAP
while using a certain channel k ∈ KCAP, we define a cost function that captures the
transmission delay as follows:

ri(G) = τi,CAP =
R · Li

Ck
i,CAP

, (12)

where G is a star network graph centered at the CAP and connecting it to the smart
sensors with direct transmission links (i.e., edges).

For narrowband PLC, it is well known that the capacities, as given in (6) and (11),
are large for small distances, however, they decay very fast with distance. Subsequently,
the delay in (12) can increase significantly, notably for a large-scale smart grid network
in which the smart sensors need to communicate with a relatively far CAP. For many
of the emerging applications within smart grid networks, delay and capacity are key
QoS requirements [12], and, thus, it is of interest to design an approach that enables
the smart sensors to utilize narrowband PLC for sending their data, while maintaining
reasonable delays. For instance, by exploiting the fact that the capacities in (6) and (11)
can be large for small to medium distances, one can develop a multi-hop scheme that
enables the smart sensors to relay each others’ data, while optimizing the delay in (12).

3 A Game Theoretic Approach for Multi-hop PLC Transmission

In order to improve their delays while communicating with the CAP, the smart sensors
in M can interact with one another in order to perform multi-hop transmission. By do-
ing so, the smart sensors can exploit the fact that the capacity of a narrowband PLC
channel as captured by (2) is large for small distances but decays fast as the communi-
cation distances become larger. To perform multi-hop PLC communication, the smart
sensors will essentially try to interact with their neighbors and decide on which hop to
use given their traffic and potential PLC capacity.

In order to model these interactions between the smart sensors, we use the analytical
framework of network formation games [13, 14, 15, 16]. Network formation games
involve situations in which a number of players need to interact in order to decide on the
formation of a network graph among them. In a network formation game, the outcome
is essentially a graph structure that interconnects the various players while capturing
their individual objectives. In this respect, to overcome the capacity limitations inherent
to narrowband PLC-based networks, we propose a network formation game in which
the smart sensors are the players and the objective is to form a multi-hop tree structure
that enables each smart sensor to reduce its delay.

Hence, the result of the proposed smart sensors network formation game is a directed
graph G(M, E) with M being the set of vertices of the graph (i.e., the smart sensors)
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and E being the set of all edges (links) between pairs of smart sensors. Note that, for the
scope of this paper, we limit our attention to tree structures in which each smart sensor
selects only one parent node for transmission. Each directed link between two smart
sensors i ∈ M and j ∈ M, denoted (i, j) ∈ E , corresponds to a traffic flow over the
narrowband PLC channel from smart sensor i to smart sensor j. Prior to delving into
the details of the proposed network formation game, we will first define the notion of a
path:

Definition 1. A path between two smart sensors i and j in a graph structure G is a
sequence of smart sensors i1, . . . , iL such that i1 = i, iL = j and each directed link
(il, il+1) ∈ G for each l ∈ {1, . . . , L− 1}.

In the proposed network formation game, each smart sensor will have a single path to
the CAP due to the fact that we consider multi-hop tree structures between the smart
sensors. As a result, we have a network formation game between the smart sensors in
which the strategy of each smart sensor is to select its preferred path to destination.
Formally, we can delineate the possible actions or strategies that a smart sensor can
take in the proposed PLC network formation game as follows. The strategy space of any
smart sensor i ∈ M is the set of possible smart sensors (or the CAP) that i can connect
to. Consequently, the strategy of the smart sensor i is to select the link that it wants to
form out of its available strategy space. Essentially, a smart sensor i ∈ M can connect
either directly to the CAP or through any other smart sensor j ∈ M, j �= i as long as j
is not, itself, connected to i. In other words, a smart sensor i cannot connect to another
smart sensor j which is already connected to i, i.e., if (j, i) ∈ G, then (i, j) /∈ G.

Hence, for a given network graph G, let Ai = {j ∈ M \ {i}|(j, i) ∈ G} be the set
of smart sensors from which smart sensor i accepted a link (j, i) and Si = {(i, j)|j ∈
V \ ({i}⋃Ai)} be the set of links corresponding to the nodes (smart sensors or the
CAP) that i can connect to, with V defined as the set of all smart sensors and the CAP.
In consequence, the strategy of a smart sensor i can be formally defined as the link
si ∈ Si that it wants to form. As we consider tree structures, the strategy of a smart
sensor can be seen as a replace operation using which a smart sensor i ∈ M replaces
its current link with a new link from Si.

For narrowband PLC transmission, whenever a smart sensor needs to select a strat-
egy, i.e., connect to another smart sensor (or the CAP), it needs to obtain an appropriate
channel for transmission. In this respect, we define, for each smart sensor i ∈ M, a
set Ki that represents the set of all channels that i is able to offer to other smart sensor
wishing to use i for multi-hop communication. In essence, for any given channel k ∈ Ki

defined with a range of frequencies Fk,1 ≤ |f | ≤ Fk,1 +W , as the frequency Fk,1 in-
creases, the capacity in (2) increases, thus reducing the delay (given that the bandwidth
W is assumed to be the same for all channels). Thus, whenever a smart sensor i con-
nects to a smart sensor j, we assume that j would assign the channel ki ∈ Kj having
the largest frequency Fki,1 to i, i.e., ki ∈ argmax

l∈Kj

Fl,1. This best available channel is,

thus, the channel that yields the lowest delay (among other available channels at j) for
smart sensor i as per (13).

Further, we assume that the number of channels that a smart sensor i is able to offer
is limited, due to the resource constrained nature of these smart sensors. Therefore, we
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have |Ki| < KCAP, ∀i ∈ M, where KCAP = KCAP is the number of channels that the
CAP can offer and | · | is the cardinality of a set operator. Thus, we can highlight the
following property for our proposed smart sensors network formation game:

Property 1. For the proposed smart sensors network formation game, the number of
nodes that a smart sensor i ∈ M serves within a graph G (i.e., the number of smart
sensors in Ai) is limited by the available channels in Ki, and, thus, we have |Ai| ≤ |Ki|.
As a result of Property 1, whenever a smart sensor i ∈ M has already accepted its
maximum number of connections, i.e., |Ai| = |Ki|, it can no longer accept additional
connections to serve. In this regard, denoting by G+ si as the graph G modified when
a smart sensor i deletes its current link in G and adds a new link si = (i, j), we define
the concept of a feasible strategy as follows:

Definition 2. A strategy si ∈ Si, i.e., a link si = (i, j), is a feasible strategy for a
smart sensor i ∈ V if and only if smart sensor j can still offer a channel for i, i.e.,
|Aj | + 1 ≤ |Kj |. For any smart sensor i ∈ M, the set of all feasible strategies is
denoted by Ŝi ⊆ Si.

Hence, a feasible strategy for any smart sensor i is simply a link si = (i, j) in which
the receiving smart sensor j has at least one channel available that can be assigned to
smart sensor i. Whenever a smart sensor i plays a feasible strategy si ∈ Ŝi while all the
remaining smart sensors maintain a vector of strategies s−i, we let Gsi,s−i denote the
resulting network graph.

In the proposed network formation game, the objective of each smart sensor i ∈ M
is to select the path that minimizes its overall transmission delay when sending its data
to the CAP, either directly or through multi-hop. Hence, given any tree structure Gsi,s−i

resulting from the strategy selections of all the smart sensors in M, the cost function
of any smart sensor i ∈ M which selected a feasible strategy si = (i, j) ∈ Ŝi having
a corresponding path qi = {i1, . . . , iL}, with i1 = i, i2 = j and iL being the CAP, is
captured by the total delay experienced by i which is given by:

ci(Gsi,s−i) = τi,si =
∑

(il,il+1)∈qi

τil,il+1
, (13)

where τil,il+1
is the delay experienced during the transmission from smart sensor il to

smart sensor il+1 which can be given by:

τil,il+1
=

R · Li

Ck
il,il+1

, (14)

where Li is the number of packets of R bits that i needs to transmit and Ck
il,il+1

is
the capacity for the narrowband PLC transmission between il and il+1 over channel
k ∈ Kil+1

. The capacity Ck
il,il+1

is computed using the method developed in Section 2
for the direct transmission to the CAP, i.e., using (2) - (4). Note that, whenever Gsi,s−i

is a star network, i.e., all smart sensors are connected directly to the CAP, (13) reduces
to (12).
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Hence, in the proposed network formation game, the objective of each smart sensor
is to interact with its neighbors in order to identify a strategy that can minimize its
cost function in (13). These interactions are essentially non-cooperative as each smart
sensor is selfish, i.e., interested in optimizing its individual cost as per (13). In this game,
finding a suitable path to the CAP is a challenging task for each smart sensor, given the
capacity limitations of narrowband PLC as well as the limited number of connections
that a smart sensor can actually serve as highlighted in Property 1. Having formulated
a network formation game among the smart sensors, our next step is to develop an
algorithm that can model the interactions among the smart sensors that seek to form the
network tree structure for multi-hop narrowband PLC transmission.

4 Distributed Network Formation Algorithm

Before discussing the details of the algorithm, we highlight that, for any developed
algorithm, the resulting network structure will always be a connected graph as follows:

Property 2. Any network graph resulting from a network formation algorithm applied
to the smart sensors game formulated in Section 3 is a connected tree structure rooted
at the CAP, as long as M ≤ KCAP.

Proof. Consider any network graph G in which there exists a certain smart sensor i that
is disconnected from the CAP, i.e., no path of transmission (direct or multi-hop) exists
between i and the CAP. In this case, the disconnected smart sensor i will experience an
infinite delay as its data is not being transmitted, and, thus, its cost in (13) is maximized.
As a result, no smart sensor has an incentive to disconnect from the CAP since such a
disconnection will drastically increase its delay. Hence, as long as each smart sensor
can always connect to the CAP, i.e., M ≤ KCAP, then any network graph G formed for
the proposed game is a connected tree structure rooted at the CAP.

A direct result of this property is that any smart sensor that is unable to connect to
other smart sensors for performing multi-hop PLC will eventually use a direct trans-
mission channel to the CAP, as long as such a channel exists, i.e., M ≤ KCAP (which
is an assumption maintained throughout this paper). In this regard, we consider that the
initial starting point for our network formation game is the star network in which all
smart sensors are connected directly to the CAP, prior to interacting for further network
formation decisions.

For any smart sensor i ∈ M, given the set of feasible strategies Ŝi, we define the
best response strategy as follows [15].

Definition 3. A strategy s∗i ∈ Ŝi is a best response for any smart sensor i ∈ M if
ci(Gs∗i ,s−i) ≤ ci(Gsi,s−i), ∀si ∈ Ŝi. Thus, the best response for smart sensor i is to
select the feasible link that minimizes its cost given that the other smart sensors maintain
their vector of feasible strategies s−i.

Using the best responses of the smart sensors, we can develop a distributed network
formation algorithm. To do so, we consider that the smart sensors are myopic, in the
sense that each smart sensor seeks to reduce its delay by observing only the current



A Game Theoretic Approach for Multi-hop Power Line Communications 555

state of the network without taking into account any potential future evolutions of the
network graph. Developing algorithms for myopic network formation is a challenging
task that has been receiving a significant attention in game theoretical research (e.g.,
see [13, 15, 16] and references therein). The challenging aspect of this problem stems
from the fact that one deals with discrete strategy sets (i.e., forming links) and with
the formation of network graphs in which adding or removing a single link can affect
the overall network performance. The existing game theoretical literature on network
formation games studies various myopic algorithms for different game models with
directed and undirected graphs [13, 15, 16]. For our proposed smart sensors network
formation algorithm, we construct an algorithm that is based on some of the models
in [13] and [15], but modified to accommodate the specifics of the narrowband PLC
multi-hop game. Hence, we define an algorithm where each round is mainly composed
of three stages: a network discovery stage, a myopic network formation stage and a
multi-hop PLC transmission phase.

Initially, the smart sensors start by using direct transmission within a star network.
During the first stage of the proposed algorithm, the smart sensors attempt to discover
some of their neighboring nodes, either by doing some monitoring of the communica-
tion in the star network or by using information downloaded from the network operator
itself. Once each smart sensor obtains some information on the current nodes within the
initial network, it can start with the second stage of the algorithm in which the main goal
is to form the multi-hop tree structure. During the myopic network formation stage, the
smart sensors perform pairwise negotiations (e.g., using some kind of dedicated PLC
control channel), sequentially, in order to assess potential network formation decisions.
In this stage, we consider that the smart sensors can make their decisions in a sequen-
tial, yet arbitrary order. In practice, this order can be dictated by which smart sensor
requests first to form its link. Thus, in the myopic network formation stage, each smart
sensor i selects a certain feasible strategy from its space Ŝi so as to minimize its cost in
(13). Each iteration in the network formation stage of the algorithm consists of a single
sequence of plays during which all M smart sensors make their strategy choices to my-
opically react to the choices of the other smart sensors. The myopic network formation
phase can consist of one or more iterations. In every iteration t, during its turn, each
smart sensor i chooses to play its best response s∗i ∈ Ŝi in order to minimize its cost
at each round given the current network graph resulting from the strategies of the other
smart sensors. The best response of each smart sensor is a replace operation as the smart
sensor disconnects its current link to the CAP while replacing it with another link that
minimizes its cost (if such a link is available). Hence, the proposed network formation
stage is based on the iterative feasible best responses of the smart sensors. When it con-
verges, the network formation stage is guaranteed to reach a network in which no smart
sensor can reduce its delay by changing its current link, i.e., a Nash network, defined as
follows for the studied game [15]:

Definition 4. A network graph G(M, E) in which no smart sensor i can reduce its cost
by unilaterally changing its feasible strategy si ∈ Ŝi is a Nash network.

A Nash network is simply the concept of a Nash equilibrium applied to a network
formation game. In the proposed game, a Nash network would, thus, be a network
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Table 1. Proposed network formation algorithm

Initial State

The starting network is a star network in which each smart sensor
is connected directly to the CAP.
The proposed algorithm consists of three stages

Stage 1 - Network Discovery:
Each smart sensor monitors the transmissions in the star network.
Given the monitoring results and, possibly, assistance from the
operator, each sensor gathers information on the other nodes.

Stage 2 - Myopic Network Formation:
repeat

In an arbitrary but sequential order, the smart sensors perform

network formation.

a) In every iteration t of Stage 2, each smart sensor i plays its

feasible best response s∗i ∈ Ŝi, while minimizing its cost.

b) The best response s∗i of each smart sensor is a replace

operation using which a smart sensor i splits from its current

parent smart sensor and replaces it with a new smart sensor

that improves its cost.

until convergence to a final Nash tree Gfinal.

Stage 3 - Multi-hop PLC Transmission:
During this phase, data transmission from the smart sensors

occurs using the assigned channels and hops within the formed

network tree structure Gfinal.

where no smart sensor can improve its utility, by unilaterally changing its current link,
given the current strategies of all other smart sensors.

Once a Nash network Gfinal forms, the last stage of the algorithm begins. This stage
represents the actual data transmission phase, whereby the smart sensor can transmit
their data using multi-hop PLC communication over the existing tree architecture Gfinal.
A summary of the proposed algorithm is given in Table 1.

The proposed algorithm can be implemented in a distributed way within any network
requiring PLC communication such as emerging smart grid networks. In essence, the
smart sensors (e.g., meters) can perform the algorithm of Table 1 with little reliance
on the CAP or other centralized control centers. For instance, the only role that may
be required from the CAP is to provide the smart meters with some assistance in the
network discovery phase, i.e., Stage 1 of the algorithm in Table 1. Once the sensors
are aware of their environment, within every iteration t, during its turn, each smart
sensor can engage in pairwise negotiations with the discovered nodes in order to find its
feasible best response from the set of feasible strategies. During this process, the smart
sensors need to only communicate in pairs and assess their potential cost function as
per (13). Subsequently, each smart sensor can select its myopic best response, leading
to a new iteration, until reaching the final Nash network. The worst case complexity for
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selecting the feasible best response (finding a preferred partner) for any smart sensor
i is O(M) where M is the total number of smart sensors. In practice, the complexity
is much smaller as the smart sensors do not negotiate with the smart sensors that are
connected to them, nor with the smart sensors that are too far away.

5 Simulation Results and Analysis

We consider a smart grid network deployed within a square area of 4 km × 4 km in
which the control center (or a repeater) is placed at the middle. The smart sensors are
deployed randomly inside this area and utilize narrowband PLC for transmission. Using
typical parameters from [1] and [7], we choose a bandwidth of W = 12.5 kHz for every
channel, we set the transmit power of any smart sensor i ∈ M to Pi = 25 W, we set
the attenuation level to κ = 0.007 and we set γ = −8.64. The values of γ and κ
are chosen within the typical best and worst cases [7]. For frequencies, we consider
the narrowband PLC frequency range from 10 kHz to 235 kHz. Using this range, the
CAP is able to offer 18 channels and, hence, it can accommodate up to M = 18 smart
sensors. Each smart sensor can offer up to 5 channels for the nodes wishing to connect
to it. The number of channels are picked randomly from integers between 1 and 5. All
channels offered by the smart sensors are within the range of 10 kHz to 235 kHz. The
packet size is set to R = 2048 bits and the number of packets is set to Li = 1 packet
for all i ∈ M.

In Figure 2, we show a snapshot of a tree structure resulting from the proposed
algorithm for a network with M = 10 randomly deployed smart sensors. This figure
shows how a tree structure can form as a result of the distributed decisions of the smart
sensors. In this snapshot, we can see that the smart sensors select their path not only
based on distance but also on the offered channels. For instance, although smart sensor
6 is closer to smart sensor 4 than to smart sensor 5, it prefers to connect to 5. This
is due to the fact that smart sensor 5 offers smart sensor 6 a communication over a
channel k such that Fk,1 = 137.5 kHz while smart sensor 4 offers a channel k such
that Fk,1 = 37.5 kHz. Hence, smart sensor 6 prefers to operate at a higher frequency as
this ensures a higher capacity, and, eventually a better delay. Further, due to Property 1,
smart sensor 7 decides to connect smart sensor 8 instead of smart sensor 10 since the
latter can offer only two frequencies and has already assigned these frequencies to smart
sensors 2 and 8. The strategies of all other nodes in Figure 2 are chosen by the smart
sensors using a somewhat similar reasoning. Moreover, the network in Figure 2 is a
Nash network as no smart sensor has an incentive to unilaterally change its current
link. For example, consider smart sensor 6 whose feasible strategies are all other smart
sensors and the CAP. If smart sensor 6 decides to disconnect from smart sensor 5 and
connect to:

– Smart sensors 1, 2, 7, 8, 9, or 10 its delay increase from 102.5 ms to about 382 sec-
onds.

– Smart sensor 3, its delay increase from 10 ms to 153 ms.
– Smart sensor 4, its delay increase from 102.5 ms to 120.1 ms.
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Fig. 2. Snapshot of a tree graph formed using the proposed algorithm for a network with M =
10 randomly deployed smart sensors

Hence, clearly, smart sensor 6 has no incentive to change its current strategy. Similar
results can be seen for all other smart sensors in the Nash network of Figure 2. In a nut-
shell, Figure 2 shows how the smart sensors can self-organize into a Nash network while
optimizing their delay given the offered frequencies and available potential partners.

Figure 3 shows the average achieved delay per smart sensor as the number of smart
sensors M varies. The results are averaged over the random positions and channel se-
lections of the smart sensors. The performance of the proposed network formation al-
gorithm is compared with the direct transmission performance, i.e., the star network, as
well as with a nearest neighbor algorithm in which each smart sensor selects the clos-
est partner (in terms of distance) to connect to. In this figure, we can see that, as the
number M of smart sensors in the network increases, the average achieved delay per
smart sensor increases for the star network and the nearest neighbor algorithm. For the
star network, this increase is due to the fact that, as the network size grows, it becomes
more likely to have smart sensors that are far away from the CAP, and, thus achieving
a poor capacity. Moreover, for the star network, the increase in the network size, con-
strains the channels that the CAP can offer. Hence, a larger star network will encompass
smart sensors that are using channels in the lower part of the frequency band, and, thus,
achieving a lower capacity as per (2)-(4).
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Fig. 3. Performance assessment of the proposed distributed network formation algorithm as the
number of smart sensors M in the network (average over random positions and random channel
choices of the smart sensors)

In the case of the nearest neighbor algorithm, the increase in the average delay with
increasing M is due to the fact that, as more smart sensors are deployed in the network,
the average delay resulting from a nearest neighbor-based multi-hop transmission in-
creases due to the additional traffic. Moreover, for the nearest neighbor case, a smart
sensor makes its selection solely based on distance and, hence, may connect to another
smart sensor that is offering channels in the lower part of the band, hence, decreasing
the potential capacity that can be achieved. Consequently, as the nearest neighbor al-
gorithm yields, on the average, longer transmission paths with little capacity gains, as
seen in Figure 3, its achieved average delays are larger than the star network.

In contrast, Figure 3 shows that, for the proposed network formation game, the av-
erage delay per smart sensor decreases with the network size. This result is interpreted
by the fact that as the network size M grows, each smart sensor has a larger pool of
partners from whom to select. Moreover, the increase in the number of smart sensors is
accompanied by an increase in the number of possible transmission paths and channels
that can be used. As a result, as more smart sensors are deployed, each smart sensor
is able to exploit further the benefits of the proposed network formation algorithm in
order to minimize its delay. In this respect, Figure 3 demonstrates that, at all network
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sizes M , the proposed network formation algorithm yields significant reductions of at
least 28.7% and 60.2% in terms of the average delay per smart sensor, relative to the
star network and the nearest neighbor algorithm, respectively.

6 Conclusions

In this paper, we have introduced a novel model for multi-hop communications in cyber-
physical networks (such as the smart grid) that are bound to adopt narrowband power
line communication for data transmission. In this respect, we have formulated a net-
work formation game among a number of smart sensors (e.g., smart meters) that seek
to transmit their data, using multi-hop, to a common control center or repeater. We
have shown that the outcome of the formulated game is a tree structure that intercon-
nects the smart sensors. To form this tree structure, we have developed a distributed
myopic algorithm based on game theory. Using the proposed network formation algo-
rithm, each smart sensor is able to decide, in a distributed manner, on its preferred path
for data transmission in such way as to optimize a cost function that captures the over-
all transmission delay. We have shown that, using the proposed algorithm, the smart
sensors self-organize into a Nash network in which no node has an incentive to change
its current data transmission path. Simulation results have demonstrated that the pro-
posed algorithm presents a significant advantage in terms of reducing average achieved
delay per smart meter of at least 28.7% and 60.2%, relative to the star network and a
nearest neighbor algorithm, respectively. Future extensions to this work can consider
interference over the narrowband power line communication channel, advanced chan-
nel scheduling techniques, as well as network formation algorithms that can adapt to
rapidly changing environments.
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