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Abstract. We consider in this work a group of secondary users with
backlogged traffic to transmit in the primary network. To avoid interfer-
ing with the primary user, each secondary user must perform interference-
aware spectrum sensing before transmission. Unlike conventional sensing
techniques, interference-aware spectrum sensing allows a secondary user
to adjust its sensing parameters for optimal performance depending on
the probability of interfering with the primary user. While interference-
aware sensing can achieve better performance for individual users, chal-
lenges arise when secondary users collaborate with each other for coop-
erative spectrum sensing due to their unequal interference probabilities
that result in a conflict for setting the optimal sensing parameters. To
model this problem, we consider an interference-aware cooperative sens-
ing game and analyze player behaviors under such a game. We find that
there is a unique pure Nash equilibrium of the game, but it tends to de-
viate from the desirable solution of social optimum. We then design a re-
peated game based on evolutionary game theory to address this problem.
Players in the repeated game have the chance to revenge “uncooperative”
players in ensuing repetitions for driving the equilibrium to the social op-
timum. We show through numerical results that the proposed game of
evolution does achieve the desirable performance for interference-aware
cooperative sensing in dynamic spectrum access.

1 Introduction

The concept of dynamic spectrum access allows unlicensed secondary users to
opportunistically fill in the white space left by the licensed primary user for bet-
ter utilization of the spectrum. To enable such opportunistic spectrum access,
an important step for the secondary user is to sense the spectrum before trans-
mission to detect the presence of the primary user [17,4]. Due to the stochastic
nature of channel fading and/or background noise, however, it is possible that
the signal detector at the secondary user makes an inaccurate detection decision
in terms of false alarm and missed detection. While occurrences of false alarm
and missed detection are equally undesirable that should ideally be minimized
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whenever possible, the fundamental tradeoffs between the two types of errors
prevent the detector from operating under arbitrarily small probabilities of false
alarm and missed detection [10,14].

To operate the signal detector in the desired operation region, related work
has proposed several sensing techniques and optimization frameworks for opti-
mizing the detector performance. For example, the authors in [12] aim to design
an optimal detector under non-Gaussian noise that can minimize the probability
of false alarm while ensuring that the probability of missed detection is below
the target threshold. While it is reasonable to limit the maximum probability of
missed detection while minimizing the probability of false alarm for ensuring that
the primary user is properly protected without suffering from undesirable inter-
ference [12,11,18,9], such a spectrum sensing strategy can become conservative
and result in sub-optimal performance for opportunistic spectrum access. The
reason is that different secondary users could potentially incur different degrees
of interference on the primary user when missed detection occurs. If secondary
users are required to provide the same level of protection to the primary user, a
secondary user with a lower probability of interference should ideally be allowed
to have a larger probability of missed detection during spectrum sensing. Prob-
ability of spectrum hole discovery and hence spectrum utilization can thus be
improved by employing such an interference-aware spectrum sensing technique.

While interference-aware spectrum sensing can potentially improve the per-
formance for individual users in opportunistic spectrum access, challenges arise
when secondary users collaborate with each other for cooperative spectrum sens-
ing. In cooperative spectrum sensing, a secondary transmitter cooperates with
a group of secondary users to make the transmission decision through fusing
the local decisions of individual signal detectors. It has been shown in related
work that cooperative sensing can indeed improve the sensing performance for
individual detectors under channel artifacts such as fading and noise [8,6,13].
In interference-aware cooperative spectrum sensing, however, since the optimal
sensing parameters depend on the interference probability of the concerned trans-
mitter, it is possible that the final decision is not optimal for other cooperating
users. In such a case, a secondary user may not have sufficient incentive to per-
form local spectrum sensing and contribute to the fusion process only to obtain
a final decision that does not improve its performance. If secondary users are
allowed to make their own decisions without considering the resultant benefit
of the whole group, interference-aware cooperative spectrum sensing cannot be
guaranteed to achieve the desirable performance gain due to cooperation.

To model this problem and gain more insights on finding the solution, we re-
sort to game theory and focus on the negotiation process for sensing parameters
in interference-aware cooperative spectrum sensing. A secondary user acts as a
player in the game and it participates in the game to determine its sensing pa-
rameters for maximizing its payoff. Under such a game model, as we show in Sec-
tion 3, there exists a pure Nash equilibrium where no player can change its sens-
ing parameters unilaterally without decreasing its payoff. The Nash equilibrium,
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however, fails to provide the socially optimal performance for all players due to
the selfish actions of individual players. To address the problem of sub-optimality
due to non-cooperation, we then design a repeated game based on evolutionary
game theory. In the repeated game, a stage game is played in repetitions where
each player can learn from history the actions of other players to adapt its action
in ensuing repetitions. Four different roles including Solitary, Leader, Follower,
and Glutton that players in the game can choose to act are proposed. To stimulate
cooperation, a special role ofAvenger is also included so disadvantaged player can
“punish” non-cooperative players with the goal of driving the equilibrium of the
game to social optimum. We show through numerical results that the proposed
repeated game can indeed stimulate cooperation through evolution of player roles
and achieve the desirable performance for interference-aware cooperative sensing
in opportunistic spectrum access.

The paper is organized as follows. Section 2 presents the network scenario as
well as the spectrum sensing and sharing models. Based on the system models,
Section 3 formulates a game for interference-aware cooperative spectrum sensing
and then presents the best responses of the players and the Nash equilibrium
thus obtained. Due to the selfish behavior of individual players, it is also shown
in Section 3 that the Nash equilibrium will deviate form the social optimum.
To address the problem, a repeated game based on evolutionary game theory is
proposed in Section 4 to stimulate cooperation among secondary users and drive
the equilibrium to the social optimum. Evaluation results in Section 5 show that
the proposed evolutionary game can indeed achieve the desired performance with
significant performance gains.

2 System Model

We consider a simple network scenario with one primary transmitter serving
as the base station of a cellular network or a TV broadcast station with service
range R. To leverage the spectrum holes in the frequency bands used by primary
users, secondary users can sense the activity of the primary cell and reuse the
spectrum when primary users are not active. Even when primary users are active,
secondary users can still reuse the spectrum as long as no undesirable interference
(as explained in Section 2.2) is incurred on primary users.

In such a scenario, a challenging issue is to achieve reliable spectrum sensing
when secondary users are outside the cell and the signal from the primary trans-
mitter is relatively weak. To mitigate the problem of channel artifacts such as
fading and noise, we assume that a group of secondary users G with backlogged
traffic cooperate for spectrum sensing. Secondary users operate on a TDMA-basis
by following the frame structure shown in Figure 1. In each frame, secondary
users in G first negotiate the sensing parameters (e.g. detection threshold for
an energy detector) to be used during the following sensing period. After nego-
tiation, each secondary user performs local spectrum sensing and then broad-
casts the local decision to be fused for the final decision in cooperative sensing.
If transmission opportunity (spectrum hole) is identified based on the sensing
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result, secondary users send in turns during the transmission slots until the next
frame starts. In the following, we explain in more details the spectrum sensing
and sharing models used for opportunistic spectrum access.
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Fig. 1. Frame structure for secondary users

2.1 Spectrum Sensing Model

We consider the use of an energy detector for detecting the presence of the
primary user due to its applicability to a wide range of signals and mathematical
amenity compared to other detectors [5,7]. A secondary user first senses the local
spectrum and takes N samples of the signal measurements. Denote H0 as the
case when the primary transmitter is inactive (no transmission) and H1 as the
case when the primary transmitter is active. Sample Yj [n] taken at time n by
secondary user j can then be written as follows:

Yj [n] =

{
Wj [n], H0,
Xj [n] +Wj [n], H1,

(1)

where Wj [n] is the sample of the additive white Gaussian noise (AWGN) with
variance σ2, and Xj [n] is the sample of the primary signal that we model as a
Gaussian signal [11]. To decide whether the primary signal is present, secondary

user j first computes a test statistic as Zj =
1
N

∑N
n=1 |Yj [n]|2. Based on the test

statistic Zj, secondary user j makes a positive decision (D = 1) regarding the
presence of the primary user if Zj ≥ θj , where θj denotes its detection threshold.
Otherwise, the spectrum is considered empty (D = 0).

Due to the stochastic nature of the background noise, it is possible that the
decision regarding the spectrum usage is not correct. False alarm occurs when
the primary user is inactive but determined to be active by the secondary user,
whereas missed detection occurs when the primary user is active but determined
as being inactive. With sufficiently large number of samples N , the probability

of false alarm P
(j)
FA and missed detection P

(j)
MD observed by secondary user j can

be derived as follows [11]:

P
(j)
FA = Q

(
θj − σ2√
2/Nσ2

)
, (2)

P
(j)
MD = 1−Q

(
θj − (Pj + σ2)√
2/N(Pj + σ2)

)
, (3)

where Pj is the mean power of the received primary signal at secondary user j,
and Q(·) is the complementary CDF of the standard Gaussian distribution.
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After the decision of the local spectrum sensing is made by each secondary
user, cooperative spectrum sensing is performed using decision fusion. We con-
sider in this paper the use of the OR rule for fusing local decisions from in-
dividual detectors. The probabilities of missed detection and false alarm for

the cooperative sensing set G can then be expressed as P
(G)
MD =

∏
j∈G P

(j)
MD and

P
(G)
FA = 1−∏

j∈G(1−P
(j)
FA). It is clear that P

(G)
MD depends on detection thresholds

θj of individual detectors and P
(G)
MD is smaller than P

(j)
MD of any user j in the

cooperative set.

2.2 Spectrum Sharing Model

As we mentioned earlier, in opportunistic spectrum access, a secondary user is
allowed to use the spectrum as long as it does not interfere with the primary
user. We thus define for secondary user j the probability of interfering with the

primary user as P
(j)
I = Prob(γ < γt), where γ is the mean SINR during the

reception of a packet with M symbols for a primary user at the closest point to
the secondary user. Assuming Gaussian primary and secondary signals similar
to [11], we can derive the probability of interference for sufficiently large value
of M as follows:

P
(j)
I = Q

(
Pp/γt − Pc − σ2√

2/M (Pp/γt + P 2
c + σ4)

)
, (4)

where Pp and Pc are the mean powers of primary and secondary signals at the
primary receiver respectively.

Note that P
(j)
I is the probability of causing interference when both the primary

and secondary transmitters are active. That is, it is a conditional probability that
applies when missed detection occurs. To allow for better spectrum reuse based
on interference-aware sensing, we can formulate the following constraint

P
(G)
MDP

(j)
I ≤ ε (5)

to ensure that the primary receiver at the worst point is not interfered (unable
to correctly decode the primary signal) by the secondary user with a probability
of at least 1−ε. For simplicity, we say that the secondary user does not interfere
with the primary user when Inequality (5) holds. If Inequality (5) does not hold,
on the other hand, the secondary user is not allowed to send for spectrum sharing.
Since different secondary users may incur unequal degrees of interference on the
primary user, there exists a conflict of interests in setting individual detection

thresholds for obtaining P
(G)
MD in cooperative spectrum sensing. We elaborate the

problem in the following section.

3 Interference-Aware Sensing Game

In this section, we first formulate a game to model the negotiation process
for spectrum sensing parameters in interference-aware cooperative spectrum
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sensing. We then find the best response of each player and derive the unique
Nash equilibrium and social optimum for the game.

3.1 Game Formulation

During the negotiation process of sensing parameters, each player (secondary
user) negotiates the detection threshold (that affects the final probability of
missed detection) to maximize its payoff. To determine the payoff, we note that
a spectrum hole exists for a secondary user under the following two cases:

– Prob (D = 0 | H0): The primary user is not active, and the secondary user
does not make any false alarm about the spectrum usage. The expected

throughput for this case can be expressed as (1−P
(G)
FA )(1−PE)C

(j)
0 , where PE

is the probability that the primary transmitter uses the spectrum, i.e. PE =

Prob(H1), and C
(j)
0 is the channel capacity at the corresponding receiver of

secondary user j when the primary user is inactive.
– Prob ({D = 0 | H1} ∩ {γ ≥ γt}): The secondary user makes missed detec-

tion when the primary user is active, but transmission of the secondary user
does not interfere with the primary receiver at the worst point (γ ≥ γt). The

expected throughput for this case can be expressed as P
(G)
MDPE(1−P

(j)
I )C

(j)
1 ,

where C
(j)
1 is the channel capacity at the corresponding receiver of secondary

user j when the primary user is active.

We can therefore define the payoff for secondary user j as the overall expected
throughput by summing the achievable throughput in the two cases:

C(j) = P
(G)
MDPE(1− P

(j)
I )C

(j)
1 + (1− P

(G)
FA )(1 − PE)C

(j)
0 . (6)

A rational secondary user j thus may adjust its detection threshold θj for max-
imizing the expected throughput. To ensure that primary users are properly
protected, however, we define the utility function for each player as follows:

U (j) =

{
C(j), P

(G)
MDP

(j)
I ≤ ε

0, Otherwise
, j ∈ G. (7)

That is, a secondary user gets the payoff (expected throughput) only when In-
equality (5) holds. Otherwise, the secondary user is not allowed to use the spec-
trum, and its payoff is zero.

3.2 Best Response

The utility function of secondary user j in Equation (7) is a function of P
(G)
MD, and

hence utility U (j) depends not only on the detection threshold θj of player j but
also on those of other players. Note that maximization of the utility function
with respect to θj as shown in Equation (7) belongs to monotonic optimiza-
tion [15]. Hence, the optimal value of θj that maximizes the utility occurs on the
boundaries of the constraints as follows:
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– If

(
P
(j)
I

∏
k∈G,k �=j

P
(k)
MD

)
> ε, optimal θj occurs on the boundary of the inter-

ference constraint such that P
(G)
MDP

(j)
I = ε. Using Equation (3), we have

θ∗j = (σ2 + Pj){1−
√

2/NQ−1[ε/(P
(j)
I

∏

k∈G,k �=j

P
(k)
MD)]}. (8)

– If

(
P
(j)
I

∏
k∈G,k �=j

P
(k)
MD

)
≤ ε, optimal θj occurs when P

(j)
MD = 1 or P

(j)
FA = 0.

It can be observed from Equations (2) and (3) that θ∗j → ∞. This is a
special case since the local sensing results contributed by other players are
already sufficient for protecting the primary receiver. It is thus not necessary
for player j to perform local sensing, and its best strategy to maximize the
expected throughput thus is not to perform any local sensing but use the
result from cooperative sensing.

A player in the game can therefore determine its detection threshold (best re-
sponse) for maximizing its payoff given the detection thresholds of other players.

3.3 Nash Equilibrium

As discussed in Section 3.2, the maximum payoff for player j occurs on the

constraint boundary, i.e. P
(G)
MD = ε/P

(j)
I . While P

(G)
MD is shared by all members

in cooperative sensing, P
(j)
I is different for different players in the group. For a

player with a larger P
(j)
I , it would desire a smaller P

(G)
MD to maximize its payoff

without violating the interference constraint. It therefore needs to reduce the

detection threshold θj such that P
(j)
MD and P

(G)
MD can be decreased. On the other

hand, a player with a smaller P
(j)
I would desire a larger P

(G)
MD by increasing

detection threshold θj and P
(j)
MD. Negotiation of detection thresholds comes to

an end when no player wants to change its threshold unilaterally. As we show in
the following, there is exactly one pure Nash equilibrium in the game.

Firstly, according to Equation (3), the probability of missed detection P
(j)
MD

and the detection threshold θj has 1-to-1 mapping. We can then use P
(j)
MD in

place of θj as the response of player j for notation clarity. Now let player k be

the one with the maximum interference probability, i.e. k = argmax
j∈G

P
(j)
I . The

unique pure Nash equilibrium of the interference-aware spectrum sensing game

can then be written as (1, · · · , ε/P(k)
I , · · · , 1). Equivalently, in Nash equilibrium

the probability of missed detection of all players is 1 except for player k such that

P
(G)
MD = P

(k)
MD = ε/P

(k)
I . In such a case, player k takes all responsibility of spectrum

sensing because it has the most stringent interference constraint for protecting
the primary user. Other players are simply free-riders who can obtain the final
sensing decision without contributing any local sensing results. Therefore, un-
der the Nash equilibrium, the cooperative spectrum sensing game turns out to
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non-cooperative, single-node spectrum sensing. The Nash equilibrium clearly is
far from being social optimum in terms of cooperative spectrum sensing. This
motivates us to develop rules for the game so that a socially optimal equilibrium
can be achieved.

3.4 Social Optimum

To compare the Nash equilibrium against the social optimum, we first define the
social utility as the sum of the expected throughput of all secondary users in G.
Finding the social optimum is then equal to finding the optimal solution of the
following optimization problem:

Maximize
θj , j∈G

∑
j∈G

C(j), subject to P
(G)
MDP

(j)
I ≤ ε, ∀j ∈ G. (9)

Although Problem (9) is not a convex problem, it belongs to monotonic pro-
gramming and hence the global optimal solution can be found.

To start, note that due to the monotonic increasing property of P
(G)
MD with

respect to θj , the interference constraint for the user with the largest interference

probability, say user k = argmax
j∈G

P
(j)
I , will hit the boundary first. Hence, the |G|

interference constraints can be replaced by P
(G)
MD = ε/P

(k)
I . In addition, since θj

and P
(j)
MD has 1-to-1 mapping, the optimization problem can then be rewritten

as:
Maximize
P
(j)
MD, j∈G

∏
j∈G

(
1− P

(j)
FA

)
, subject to

∏
j∈G

P
(j)
MD =

ε

P
(k)
I

. (10)

As can be observed from Problem (10), the objective and constraint functions
are products of |G| independent functions each with only one variable as the pa-
rameter. Such a property makes it amenable to a solution based on dynamic pro-
gramming [1] that solves a complex problem by recursively breaking into simpler
sub-problems. To detail, assume cooperative set G = {1, 2, ..., |G|} without loss
of generality. The original problem can be solved in |G| stages (sub-problems),
and each stage can be solved using the following recursive equation:

f (j)(S(j)) = Maximize
P
(i)
MD

(
1− P

(j)
FA

)
· f (j+1)

(
S(j+1)

)
,

subject to P
(j)
MD · S(j+1) = S(j),

(11)

where state S(j) indicates the value of the constraint function counting only
detectors {j, ..., |G|} and f (j)

(
S(j)

)
is the maximum cumulative payoff from

stage j to |G| under state S(j).
Algorithm 1 thus shows the pseudo-code for finding the optimal thresholds in

interference-aware cooperative sensing. While Problem (10) has continuous state
in [0, 1], it can be solved through proper discretization of the state space [2].
Input to the algorithm includes δ1 and δ2 that are used to control the search

granularity for state S(j) and variable P
(j)
MD respectively. The algorithm consists
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Algorithm 1. Finding optimal detection thresholds

Input: Protection constraint ε/P
(k)
I , granularity δ1 and δ2

Output: Detection thresholds θ∗j , ∀j ∈ G = {1, 2, ..., |G|}
01: for (j = |G|; j ≥ 1; j −−) // iterate for stages

02: for (Ŝ = ε/PI; Ŝ ≤ 1; Ŝ = Ŝ + δ1) // iterate for states
03: if (j == |G|) // starting stage

04: f (j)
(
Ŝ
)
= 1− P

(j)
FA

(
Ŝ
)
, P

(j)
MD

(
Ŝ
)
= Ŝ

05: else
06: for (P̂MD = Ŝ; P̂MD ≤ 1; P̂MD = P̂MD + δ2)

07: f̂ =
[
1− P

(j)
FA

(
P̂MD

)]
· f (j+1)(

̂S
̂PMD

)

08: if
(
f̂ > f (j)

(
Ŝ
))

09: f (j)
(
Ŝ
)
= f̂ , P

(j)
MD

(
Ŝ
)
= P̂MD

10: end if
11: end for // found optimal P̂MD

12: end if
13: if (j == 1) break // only one state for stage 1
14: end for
15: end for
16: for (j = 1, Ŝ = ε/P

(k)
I ; j ≤ |G|; j ++) // trace back

17: θ∗j = (σ2 + Pj)
{
1−

√
2
N
Q−1

[
P
(j)
MD

(
Ŝ
)]}

18: Ŝ = Ŝ/P
(j)
MD

(
Ŝ
)

19: end for

of three layers of loops: the first layer from Line 1 to Line 15 is used to iterate
from stage |G| to stage 1. For each stage, each possible state is examined for
calculating the cumulative payoff as shown between Line 2 and Line 14. The best
payoff for each state is obtained by solving Problem (11) as shown between Line

6 and Line 11. Once the optimal P
(j)
MD leading to the best payoff is obtained for

each state, it is recorded to facilitate back-tracing when stage 1 reaches. Line 16
to Line 19 show how back-trace from stage 1 to stage |G| is done for retrieving
the optimal sequence of states and detection thresholds. We note that while

the feasible region of P
(j)
MD of each detector j is between 0 and 1, in traversing

states from stage |G| backwards, we can utilize the concept of the cutting plane
method [3] to cut the feasible region and reduce the computation complexity.

Briefly, since S(1) = ε/P
(k)
I and S(j+1) = S(j)/P

(j)
MD, we have S(j) ∈ [ε/P

(k)
I , 1]

and P
(j)
MD ∈ [S(j), 1]. Limiting the search range for S(j) in each stage (Line 2) and

P
(j)
MD in each state (Line 6) can significantly reduce the computation complexity.

4 Evolution of Cooperation

The game presented in Section 3 can be regarded as a one-shot game that only
models spectrum sensing within a frame in Figure 1, where secondary users
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pay the cost of spectrum sensing and earn the payoff from spectrum usage.
For a group of backlogged secondary users, however, the demand for spectrum
access can extend to several frames. Therefore, the one-shot game can be played
repeatedly for continuous sensing and access of the spectrum. As we have shown
in Section 3, the Nash equilibrium of the one-shot game is not the social optimum
due to individual players selfishly maximizing their own utilities. To stimulate
cooperation, we design a repeated game in this section with the goal of achieving
the socially optimal equilibrium. Each secondary user in the repeated game
maintains a list to remember payoff and corresponding actions in the past such
that a player can adapt its best response based on the concept of evolution. In
addition, we design the mechanism for cooperative players to punish selfish ones
through repetitions of the game. In the following, we first analyze and classify
possible strategies for a player to adopt in the repeated game, and then we
present the evolutionary learning model.

4.1 Strategies in the Repeated Game

In a repeated game, a player may take into account the impact of its current
action on future actions of other players. In addition, a player may have its
own “personality” in choosing the best strategy of action during repetitions of
the game. We classify four different strategies (roles) to model the behavior of
players as follows:

Solitary. A solitary, say user j, is a conservative player who sets the detection
threshold as in the case of single-node sensing. As a result, even if all other players

are free-riders such that P
(i)
MD = 1, i 	= j, a solitary can still ensure that the final

decision P
(G)
MD = P

(j)
MD will meet its interference constraint. Specifically, a solitary

sets P
(j)
MD as ε/P

(j)
I to satisfy the interference constraint P

(G)
MDP

(j)
I ≤ ε while

maximizing its utility. Clearly, without relying on the cooperation of others,
a solitary can always get non-zero payoff as the case for single-node sensing.
However, it cannot benefit from the increased payoff due to cooperative sensing.

Hence, if not all player are free-riders, P
(G)
MD is smaller than the expected value,

and the utility of a solitary is not maximized.

Leader. In contrast to a solitary, a leader aims to fully utilize the gain of co-
operative sensing through active coordination of the negotiation process among
players. Effectively, a leader sets its constraint as the most stringent one such

that P
(G)
MD = ε/P

(j)
I . It then applies Algorithm 1 to compute the optimal detec-

tion thresholds and then broadcasts the results to all players. In this way, its
utility is maximized if all other players follow the coordination; if some players
do not follow the coordination, however, its utility is not maximized.

Follower. Instead of coming up with the “optimal” threshold for itself, a follower
simply uses the suggestion from other players. If there is only one leader in the
game, a follower simply follows the command of the former. If there are more
than one leaders in the game, a follower adopts the command from the leader
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with the minimum detection threshold value. Finally, if no leader exists in the
game, a follower copies the minimum threshold among other players.

Glutton. A glutton, say player j, at each repetition maximizes its utility by

pushing P
(G)
MD to its constraint boundary such that P

(G)
MD = ε/P

(j)
I . To do so, a

glutton collects the responses from other players and then makes its decision

as P
(j)
MD = min{1, ε/(P(j)

I

∏
i∈G, i�=j

P
(i)
MD)}, where P

(i)
MD, i 	= j are responses of other

players. It is possible, however, that a glutton fails to collect the correct responses
from all other players such that estimation of responses is needed. While over-
estimation of responses results in less payoff, under-estimation results in zero
payoff due to violation of the interference constraint.

In addition to the aforementioned four strategies in the repeated game, a spe-
cial strategy called Avenger is proposed to stimulate cooperation. An avenger
is a special role used for punishing non-cooperation (selfishness) of other players.
If the final result of the negotiation fails to satisfy the interference constraint of a
player, the “unsatisfied” player deviates from the original role by always claim-
ing a positive decision (D = 1) regardless of its sensing result. Consequently,

P
(j)
MD = 0 and hence P

(G)
MD = 0 for the whole group. Equivalently, the expected

payoff is zero for all players in the group, including the avenger itself. Since no
player including selfish ones can get non-zero payoff, it is possible that in the
next repetition non-cooperative players will be less “selfish” for improving its
utility.

We have identified four possible strategies (roles) in the repeated game, but
a secondary user may still need some rule for determining a suitable role for
maximizing its utility. We present in the next section how the theory of evolution
can be used for role learning.

4.2 Evolution of Strategies

As in the theory of evolution, a player selects the fittest strategy to be applied
(for survival) in the game. If a strategy can bring more payoff than others to a
player, the player has tendency to use it in ensuing game repetitions and hence
the probability (time ratio) of choosing that strategy will increase. The replicator
equation used in evolutionary game theory [16] for modeling the population of
a species under Nature selection can then be applied to govern the dynamic
increase and decrease of the probability distribution.

To start, Algorithm 2 shows the flow of how a secondary user plays the re-

peated game and learns its role based on the replicator equation. Let P
(j)
S , P

(j)
L ,

P
(j)
F and P

(j)
G denote the probabilities (time ratios) of player j choosing Solitary,

Leader, Follower and Glutton respectively as the strategy. Initially, a player as-
signs equal probability to each strategy (Line 1). After the game starts, in each
repetition, a player randomly chooses a strategy as the action based on the cur-
rent distribution of strategies (Line 3). When a strategy is selected, a player
follows the rule of the strategy to determine its PMD and detection threshold
as presented in Section 4.1 (Line 4). After the negotiation process is complete,
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Algorithm 2. Role evolution of player j ∈ G
Input: Protection constraint ε/P

(j)
I and learning step size α

Output: P
(j)
S , P

(j)
L , P

(j)
F and P

(j)
G

01: P
(j)
S = P

(j)
L = P

(j)
F = P

(j)
G = 0.25 and t = 1

02: while (j ∈ G)
03: A[t] = rand(P

(j)
S , P

(j)
L , P

(j)
F , P

(j)
G )

04: Claim P
(j)
MD according to role A[t]

05: if
∏

i∈G
P
(i)
MD > ε/P

(j)
I

06: Become an Avenger
07: end if
08: Apply corresponding θj to sense the spectrum
09: Earn the corresponding utility U (j)[t] as shown in Equation (7)
10: Record the best response up to t: A∗ = A[ arg max

1≤τ≤t
U (j)[τ ] ]

11: Update fitness: φj(A
∗) = φj(A

∗) + 1
12: Update strategy distribution:

P
(j)
a =

{
(1 + α)

(
φj(a)− φ̄j

)}
P
(j)
a , a ∈ {S, L, F, G}

13: t = t+ 1
14: end while

a player checks PMD claimed by all other players. If the player fails to access
the spectrum due to violation of its interference constraint, it switches to an
Avenger; otherwise, it uses the sensing parameter as claimed to sense the spec-
trum (Line 5 to Line 8), and then evaluates its payoff using the utility function
shown in Equation (7). A player maintains a data structure to remember its
responses and the correspond payoff in history (Line 10). The player can then
update the distribution of strategies using the replicator equation as follows.

In the replicator equation, the increasing rate of strategy a of player j can be
modeled as:

Ṗ
(j)
a =

[
φj(a)− φ̄j

]
P
(j)
a , a ∈ {S, L, F, G}, (12)

where φj(a) is the fitness of strategy a ∈ {S, L, F, G} and φ̄j is the mean fitness

of strategies of player j that can be written as φ̄j =
∑

a∈{S,L,F,G} P
(j)
a φj(a). If

a strategy has larger fitness than the mean fitness, its increasing rate Ṗ
(j)
a is

positive. Otherwise, the rate decreases. In addition, since the population of the

next generation also depends on the current population, the increasing rate Ṗ
(j)
a

is proportional to the current value of P
(j)
a . To reflect the objective of a player,

the fitness of a strategy is designed as the times of bringing maximum payoff
through history. Player j can then update the probability of each strategy in
each repetition based on the following equation:

P
(j)
a = P

(j)
a + αṖ(j)

a , a ∈ {S, L, F, G}, (13)

where α is a positive constant indicating the learning step size. It can be easily

shown that the sum of P
(j)
a is equal to 1 after the update because the sum of
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P
(j)
a is one initially and the sum of Ṗ

(j)
a is zero. As repetition proceeds, a role

with the largest probability for a player becomes the best role for itself.

5 Evaluation Results

In this section, we first show the convergence of the repeated game based on Al-
gorithm 2 and then show its performance gain compared to the Nash equilibrium
of the stage game under different scenarios.

5.1 Evolution of Strategies

We consider a network of three secondary users with different levels of interfer-
ence to the primary user. PI of three users are 0.99, 0.9 and 0.6 respectively, and
the requirement of the protection threshold ε is 0.05. Figure 2 thus shows the
evolution of roles for players 1 and 3. Initially, each player assigns equal weight
to each role. After 100 repetitions of the sensing game, the weight of each role
becomes different, where player 1 has more probability to be a Glutton or a
Solitary and player 3 enjoys the benefits of being a Leader. After another 100
repetitions of the game, the distributions exhibit quite different behaviors. Since
player 1 has the most stringent constraint, it is okay for it to be a Leader while
the other two act as Followers. On the other hand, it would be problematic if
player 3 becomes a Leader or player 1 becomes a Glutton. Thus, the probability
of (Leader, Follower, Follower) for players 1, 2, and 3 respectively shows clear
increase. After 400 repetitions, the optimal roles for individual players become
clear where player 1 acts as the Leader to solve the detection thresholds for all
players, and other players follow the coordination of the Leader. Since detection
thresholds are solved with the tightest constraint by Algorithm 1, it is also a
social optimal solution. On the other hand, if the game is played without the
Avenger, players quickly realize that greedy and risky strategies bring zero pay-
off. Consequently, all players become solitary and act conservatively. The results
without the Avenger are not presented due to lack of space.

5.2 Gain of Evolution

Figure 3 shows the results when the cooperative set varies from 2 to 6 nodes.
The right Y-axis shows the total expected throughput of the secondary users,
and the left Y-axis shows the price of anarchy (PoA) defined as the achieved
value over the social optimal value. It can be observed from the figure that in
all cases the total expected throughput in the repeated game approaches the
optimal performance and outperforms the Nash equilibrium. In turns of the
PoA, it can be observed that the PoA of the Nash equilibrium decreases from
73% to 65% as the number of players increases. The reason is that under the
Nash equilibrium, all players rely on the one with the most stringent constraint
to sense the spectrum, and the gain of cooperation due to node diversity is not
fully utilized.
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Fig. 2. Evolution of strategies in the repeated game
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Fig. 3. Performance for different numbers of players

Figure 4 shows the results as the external interference varies from 0 to 1 (1
means that additional interference equal to the background noise is added during
spectrum sensing). Note that as the external interference increases, it is more
difficult to correctly detect the activity of the primary user and cooperation
among nodes becomes more important. As the figure shows, the performance
gain (compared to the result of the Nash equilibrium) of the repeated game
increases as external interference increases and as the number of nodes increases.
This substantiates that the proposed repeated game can indeed address the non-
cooperative problem in the original one-shot game.
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6 Conclusions

In this work, we investigated the problem of interference-aware spectrum sensing
for opportunistic spectrum access in cognitive radio networks. We showed that
because different secondary users may have different levels of interference to the
primary user, there is a conflict in setting the optimal sensing parameters for
cooperative spectrum sensing. An interference-aware sensing game does not solve
the problem since its Nash equilibrium will deviate from the social optimum.
To address this problem, we designed a repeated game based on evolutionary
game theory so players have the chance to revenge “non-cooperative” players in
ensuing repetitions for driving the equilibrium to the social optimum. We showed
through numerical results that the proposed repeated game does achieve the
desirable performance for interference-aware cooperative sensing in opportunistic
spectrum access.
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