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Abstract. Spectrum scarcity is becoming a serious issue due to the
rapid development of wireless communication technology. Dynamic spec-
trum sharing can effectively improve the spectrum usage by allowing
secondary unlicensed users (SUs) to dynamically and opportunistically
share the spectrum with primary licensed users (PUs). In this paper, we
investigate a spectrum negotiation mechanism under incomplete infor-
mation in a dynamic environment, where both the PU and the SU can
obtain rate increases through cooperative communications. Specifically,
an SU relays traffics for a PU in exchange for dedicated transmission time
for the SU’s own communication needs. We model the bargaining process
as dynamic Bayesian games and characterize the Perfect Bayesian Equi-
libria under different system model parameters. Analysis and numerical
results indicate that both PU and SU obtain performance improvements
compared with no cooperation, and thus achieve a win-win situation via
the spectrum negotiation.

Keywords: dynamic spectrum negotiation, incomplete information,
game theory, perfect bayesian equilibrium.

1 Introduction

Wireless spectrum is generally regarded as a scarce resource, and has been tightly
controlled through licensing. Recent field measurements showed that, however,
most licensed spectrum bands are heavily underutilized even in densely popu-
lated urban areas [1]. This indicates that the current fixed license-based spectrum
allocation policy is not efficient. As one promising technology to address this is-
sue, cognitive radio technology [2] enables efficient dynamic spectrum sharing
among secondary unlicensed users (SUs) and primary licensed users (PUs). One
way to achieve dynamic spectrum sharing is through market-driven spectrum
negotiation/bargaining1, which leads to a win-win situation by improving the
payoffs of both PUs and SUs. In spectrum negotiation, PUs and SUs jointly
decide (i) how PUs allocate resource to SUs, and (ii) how SUs compensate PUs
either by offering monetary payments or providing performance improvements.

1 In this paper, we use “negotiation” and “bargaining” interchangeably.
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There are two key challenges for implementing spectrum negotiation: asym-
metric information and dynamics. Spectrum negotiation often involves incom-
plete and asymmetric information, such as transmission power, energy cost, and
channel state information of the users. This often complicates the decisions.
Moreover, the negotiation can involve multiple periods, during which PUs and
SUs need to update beliefs about its opponent’s information and adjust their own
strategies accordingly. In this paper, we present a first step on understanding
how to address the above two issues for spectrum negotiation.

There are two types of spectrum negotiation mechanisms: monetary-exchange
and resource-exchange. In a monetary-exchange mechanism, SUs provide (vir-
tual) money to the PUs in exchange of spectrum resource. Reference [3] stud-
ied a sequential second-price auction mechanism for sharing a wireless resource
(bandwidth or power) among competing transmitters, where a spectrum man-
ager is responsible for allocating spectrum among non-cooperative secondary
users. Reference [4] addressed spectrum pricing in a cognitive radio network,
where multiple PUs compete to offer spectrum access opportunities to SUs. Ref-
erence [5] further investigated price competition with multiple PUs and multiple
SUs by taking into account both bandwidth uncertainty and spatial reuse. The
monetary-exchange model is suitable when PUs have temporarily idle resource.
However, when PUs’ own transmission demands cannot be satisfied (e.g., when
PUs suffer from poor channel conditions), there will be no resource left for allo-
cating to SUs. In this case, the resource-exchange model can be helpful.

In a resource-exchange model, SUs provide communication resources (e.g., the
transmission power) to assist PUs’ transmissions in exchange for spectrum usage.
In this paper, we consider an resource-exchange model, where PU has a poor
channel link to its receiver (e.g., base station). Our study is motivated by [6],
where the remuneration of spectrum negotiation is realized by the cooperative
transmission of SUs. In [6], a single PU knows utility functions of the SUs, and
thus there is no asymmetric or incomplete information. The PU optimizes the
resource splitting based on either instantaneous or long-term network channel
state information of the whole system. Due to complete information, SUs simply
follow the PU’s spectrum leasing decision and there is no bargaining. Reference
[7] considered a similar cooperative spectrum sharing scheme between multiple
PUs and multiple SUs, again based on complete information. The only recent
publication dealing with incomplete information of spectrum negotiation is [8],
which proposed a contract mechanism between one PU and multiple SUs in a
static network environment.

Compared with [6] and [7], we study a dynamic spectrum bargaining process
with incomplete information, where both the PU and the SU have the negotiation
power. The incomplete information model better captures the reality of wireless
communications, but so far has received little attention in the literature due
to its high analysis complexity. The most related research result in terms of
methodology is the incomplete information game of wireless power control [9],
where the authors studied a completely different application scenario (not related
to cognitive radio).



518 Y. Yan et al.

Our paper is the first one that jointly considers incomplete information and
dynamic bargaining in spectrum negotiation. The key results and contributions
are summarized as follows:

– Introduction of asymmetric information: We model the realistic situation
where the PU does not know the complete information of the SU. Specifically,
we assume that PU is unaware of the exact value of SU’s energy cost C, but
has a belief about C’s distribution. We compute the equilibrium behaviors
for both PU and SU with such asymmetric information.

– Dynamic negotiation process: We investigate a multi-stage bargaining model,
where both the PU and the SU have negotiation power. As the bargaining
proceeds, PU and SU must adjust their beliefs about incomplete informa-
tion and strategies accordingly. This can be modeled as a dynamic Bayesian
game which is challenging to analyze. We explicitly compute and charac-
terize multiple equilibria for a two-stage bargaining game. We demonstrate
the existence of two types of equilibria, and show that one is more Pareto
efficient than the other in the expected sense.

The rest of the paper is organized as follows. We introduce the system model
and problem formulation in Section 2. In Section 3, we analyze the one-stage
bargaining model, which serves as the basis for the two-stage bargaining model in
Section 4. In Section 5, we discuss various insights obtained from the equilibrium
analysis through numerical studies. We conclude in Section 6.

2 PU-SU Negotiation and Cooperation Model

Throughout this paper, we denote primary user and secondary user as PU and
SU, respectively. We consider a time-slotted system, where one PU negotiates
the spectrum allocation with one SU. Figure 1 introduces the key notations of
the system model. Here, TP and RP represent the primary transmitter and
receiver, and TS and RS represent the secondary transmitter and receiver. Let
hp, hs, hps and hsp denote the channel gains of the links between TP and RP ,
TS and RS, TP and TS, and TS and RP , respectively. We consider a block
fading channel model, where the channel gains are fixed during one time slot and
can change across time slots. We further assume that both PU and SU know the
channel gains of all the links through a proper feedback mechanism2. The fixed
transmission powers of the PU and SU are denoted as Pt and Ps, respectively.
Our model can describe the situation where a cellular subscriber (PU) wants to
send traffic to a base station which is far away, and a laptop user (SU) can help
to relay the traffic for the cellular subscriber (see Fig. 1).

This stylized model enables us to analytically study the challenging issues of
asymmetric information and dynamics. Such one-to-one model has been common
in the economics literatures (e.g., [12–14]). In contrast, some recent economics

2 In this paper, we focus on the study of incomplete information related to energy cost.
The study of incomplete information related to channel conditions can be studied
based a similar methodology and will be considered in the future work.



Dynamic Spectrum Negotiation 519

Fig. 1. PU-SU Cooperation Model

literatures (e.g., [15]) discussed more complicated models (e.g., one-to-many bar-
gaining model) in a static or dynamic setting without information incomplete-
ness. However, our focus in this paper is on dynamics in the bargaining with
incomplete information, in which case the negotiation among multiple users is
difficult to analyze even in the economics literature. We believe that a thor-
ough understanding of the one-to-one model can help us to better tackle the
one-to-many and many-to-many spectrum negotiation scenarios in the future.

Next we describe how the system works. Without spectrum negotiation, the
PU directly transmits from TP to RP and achieves a data rate Rdir (determined
by transmission power Pt and direct channel gain hp). In that case, the SU can-
not transmit and achieves a zero rate. However, spectrum negotiation becomes
attractive to the PU if the direct channel hp is poor but the relay channels hps

and hsp are good. In this case, the PU can increase its own data rate by using
the SU transmitter TS as a relay. To attract the help from SU, the PU offers
the SU α fraction of the transmission time for SU’s own transmission (from TS
to RS). Apparently, a larger α means a higher data for SU but a lower data
rate for PU (due to the reduction of transmission time). PU and SU will bargain
with each other to determine the value of α that is acceptable by both sides.
Figure 2 illustrates three possibilities of the bargaining result. Without loss of
generality, we normalize the time slot length T to 1, and denote τ � 1 as the
time “wasted” due to bargaining.

– Figure 2(a): At the beginning of the time slot, PU can choose to directly
transmit during the whole time slot without bargaining, if it believes that
SU cannot provide a performance improvement.

– Figure 2(b): If PU decides to bargain, then the unit time slot is divided into
two phases: bargaining and transmission. During the bargaining phase, PU
and SU negotiate on the fraction of the remaining time, α, to be allocated
for the SU’s own transmission. If no agreement is reached, PU proceeds with
direct transmission for the remaining time without the cooperation of SU.
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Fig. 2. Three Possibilities in Negotiation Process

– Figure 2(c): If an agreement is reached in the bargaining phase, then PU
and SU transmit in an amplified-and-forward relay mode. The transmission
can be further divided into three time periods. In the first period, primary
transmitter TP broadcasts the data, and both primary receiver RP and
secondary transmitter TS receive the information. In the second period, the
secondary transmitter TS amplifies the received signal and forwards it to the
primary receiver RP . The primary receiver RP combines the signal received
from the first and second periods based on the maximum ratio combining
scheme and decodes the signal. In the third period, SU utilizes the remaining
third period (i.e., α fraction of the (1 − τ) transmission time) for its own
transmission.

In this paper, we assume that SU is an energy-constrained device (e.g., wireless
sensor or mobile device). Parameter C is the SU’s energy cost, which is
related to SU’s current battery status. We further assume that the precise value
of C is known by SU but not by PU3, thus the information is asymmetric.
However, PU knows the distribution of C, and hence it is incomplete information.
To simplify the analysis, we assume that C follows a uniform distribution4.

Let us consider how both users make their decisions. SU chooses to accept
or reject the offer α to maximize its utility function Us, which is the difference
between the achievable data rate and the energy cost. By taking the SU’s re-
sponse into consideration, PU chooses the optimal offer α to maximize its utility
function Up, which is the expected data rate increase. Details of Us and Up will
be given shortly.

Finally, we note that the bargaining period with length τ in Fig. 2(b) and (c)
can include multiple stages, i.e., users can bargain multiple times within the same

3 If PU knows the value of C, it can simply calculate α so that SU gets zero payoff.
This is a special case of the general model discussed here.

4 The analysis for other distributions will be technically more involved but offers
essentially the same engineering insights.
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time slot. As a preliminary result, we first study the one-stage bargaining case
in Section 3. This will help us to study the multi-stage bargaining in Section 4.

3 One-Stage Bargaining Game

In this section, we consider the case where there is at most one stage of bargaining
in a time slot. The proportion of the time slot after bargaining is δ = (1 −
τ) < 1, where τ is the duration of one-stage bargaining. PU needs to decide
(i) whether to bargain, and (ii) the optimal offer α if it decides to bargain. SU
should decide whether to accept the offer of α (if the PU offers one). The SU’s
utility function Us is the difference between the achievable data rate and the
energy cost,

Us(α) = δ

(
αRs − 1 + α

2
PsC

)
,

where Rs = log(1+Pshs) is the SU’s own fixed data rate per unit time between
its own transmitter and receiver (TS and RS). A good way to understand the
utility function is to think C as data rate per watt the SU can get if it does not
relay for PU. Therefore, Us(α) is SU’s data rate increase by accepting the offer
α. Given PU’s offer α, the optimal decision for SU is obvious: accept α if and
only if Us(α) > 0.

Now let us consider PU’s rate increase maximization problem. Without bar-
gaining, the PU can always achieve a rate of Rdir through direct transmission
as in Fig. 2(a). In that case, its rate increase is zero. Now let us calculate how
much PU can gain by bargaining with SU. Without any prior knowledge, PU as-
sumes that SU’s energy cost C follows a uniform distribution in [K1, K2], where
0 ≤ K1 < K2. Due to such incomplete information, PU does not know whether
the SU will accept or reject a particular choice of α before offering it. If the SU
rejects the offer as in Fig. 2(b), PU can only directly transmit in the remaining δ
time and achieve a negative rate improvement (δRdir −Rdir) < 0. If SU accepts
the offer as in Fig. 2(c), PU receives a rate increase of δ 1−α

2 Rr−Rdir, which can
be either positive or negative. Here Rdir and Rr are the data rates achieved by
PU’s direct transmission and AF relay [10] respectively, i.e., Rdir = log(1+Pthp)

and Rr = log
(
1 + Pthp +

PtPshpshsp

Pthps+Pshsp+1

)
. Therefore, if the PU decides to bar-

gain with the SU, it will choose α to maximize the PU’s utility (expected
rate increase) defined as

(δRdir −Rdir) Prob (Us(α) ≤ 0) +

(
δ
1− α

2
Rr −Rdir

)
Prob (Us(α) > 0) (1)

where Prob (Us(α) ≤ 0) and Prob (Us(α) > 0) are the probabilities for SU to
reject and accept offer, respectively. Denote the optimal time fraction that max-
imizes (1) as α∗. The PU will choose to bargain if and only if Up(α

∗) ≥ 0.
Otherwise, it will simply choose direct transmission as in Fig. 2(a). The optimal
choice α∗ that maximizes (1) is given in the following theorem:
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Theorem 1. When K1 > Rs/Ps, Up(α) = −(1− δ)Rdir < 0 for any α ∈ [0, 1].
When K1 ≤ Rs/Ps, then

α∗ = min

(
max

(
ᾱp,

K1

2Rs/Ps −K1

)
,min

(∣∣∣∣ K2

2Rs/Ps −K2

∣∣∣∣ , 1
))

(2)

where

ᾱp = 2

√
(Rs/Ps)(Rr −Rdir)

Rr(2Rs/Ps −K1)
− 1

2
.

The proof of Theorem 1 can be found in our online technical report [16]. When
K1 (the minimum possible value of the SU’s energy cost C) is larger than Rs/Ps,
the SU will not accept any offer α from the PU. In this case, the PU knows
that the bargaining will fail and thus will choose direct transmission. When
K1 ≤ Rs/Ps, PU will choose the optimal offer α∗ in (2) to achieve the best
tradeoff of rate increase and performance loss. We want to emphasize again that
PU will compare Up(α

∗) with zero and decides whether it is worth trying to
bargain or not.

The one-stage bargaining game is a subgame for the multi-stage bargaining
game in Section 4, and we will use Theorem 1 in the later analysis.

4 Two-Stage Bargaining Game

Now we return to the dynamic bargaining case, where the bargaining within
a time slot can happen over more than one stage. For the ease of illustration,
we will focus on the two-stage bargaining case. Similar to the one-stage game,
here the utility functions are PU’s expected data rate increase and SU’s date rate
increase. We assume that PU’s belief about SU’s energy cost C at the beginning
of stage one of bargaining is a uniform distribution over [0,K]. We denote δ1
and δ2 as the proportions of the slot after bargaining in the first and second
stage. By setting different values of δ1 and δ2, we can model different bargaining
overhead. For the two-stage bargaining game, PU’s strategy involves (1) whether
to bargain at the beginning of the first stage, (2) if yes, what the first stage offer
α1 is, and (3) if SU rejects α1, what the second stage offer α2 is.

Figure 3 illustrates the sequential decisions and possible scenarios of this two-
stage bargaining game. PU and SU make decisions alternatively at the non-leaf
nodes. PU first makes the decision on whether to bargain. If it selects direct
transmission (D), the game ends. Otherwise, PU offers α1 to SU. If SU accepts
this offer, then the game ends. If SU rejects the offer, then PU makes a second
offer α2 to SU. Finally, SU either accepts or rejects α2. The game ends in both
cases. Every possible ending of the game is denoted by a black solid square
together with the corresponding utilities (data rate increases) of PU (upper
value) and SU (lower value).
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Fig. 3. Game Tree of the Two-stage Bargaining

The two-stage bargaining game is a dynamic Bayesian game (DBG)5, and is
more complex than the one-stage bargaining model for two reasons: (i) The SU
may reject the first stage offer α1 even though its utility is positive, if it believes
that the second stage offer α2 is much better; (ii) The PU needs to update its
belief on SU’s energy cost C at the end of the first stage by taking the SU’s
strategic decision process into consideration.

We want to point out the assumption that once the PU decides to bargain,
it cannot choose direct transmission before the two-stage process finishes. Such
restriction leads to a simplified model. Allowing the PU to choose direct trans-
mission after the first stage will introduce more possibilities and make the anal-
ysis much more complicated. On the other hand, our focus of this paper is to
consider the impact of dynamic bargaining on the choices of PU and SU. The
key insights of PU’s belief updates and SU’s ideas on the sequential strategy for
the second stage are unlikely to change with the more complicated model.

One of the commonly used solution concepts for a DBG is the Perfect Bayesian
Equilibrium (PBE), which is a strategy profile and belief system in a dynamic
game of incomplete information so that they satisfy the following three
requirements [12].

Requirement 1. The player with the move must have a belief (probability dis-
tribution) about incomplete information.

5 The precise definition of DBG is beyond the scope of this paper. See [11, 12] for
details.
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Requirement 2. Given their beliefs, the players’ strategies must be sequen-
tially rational. That is, the action taken by the player must be optimal given the
player’s belief and the other player’s subsequent strategies.

Requirement 3. A player’s belief is determined by the Bayes’ rule and the
players’ equilibrium strategies.

Back to our model, the strategies and beliefs of the PU and SU are as follows.

– PU’s strategy: whether to bargain at the beginning of the game, the first-
stage offer α1 if decides to bargain, and the second-stage offer α2(α1) (i.e.,
as a function of α1) after SU rejects α1.

– PU’s belief: μ1(C) denotes PU’s belief on C at the beginning of the first
stage, and μ2(C|α1) denotes PU’s updated belief about C at the beginning
of the second stage after SU rejects α1.

– SU’s strategy: [A1(α1|C),A2(α2|C,α1)]. When its energy cost is C,A1(α1|C)
= 1 if SU accepts α1, and A1(α1|C) = 0 otherwise. A2(α2|C,α1) = 1 if SU
accepts α2 after rejecting α1, and A2(α2|C,α1) = 0 otherwise.

– SU’s belief: since SU knows C, its belief is a singleton set (i.e., no
uncertainty).

Before presenting our PBE analysis on the two-stage bargaining game, we want
to discuss more about PBE and the method used in this subsection. First, ac-
cording to Requirement 3, PBE requires the consistency between one player’s
belief and players’ equilibrium strategies. Second, such an equilibrium often can-
not be constructed by the traditional backward induction method through the
game tree, as we need to construct a subgame-perfect Nash equilibrium6. Thus,
the analysis of PBE is typically problem specific.

We will start the PBE analysis with the second stage. Since this is the last
stage of the game, the analysis is similar as the one-stage game in Section III.
The key difference is that PU does not have the option of direct transmission at
the beginning of the second stage, and it needs to optimize the choice of α2.

Specifically, we can apply Requirement 2 to solve SU’s strategy A2(α2|C,α1).
Since this is the last move of the game, the optimal strategy for SU in the second
stage is to accept α2 if and only if the SU’s utility δ1δ2α2Rs− 1+α2

2 δ1δ2PsC > 0.
Such decision is independent of α1.

Given SU’s optimal strategy in the second stage A2(α2|C,α1), we can apply
Requirement 2 to compute the PU’s optimal strategy in the second stage. The PU
will calculate the optimal α2 that maximizes PU’s expected utility function Up,
given PU’s updated belief μ2(C|α1) and SU’s subsequent strategy A2(α2|C,α1).

6 Requirement 2 explains that a player’s strategy at a given information set is based
in part on its belief. However, the player’s belief is from the players’ strategies
higher up the game tree according to Requirement 3. But, Requirement 2 (sequential
rationality) means that these strategies higher up the game tree are based in part on
the players’ subsequent strategies, including the strategies at the given information
set. This circularity implies that a single pass backward induction through the game
tree typically will not suffice to compute a PBE. See [12] for details.
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The tricky part is how to compute the belief μ2(C|α1), which depends on the
interaction in the first stage (Requirement 3). For it, we need to understand the
SU’s equilibrium strategy in the first stage in order to update PU’s belief in the
second stage.

Consider arbitrary first and second stage offers α1 and α2
7. We further assume

that K is reasonably large (K > Rs

Ps
). We further assume that K (the upper

bound of C) is reasonably large (K > Rs

Ps
). Define

C∗(α1, α2) =
2Rs(α1 − δ2α2)

Ps((1 + α1)− δ2(1 + α2))
.

The following lemma provides SU’s equilibrium strategy in the first stage for
given α1 and α2.

Lemma 1. SU rejects α1 in the first stage if one of the following is true: (i)
C ∈ [ 2α1Rs

Ps(1+α1)
,K] and α1 > α2, (ii) C ∈ [C∗(α1, α2),K] and δ2α2 < α1 ≤ α2,

or (iii) C ∈ [0,K] and α1 ≤ δ2α2. SU accepts α1 otherwise.

The proof of Lemma 1 can be found in [16]. With Lemma 1, we can characterize
two types of PBEs of the two-stage bargaining game. We want to emphasize
that PBEs in Theorem 2 and 3 are just possible ones. Whether they exist in a
particular game requires further investigation. The proofs of Theorem 2 and 3
can be found in [16]. The physical meanings of the PBE will be further discussed
in Section V.

4.1 Type I PBE

Let us look at the first type of PBE, where α∗
2 is slight better than α∗

1 (i.e.,
δ2α

∗
2 < α∗

1 ≤ α∗
2). An SU with a small energy cost will accept α1 in the first

stage, so that it can start to benefit immediately. An SU with a medium or large
energy cost will wait for the second stage hoping for a better offer. In the second
stage, only an SU with a medium energy cost will accept α2, and an SU with a
high energy cost has to reject α2.

Note that the SU does not know the value of α2 in the first stage, and thus
it needs to make the above decisions by anticipating the value of α2. The PU
needs to decide α1 and α2 by taking the SU’s anticipation into consideration. A
PBE exists if the SU’s anticipation is consistent with what the PU offers. The
first type of PBE is summarized in Theorem 2.

Theorem 2. Given α1, the beliefs and strategies for PU and SU are:

– α∗
2 (α1): PU’s second stage offer is the solution of the following fixed point

equation of α2:

α2 = min

(
max

(
α∗
p(K1(α1, α2)),

K1(α1, α2)

2Rs/Ps −K1(α1, α2)

)
,min

(∣∣∣∣ K

2Rs/Ps −K

∣∣∣∣ , 1
))

,

7 Later on we will show that the optimal value of α2 will depend on α1.
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where

α∗
p(K1(α1, α2)) = 2

√
Rs(Rr −Rdir)

PsRr(2Rs/Ps −K1(α1, α2))
− 1

2
,

and

K1(α1, α2) =
2Rs(α1 − δ2α2)

Ps((1 + α1)− δ2(1 + α2))
.

– μ1(C): PU believes C is uniformly distributed in [0,K].
– μ2(C|α1): PU updates its belief on C as uniformly distributed in [C∗(α1,

α∗
2(α1)),K].

– A1(α1|C): SU rejects α1 if C ∈ [C∗(α1, α
∗
2(α1)),K].

– A2(α2|C,α1): SU accepts α2 if and only if δ1δ2α2Rs − 1+α2

2 δ1δ2PsC > 0.

Finally, PU computes first stage offer α∗
1 to maximize(

δ1
1− α1

2
Rr −Rdir

)
P1 +

(
δ1δ2

1− α∗
2(α1)

2
Rr −Rdir

)
P2 + (δ1δ2 − 1)RdirP3,

where P1 = K1(α1)
K , P2 =

2α2
1+α2

Rs
Ps

−K1(α1)

K , and P3 =
K− 2α2

1+α2

Rs
Ps

K . PU chooses
direct transmission if Up(α

∗
1) < 0. The above beliefs and strategies constitute a

PBE if and only if δ2α
∗
2(α

∗
1) < α∗

1 ≤ α∗
2.

4.2 Type II PBE

Next we examine the second type of PBE, where α∗
2 is much larger than α∗

1 (i.e.,
α∗
1 ≤ δ2α

∗
2). If an SU believes that the second stage offer α2 is much better than

the first stage offer α1 (even after considering time discount δ2), it will definitely
reject the first stage offer. In the second stage, an SU with a small C will accept
the offer and an SU with a high C will reject the offer. This is summarized in
Theorem 3.

Theorem 3. The following beliefs and strategies constitute infinitelymany PBEs.

– α∗
2: PU’s second stage offer equals to a constant independent of α1,

min

(
max

(
α∗
p, 0

)
,min

(∣∣∣∣ K

2Rs/Ps −K

∣∣∣∣ , 1
))

,

where

α∗
p =

√
2(Rr − Rdir)

Rr
− 1

2
.

– α∗
1: any value satisfying α∗

1 ≤ δ2α
∗
2.

– μ1(C) = μ2(C|α1): PU believes C is uniformly distributed in [0,K] in the
first and second stage.

– A1(α1|C): SU never accepts α1.
– A2(α2|C,α1): SU accepts α2 if and only if δ1δ2α2Rs − 1+α2

2 δ1δ2PsC > 0.
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5 Numerical Results

In this section, we simulate and compare the PU’s and SU’s data rate increases
at the equilibria in the two-stage game. We set transmission power Pt = Ps = 1,
SU’s maximum energy cost K = 1.5Rs/Ps, and δ1 = δ2 = δ = 0.8. The PU’s
direct transmission rate Rdir = 1 and rate achieved via relay Rr = 500. In this
case, SU’s cooperative transmission can bring a significant improvement to PU’s
data rate. The SU’s own data rate Rs = 10.

Figure 4 and 5 show the equilibrium data rate increases of PU with different
energy cost C. Two figures correspond to two different types of PEBs of the
same game. The mean payoffs (dotted curves) denote the average value over
all possible values of C. Since both PU and SU obtain positive mean payoffs,
spectrum leasing leads to a win-win situation.

Figure 4 corresponds to the PBE in Theorem 2. We can classify PU’s payoff
(circle line) into three regions depending on the SU’s energy cost C: (i) Small C
(e.g., C ≤ 6 in Fig. 4): SU accepts α1 and thus PU and SU receive significant
data rate increases. (ii) Medium C (e.g., C ∈ [7, 9] in Fig. 4): SU rejects α1 but
accepts α2. Compared to the small C case, PU’s payoff dramatically decreases,
since α2 is larger than α1 and more time is wasted in the bargaining. SU’s payoff
decreases smoothly between these two regions, since the larger offer α2 mitigates
the negative effect of additional bargaining overhead. (iii) Large C (e.g., C ≥ 10
in Fig. 4): SU rejects both offers and PU receives a negative payoff.

Figure 5 corresponds to the PBE in Theorem 3. In this PBE, the SU never
accepts the first stage offer α1, as it expects that the second stage offer α2 is
much better. As a result, the two-stage game becomes similar to a one-stage
game. We can classify the PU’s payoff into two regions based on the value of
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Fig. 4. First type PBE (Theorem 2) in the two-stage bargaining game
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Fig. 5. Second type PBE (Theorem 3) in the two-stage bargaining game

C, following a similar argument as for Fig. 4. By comparing Figure 4 and 5, we
notice that the PU’s expected utility and SU’s utility are both higher in Fig. 4
than in Fig. 5. The key reason is that the PBE in Fig. 5 always wastes the first
stage bargaining opportunity. In other words, the PBE in Theorem 2 Pareto
dominates the PBE in Theorem 3.

6 Conclusion

This paper studies a dynamic spectrum negotiation problem with incomplete
information. We model the interactions between a PU and an SU as a dynamic
Bayesian game, and derive two types of Perfect Bayesian Equilibria. Simulations
show that both equilibria can coexist in the same game, and one type Pareto
dominates the other in the expected sense. This paper represents an initial step
of studying the resource allocation in cognitive radio networks with incomplete
information and dynamics. Only one PU and one SU bargaining model has
been studied, and it is certainly desirable although very challenging to consider
dynamic bargaining among many PUs and SUs.
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