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Abstract. This work considers the impact of incomplete information
on incentives for node cooperation in parallel relay networks with one
source node and multiple relay nodes. All nodes are selfish and strategic,
interested in maximizing their own profit instead of the social welfare. We
consider the practical situation where a node cannot observe the state
of links adjacent to other nodes. We examine a general game setting
where the source has full bargaining power, and propose a framework for
analyzing the efficiency loss induced by incomplete information.

1 Introduction

There is now widespread awareness of the importance of incentives in the man-
agement of communication networks. Network nodes often cannot be relied upon
to cooperatively implement network algorithms in the service of the social good.
Instead, selfish nodes will behave in a given manner only if it is profitable for
them to do so. Of clear interest is the impact of such selfish actions on the social
good. From the network point of view, it is important to design incentives such
as pricing schemes, which induce selfish behavior aligned with the social good.

In single-hop and multi-hop networks, the incentive issue and its impact on
social efficiency have been extensively studied[1,2,3,4,5,6,7,8,9]. All these papers,
however, assume a complete information setting where players in the network
game have complete knowledge about quantities such as the state of network
links. In practice, this assumption is often too strong. Information regarding
network quantities is typically incomplete and imperfect. In a multi-hop network
such as the Internet, a source does not typically have perfect information on the
congestion state of links a few hops away [10]. In wireless networks, the source
usually cannot observe or test the channel state from a relay to the destination.
Neither can a relay observe the channel state from other relays to the destination.
Given the above, it is clear that in analyzing selfish behavior in network settings,
the role of incomplete information must be emphasized.

One approach to network design problems with incomplete information is
through dominant implementable mechanisms [11]. This idea has been used in
the context of spectrum auctions [12] and communication networks [13]. These
mechanisms, however, require a centralized authority and extra funding from
an outsider. This makes the extension to general multi-hop networks difficult.
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Another approach, based on the idea of Bayesian Nash Equilibrium, a general-
ization of the Nash Equilibrium concept, is advocated in [14]. Here, the authors
consider selfish routing in a single-hop network, where every source node knows
only its own traffic requirement, but has knowledge of the traffic distribution of
other sources. While the results in [14] are appealing, it remains unclear how
they might extend to the multi-hop network situation.

In this work, we investigate the impact of incomplete information on the
problem of incentives in a two-hop parallel relay network. In our setting, the
state of the links adjacent to a given relay is not observable by the source or
the other relays, although the prior distribution of the link state is known. We
consider a game with full source bargaining power, where the source offers a
general contract mapping signals from the relays to traffic allocations and trans-
fer payments. Given the proposed contract, the relays decide whether to accept
or not. Those relays which choose to accept the contract then send link-state-
dependent signal functions to the source, which then allocates traffic and transfer
payments according to the proposed contract. This general setting includes as a
specific case of pricing games where the signals from the relays consist of nonlin-
ear traffic-dependent charging functions. We study the Bayesian Nash equilibria
corresponding to the general game. To provide a benchmark, we first show that
in the game with complete information, (Bayesian) Nash equilibria exist and
are all efficient. Next, we investigate the game with incomplete information. To
deal with the difficulty of characterizing the Bayesian Nash Equilibria in this
case, we first show that if a resource allocation outcome can be realized by a
Bayesian Nash equilibrium, then there exists a “truth telling” Bayesian Nash
equilibrium that realizes the outcome. We then show that the outcome of the
“truth telling” Bayesian Nash equilibrium coincides with that of the Nash equi-
librium for a complete information game, in which the link cost functions are
replaced by a specified “virtual cost functions.” Using this approach, we obtain
for a symmetric network scenario a bound on the amount of inefficiency which
may result from incomplete information.

2 Network Model and Problem Formulation

Consider a parallel relay network modeled by a directed graph G = (V,E), with
a single source s, destination d, and a set of relays I, where |I| = n. We assume
that there is no direct link between s and d. Instead, The relays in I are used to
forward traffic in a two-hop fashion from s to d.

We shall consider two scenarios. In the first inelastic scenario, the source has
a fixed rate rs of transmission. This rate must be carried by the relays in I,
where the traffic rate forwarded by relay i is ri, and

∑n
i=1 ri = rs. In the second

elastic scenario, the source may be willing to withhold some of its transmission
rate, according to how the cost of sending traffic affects it overall utility. Let
r0 denote the amount of traffic withheld or rejected. Then rs − r0 is the total
admitted traffic from the source. A traffic vector r � (r0, r1, . . . , rn) ∈ R

n+1
+ is a

feasible routing of the source traffic if it satisfies r0 +
∑n

i=1 ri = rs.
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Fig. 1. Relay channel

2.1 Cost Function and Utility Function

In general, for any relay node i, there is a cost involved in forwarding traffic for
source s. This cost typically depends both on the properties of the links adja-
cent on relay i and the amount of traffic flowing through those links. Denote
the traffic flow on link (i, j) ∈ E by fij . We assume that link (i, j) has a cost
function Cij(θij , fij) with Cij(θij , 0) = 0, where θij is a measure of the quality
of link (i, j). This quality may have different physical meanings in different con-
texts. For example, if the cost function reflects the queuing delay on (i, j), then

using the M/M/1 approximation, Cij(θij , fij) =
fij

kij−fij
. Here, θij denotes the

link capacity kij . For another example, consider the cost of power assumption
required for transmitting traffic of rate fij over a wireless link with channel gain
gij , bandwidth W , and receiver noise power N . Using the Shannon capacity
formula, we have fij = W log(1 + gijPij/N), where Pij is transmission power
required on link (i, j). Thus, the link cost is

Cij(θij , fij) =
N

gij
(2fij/W − 1).

Here, θij denotes the channel gain gij .
Now consider the overall cost Ci(θi, ri) for relay node i to forward traffic of

rate ri from source s to destination d, where θi measures the quality or type of the
path from s to d through i. We assume that Ci(θi, ri) = Csi(θsi, ri)+Cid(θid, ri).
The costs Ci(θi, ri) are particularly amenable to analysis if θi can be expressed
as a simple scalar function of θsi and θid: θi = h(θsi, θid). This is true in the
example of the power consumption cost function given above, where θij = gij
is the channel gain on link (i, j). Normalizing the bandwidth and receiver noise
power to 1, we have

Ci(θi, ri) = Psi + Pid = (2ri − 1)(g−1
si + g−1

id ) = (2ri − 1)θ−1
i , (1)
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where θi � (g−1
si + g−1

id )−1 = (θ−1
si + θ−1

id )−1. In this paper, we focus on situations
where the path quality θi can be expressed as a scalar function of θsi and θid.
We further assume that θi belongs to a compact interval [θi, θi].

Motivated by the power consumption example, we assume that Ci(θi, ri) is
twice continuously differentiable on [θi, θi] × [0, rs], and strictly increasing and
strictly convex in ri: ∂Ci(θi, ri)/∂ri > 0 and ∂2Ci(θi, ri)/∂r

2
i > 0. Also, assume

that Ci(θi, ri) is strictly decreasing in θi: ∂Ci(θi, ri)/∂θi < 0. Furthermore, as-
sume ∂2Ci(θi, ri)/∂θi∂ri ≤ 0.

Now consider the source s. Let the utility function of the source be given
by Ws(θs, r), where θs ∈ [θs, θs] parameterizes the utility for the source, and
r is the source rate admitted into the network. For example, the source utility
may be Ws(θs, r) = θs log(1 + r). Assume that Ws(r) = Ws(rs) for all r ≥ rs,
i.e. rs is the maximum desired source rate. Ws(θs, r) is assumed to be contin-
uously differentiable, strictly increasing and strictly concave in r on [0, rs]. Let
Cs(θs, r0) � Ws(rs)−Ws(rs−r0) denote the source’s utility loss from having traf-
fic of rate r0 withheld from the network. SinceWs(rs) is a constant, it can be seen
that Cs(θs, r0) is continuously differentiable on [θs, θs]×[0, rs], strictly increasing
and strictly convex in r0: ∂Cs(θs, r0)/∂r0 > 0 and ∂2Cs(θs, r0)/∂r

2
0 > 0. Further-

more, we assume that Cs(θs, r0) is strictly decreasing in θs: ∂Cs(θs, r0)/∂θs < 0.
Finally, it can be seen that Cs(θs, 0) = 0 for all θs.

2.2 Socially Optimal Allocation

A socially optimal traffic allocation in a parallel relay network is an allocation
which minimizes the total network cost, assumed to be the sum of the link costs.
Let R � {(r0, r1, ..., rn) : rj ≥ 0 ∀j = 0, . . . , n,

∑n
j=0 rj = rs} be the set of

feasible traffic allocations, and let r = (r0, r1, ..., rn) ∈ R denote the vector of
traffic rates in the network.

Definition 1. A traffic allocation vector r∗ is called socially optimal if

r∗ ∈ argmin
r∈R

Cs(θs, r0) +

n∑

i=1

Ci(θi, ri). (2)

Since the link cost functions Ci(θi, ri) as well as Cs(θs, r0) are all strictly increas-
ing and strictly convex, the socially optimal allocation r∗ exists and is unique.
The conditions for specifying r∗ can be obtained using the Kuhn-Tucker condi-
tions. Let ci(θi, ri) � ∂Ci(θi, ri)/∂ri and cs(θs, r0) � ∂Cs(θs, r0)/∂r0 denote the
marginal cost function of link i and the marginal cost function of the overflow
link for source s, respectively.

For the case of an inelastic source, r∗ = (0, r∗1 , . . . , r
∗
n) is the socially optimal

allocation if and only if for each i = 1, . . . , n,

ci(θi, r
∗
i ) = c∗ if r∗i > 0, ci(θi, r

∗
i ) > c∗ if r∗i = 0. (3)

For the case of an elastic source, r∗ = (r∗0 , r∗1 , . . . , r∗n) is the socially optimal
allocation if and only if (3) holds and furthermore,

cs(θs, r
∗
0) = c∗ if r∗0 > 0, cs(θs, r

∗
0) > c∗ if r∗0 = 0.
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2.3 Game Structure

We assume that the (maximum) source input rate rs and the parameter θs are
known to all nodes. We also assume that θi is randomly distributed according to
distribution function Fi(θi). In practical network scenarios, the exact realization
of θi is typically known only to relay i, and not to the source or to the relays
other than i. Thus, θi is private information to relay i. Nevertheless, the source
and other relays may still have knowledge of the distribution Fi(θi). For instance,
a wireless source or a relay j �= i may know the distribution of the channel gains
for relay i, but typically does not know the realization of those channel gains.

In order for the source node to allocate its traffic intelligently in the presence
of incomplete information regarding the θi’s, it needs to observe some “signal”
from the relay nodes. This can be realized by having the relay node send a signal
according to the realization of its type to the source.1 Let Mi be the set of signals
for relay i, where Mi is a subset of the set of differentiable functions on [0, rs].
The signal map for relay i is

si : Θi → Mi,

where Θi � [θi, θi] and si(θi) = mi(·).
Given the signals mi(·), i = 1, . . . , n, the source decides on an allocation of its

traffic as well as a vector of transfer payments to the relays. This allocation is
called a contract. Let r = (r0, r1, ..., rn) ∈ R denote the vector of traffic rates in
the network. Note that for the inelastic case, r0 = 0. Now let t = (t1, t2, ..., tn) ∈
R

n
+ be the vector of transfer payments, where ti is the transfer payment to relay

i. Let M � M1 × · · · ×Mn and T � R
n
+. Then the allocation map of the source

node is
g : M → R× T,

where g(m1(·), . . . ,mn(·)) = (r, t).
The above framework encompasses many forms of pricing games explored in

previous literature. For instance, in [9], the relay signals are simply charging
functions Pi(·), and the transfer payments are required to equal the charges
demanded by the relays, i.e. ti = Pi(ri).

The signal maps of the relays along with the allocation map of the source
realize a corresponding network allocation map

f : Θ → R× T,

where f(θ1, . . . , θn) = g(s1(θ1), . . . , sn(θn)) = (r, t).
In the game with incomplete information corresponding to the above setting,

the utility of the source is given by

Us(θs, g(s1(θ1), . . . , sn(θn)) = Ws(rs)− Cs(θs, r0)−
n∑

i=1

ti.

1 One can also consider the possibility of the source sending a signal according to
its type θs. However, since we assume θs is known to all network nodes, we do not
consider this possibility here.
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The utility of relay i is given by

Ui(θi, g(s1(θ1), . . . , sn(θn))) = ti − Ci(θi, ri).

The game with incomplete information proceeds as follows. First, each relay i
observes its own private information θi. Second, the source provides a contract
for the relay nodes. The contract announces the source allocation rule g : M →
R × T . Third, the relays simultaneously decide to either accept or reject the
contract. If a given relay accepts the contract, then it will participate in the
game which follows. Otherwise, the relay quits and receives zero utility.2 Fourth
and finally, the relay nodes simultaneously send their signals to the source, and
the source allocates rates and transfer payments according to the announced g.

In the following, we give the formal definition of the Bayesian Nash equilibrium
corresponding to the game with incomplete information described above. Let
θ � (θ1, . . . , θn), θ−i � (θj)j �=i, and s−i(θ−i) � (sj(θj))j �=i.

Definition 2. A Bayesian Nash Equilibrium of the above game is a set of strate-
gies {s1, . . . , sn, g} satisfying

1. for each relay node i and for every feasible s̃i : Θi → Mi,

Eθ−i {Ui(θi, g(si(θi), s−i(θ−i)))} ≥ Eθ−i {Ui(θi, g(s̃i(θi), s−i(θ−i)))} ; (4)

2. for every feasible g̃ : M → R× T ,

Eθ {Us(θs, g(s(θ)))} ≥ Eθ {Us(θs, g̃(s(θ)))} . (5)

3 Games with Complete Information

We examine games where the source has full bargaining power, in the sense that
source can offer any contract g ∈ R × T .3 We first investigate the (Bayesian)
Nash equilibria which can result from games with source bargaining power in
the case of complete information. Here, we show that all (Bayesian) Nash equi-
libria are efficient. Then, we proceed to the case of incomplete information, and
characterize the potential inefficiencies associated with that case.

In the complete information game, the source can observe the type vector
θ = (θ1, . . . , θn) of the relays, and then design the allocation map g according
to θ. Since the type θi is not private to relay i, relay i cannot manipulate this
information in designing its signalling strategy si. Since the source can observe θ,
it can effectively ignore the strategies of the relays in designing g. Nevertheless,
the source needs to ensure that the relays will accept its proposed contract and

2 Note that the relays which quit can simply be left out of the game formulation.
Thus, without loss of generality, we assume for the rest of the paper that the source
plays the game in a manner which gives non-negative expected utility to all relays,
so that all relays stay in the game.

3 In games with partial bargaining power, such as auctions where the transfers are
determined by bids, the source can propose only a subset of R × T .
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stay in the game. The latter will hold as long as Eθ−i{Ui(θi, g(θ))} = Eθ−i{ti −
Ci(θi, ri)} ≥ 0 for all i. That is, all relays receive non-negative expected utility
by accepting the contract proposed by the source, and therefore are willing to
participate in the game.

Lemma 1. In any (Bayesian) Nash Equilibrium of the complete information
game with source bargaining power, all relays receive zero utility.

Proof. Suppose that there exists a (Bayesian) Nash Equilibrium where the source
allocation rule

g(m1(·), ...,mn(·)) = (r, t)

is such that Ui(θi, ri, ti) = ti − Ci(θi, ri) > 0 for some i. Since the source can
observe θ, it could select another allocation rule g′(m1(·), ...,mn(·)) = (r′, t′)
such that

r′i = ri, i = 1, . . . , n; t′i = ti − ε, t′j = tj for all j �= i

where ε is small enough so that t′i − Ci(θi, r
′
i) > 0. Note that the set of relays

which would opt to accept contract g and stay in the game is the same as the
set for contract g′. On the other hand, by shifting its allocation rule from g to
g′, the source has strictly decreased its total transfer payment, while keeping
the same traffic allocation. Thus, the source’s utility is strictly increased. This
contradicts our assumption of being at a Nash equilibrium.

Theorem 1. In the complete information game with source bargaining power,
all (Bayesian) Nash equilibria are efficient.

Proof. At any Nash equilibrium, the source maximizes its utility

Us(θs, g(s1(θ1), . . . , sn(θn)) = Ws(θs, rs)− Cs(θs, r0)−
n∑

i=1

ti.

By Lemma 1, at the equilibrium, we have ti = Ci(θi, ri) for all i. Thus, the traffic
allocation by the source minimizes Cs(θs, r0)+

∑n
i=1 Ci(θi, ri), and therefore the

equilibrium is efficient.

Using Lemma 1 and Theorem 1, we can easily solve for the Nash equilibrium of
the complete information game with source bargaining power. By Theorem 1,
the source allocation rule at the equilibrium may be obtained by solving for
the socially optimal traffic allocation r∗, where r∗ = argminr∈R Cs(θs, r0) +∑n

i=1 Ci(θi, ri). As noted in Section 2.2, due to the strict convexity of the op-
timization problem, r∗ exists and is unique. By Lemma 1, at the equilibrium,
the transfer payment ti = Ci(θi, r

∗
i ) for every i = 1, . . . , n.4 For the relays, any

feasible signal map si may be chosen for the equilibrium.

4 Recall that Ci(θi, 0) = 0.
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4 Games with Incomplete Information

We now turn to the case where the source cannot observe the types of the
relay. In this case, the relay nodes can manipulate their types in order to obtain
more utility, and the source can no longer design the allocation map according
to θ. Instead, the source must maximize its expected utility according to the
signals sent by the relays. The characterization of Bayesian Nash Equilibria for
this case is very difficult due to the complexity of the strategy set and the
possible behaviors of source and relays. Nevertheless, we devise a method for
characterizing outcomes corresponding to the Bayesian Nash Equilibria which
avoids the difficulty of calculating the the equilibria explicitly. We shall do this in
two steps. First, we show that if a resource allocation outcome can be realized by
a Bayesian Nash equilibrium for a game with source bargaining in which every
relay receives non-negative expected utility, then there exists a “truth telling”
Bayesian Nash equilibrium that realizes the outcome. Second, we show that the
outcome of the “truth telling” Bayesian Nash equilibrium coincides with that of
the Nash equilibrium for a complete information game, in which the link cost
functions are replaced by a specified “virtual cost functions.”

Definition 3. A Bayesian Nash Equilibrium of the game with source bargaining
power is truth telling if M = Θ and every relay node is willing to report its true
type to the source node.

Theorem 2. If a resource allocation outcome f can be realized by a Bayesian
Nash Equilibrium of the game with source bargaining power, in which every relay
receives non-negative expected utility, then there exists a truth telling Bayesian
Nash Equilibrium which realizes f .

Proof. Suppose there is a Bayesian Nash Equilibrium which realizes the allo-
cation outcome f(θ). By the definition of the Bayesian Nash Equilibrium, we
have (4) and (5). Now observe that by (4), we must have

θi ∈ argmax
˜θi

Eθ−i

{
Ui(θi, g(si(θ̃i), s−i(θ−i)))

}
for all i.

Otherwise, if there exists some θ′ such that Eθ−i {Ui(θi, g(si(θ
′
i), s−i(θ−i)))} >

Eθ−i {Ui(θi, g(si(θi), s−i(θ−i)))}, then there is another strategy s′i(θ)
satisfying s′i(θi) = si(θ

′
i) and s′i(θ) = si(θ) for all θ �= θi, such that Eθ−i

{Ui(θi, g(s
′
i(θi), s−i(θ−i)))} > Eθ−i {Ui(θi, g(si(θi), s−i(θ−i)))}, violating (4).

Therefore, since g(s1(θ1), . . . , sn(θn)) = f(θ), we have

θi ∈ arg max
˜θi∈Θi

Eθ−i

{
Ui(θi, f(θ̃i, θ−i))

}
for all i, (6)

f ∈ argmax
˜f

Eθ

{
Us(θs, f̃(θ))

}
. (7)

Thus, there exists a direct truth telling Bayesian Nash Equilibrium with the
outcome f(θ).
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Theorem 2 says that the set of outcomes corresponding to Bayesian Nash Equi-
libria for the game with source bargaining power and incomplete information is a
subset of the outcomes corresponding to truth telling Bayesian Nash Equilibria,
in which each relay proposes its type truthfully to the source, and the source
optimally allocates rates according to the relays’ types. This finding simplifies
our analysis considerably, since we can now focus on the truth telling Bayesian
Nash Equilibria in order to bound the efficiency loss introduced by incomplete
information in games with source bargaining power.

We now investigate the outcomes which can be realized by truth telling
Bayesian Nash Equilibria. Notice that these equilibria correspond to the so-
lutions of the optimization problem given by (6) and (7), in addition to the
non-negative expected utility constraint

Eθ−i {Ui(θi, ri)} = Eθ−i {ti(θ, r) − Ci(θi, ri(θ))} ≥ 0 for all i. (8)

and feasibility constraint r ∈ R.

Theorem 3. The set of solutions for the optimization problem defined by (6)-
(8) is the same as the set of outcomes corresponding to the Nash equilibria for
the complete information game in which the link cost functions Ci(θi, ri) are
replaced by

Ji(θi, ri) = Ci(θi, ri)− 1− Fi(θi)

fi(θi)

∂Ci(θi, ri)

∂θi
. (9)

Proof. Please see the Appendix.

We refer to the functions Ji as virtual cost functions. The proof involves ex-
amining the first and second order optimality conditions, using the envelope
theorem, and expressing the expected utility of the source in an equivalent form.
We skip the proof here due to space constraints. Note that by Theorem 1, all
Nash equilibria corresponding to games with complete information are efficient.
Thus, the set of outcomes corresponding to the Nash equilibria for the complete
information game with virtual link cost functions Ji(θi, ri) is given by

r′ = argmin
r∈R

Cs(θs, r0) +

n∑

i=1

Ji(θi, ri).

5 Efficiency Analysis

In this section, we bound the amount of inefficiency in the outcomes for games
with incomplete information. We focus on the inelastic scenario where r0 = 0.
Following [1], define the price of anarchy for type θ as:

ρ(θ) =

maxr∈RE

∑

i

Ci(θi, ri)

minr∈R

∑

i

Ci(θi, ri)
(10)
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where RE is the set of all Bayesian Nash Equilibria for the game with incomplete
information, and RJ ≡ argminr∈R

∑
i Ji(θi, ri). By Theorems 2 and 3, we have

RE ⊆ RJ . Therefore,

ρ(θ) ≤
maxr∈RJ

∑

i

Ci(θi, ri)

minr∈R

∑

i

Ci(θi, ri)
(11)

Since the link cost functions are strictly convex, the socially optimal allocation
r∗ are given by the necessary and sufficient conditions in (3). An allocation r′
in RJ must satisfy the following necessary conditions: for all i ∈ {1, . . . , n} such
that r′i > 0,

∂C(θi, r
′
i)

∂ri
− 1− Fi(θi)

fi(θi)

∂2C(θi, r
′
i)

∂θi∂ri
≤ ∂C(θj , r

′
j)

∂rj
− 1− Fj(θj)

fj(θj)

∂2C(θi, r
′
j)

∂θi∂rj
for all j

(12)

We now bound the price of anarchy in the symmetric case.

Theorem 4. Consider the symmetric case where the link cost functions Ci(θi, ri)
and the type distributions Fi(θi) are the same for all relays. If (i) J(θi, ri) is
convex in ri and decreasing in θi, (ii) X(θi, ri) ≡ J(θi, ri)−C(θi, ri) is concave

in θi, (iii)
∂X(θi,ri)
∂θi∂ri

≤ 0, then the price of anarchy ρ(θ) can be upper bounded

as follows. If the marginal cost function c(θi, ri) = ∂C(θi,ri)
∂ri

is concave, then

ρ(θ) ≤ n, where n is the number of relays. If c(θ,rs)

c(θ,0)
≤ k for some constant k,

then ρ(θ) ≤ k.

Proof. Let (r′i) ∈ argmini

∑
i J(θi, ri), and r∗i be the efficient allocation. Let

x(θi, ri) = ∂X(θi,ri)
∂ri

. Suppose θi > θj , and both carry traffic in optimal point,
thus for the optimal allocation, r∗i > r∗j > 0. As X(θi, ri) is concave in ri,
thus x(θi, r

∗
i ) < x(θi, r

∗
j ). As the cost is decreasing in θi, we have x(θi, r

∗
j )

< x(θj , r
∗
j ) Thus x(θi, r

∗
i ) < x(θj , r

∗
j ). As c(θi, r

∗
i ) = c(θj , r

∗
j ) , c(θi, r

∗
i ) +

x(θi, r
∗
i ) < c(θj , r

∗
j ) + x(θj , r

∗
j ). But to maximize the virtual cost, we have

c(θi, r
′
i) + x(θi, r

′
i) ≥ c(θj , r

′
j) + x(θj , r

′
j). As the virtual cost function is con-

vex in ri, we get r′i > r∗i . Thus c(θi, r
′
i) > c(θi, r

∗
i ) = c(θj , r

∗
j ) > c(θj , r

′
j). As the

cost function is convex in ri and decreasing in θi, c(maxi θi, rs) ≥ c(θi, r
′
i). Thus

C(maxi θi, rs) ≥ ∑
iC(θi, r

′
i). Thus the price of anarchy has the same bound

with game 2.

As an example of a link cost function/type distribution pair which satisfies the
assumptions in Theorem 4, consider the uniform type distribution over [0, 1] and
the cost function Ci(θi, ri) =

1
θi
(2ri − 1).

If either the virtual cost functions Ji(θi, ri) are not convex, or the link cost
functions and type distributions are not the same across relays, then higher prices
of anarchy may result. Consider the situation in Figure 2. Here, there are only
two relays. (r∗1 , rs − r∗1) is the efficient allocation. Since the type distributions
are not the same, the marginal virtual costs are as indicated in the figure. To
minimize the sum of the virtual costs, the source allocates all traffic to relay 2,
while this allocation is clearly the worst outcome for minimizing the sum of the
link costs.
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1 0r =

2 2 1( , )sc r rθ −

1 1 1( , )j rθ

1 1 1( , )c rθ

2 2 1( , )sj r rθ −

*
1 0r > 1r

sr

Fig. 2. Efficiency Loss in Asymmetric Case

6 Conclusion

This work investigated the impact of incomplete information on incentives for
node cooperation in parallel relay networks. We considered a general game set-
ting where the source has full bargaining power. We first showed that in the game
with complete information, (Bayesian) Nash equilibria exist and are all efficient.
Next, we investigated the game with incomplete information. To deal with the
difficulty of characterizing the Bayesian Nash Equilibria in this case, we first
showed that if a resource allocation outcome can be realized by a Bayesian Nash
equilibrium, then there exists a “truth telling” Bayesian Nash equilibrium that
realizes the outcome. We then showed that the outcome of the “truth telling”
Bayesian Nash equilibrium coincides with that of the Nash equilibrium for a
complete information game, in which the link cost functions are replaced by a
specified “virtual cost functions.” Using this approach, we obtained for a sym-
metric network scenario a bound on the amount of inefficiency which may result
from incomplete information.
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7 Appendix

Proof of Theorem 3: The first and second-order conditions for (6) are:

dEθ−i

{
Ui(θi, f(θ̃i, θ−i))

}

dθ̃i

∣
∣
∣
∣
∣
∣
˜θi=θi

= 0 (13)

and

d2Eθ−i

{
Ui(θi, f(θ̃i, θ−i))

}

dθ̃i
2

∣
∣
∣
∣
∣
∣
˜θi=θi

≤ 0. (14)

The first-order condition is equivalent to

Eθ−i

dti(θ̃i, θ−i)

dθ̃i

∣
∣
∣
∣
∣
˜θi=θi

(15)

= Eθ−i

{
∂Ci(θi, ri(θ̃i, θ−i))

∂ri

dri(θ̃i, θ−i)

dθ̃i

}∣
∣
∣
∣
∣
˜θi=θi

. (16)
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The second-order condition is equivalent to

Eθ−i

d2ti(θ̃i, θ−i)

dθ̃i
2

∣
∣
∣
∣
∣
˜θi=θi

≤ Eθ−i

⎧
⎨

⎩

∂2Ci(θi, ri(θ̃i, θ−i))

∂r2i

[
dri(θ̃i, θ−i)

dθ̃i

]2

(17)

+
∂Ci(θi, ri(θ̃i, θ−i))

∂ri

d2ri(θ̃i, θ−i)

dθ̃i
2

}∣
∣
∣
∣
∣
˜θi=θi

.

By evaluating the first-order condition at θi differentiating with respect to θi,
we get:

Eθ−i

{
d2 {ti(θi, θ−i)}

dθ2i

}

= Eθ−i

{
∂2Ci(θi, ri(θi, θ−i))

∂r2i

[
dri(θi, θ−i)

dθi

]2
(18)

+
∂Ci(θi, ri(θi, θ−i))

∂ri

d2ri(θi, θ−i)

dθ2i

+
∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi

dri(θi, θ−i)

dθi

}

.

Comparing with the second-order condition, we get

Eθ−i

∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi

dri(θi, θ−i)

dθi
≤ 0. (19)

We have already assumed that

∂2Ci(θi, ri(θi, θ−i))

∂ri∂θi
≤ 0 for each θ−i. (20)

Notice that when an outcome can be realized by a Bayesian Nash Equilibrium,
the following condition must hold:

∂ri(θi, θ−i)

∂θi
≥ 0 given any θ−i (21)

Otherwise, the source would allocate a higher rate to a lower type relay, which
is not optimal. Notice that by (20) and (21), (19) automatically holds.

Thus, the following conditions are necessary for the first and second-order
conditions to hold.

dEθ−i

{
ti(θ̃i, θ−i)

}

dθ̃i

= Eθ−i

∂Ci(θi, ri(θ̃i, θ−i))

∂ri

dri(θ̃i, θ−i)

dθ̃i

∣
∣
∣
∣
∣
˜θi=θi
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∂ri(θi, θ−i)

∂θi
≥ 0 given any θ−i

Let Vi(θi, θ−i) = max
˜θi
Ui(θi, ri(θ̃i, θ−i), ti(θ̃i, θ−i)). We use the envelope theo-

rem just as we did in the previous sections:

dEθ−iVi(θi, θ−i)

dθi
=

∂Eθ−iUi(θi, ri(θ̃i, θ−i), ti(θ̃i, θ−i)

∂θi

∣
∣
∣
∣
∣
˜θi=θi

= −∂Eθ−iCi(θi, ri(θ̃i, θ−i))

∂θi

∣
∣
∣
∣
∣
˜θi=θi

(22)

Let θi and θi be the upper and lower bounds on relay node i’s type, then

Eθ−iVi(θi, θ−i) (23)

= Eθ−iVi(θi, θ−i)−
∫ θi

θi

∂Eθ−iCi(θi, ri(θi, θ−i))

∂θi
dθi

We see from the above equation that, as we already assumed ∂Ci(θi,ri)
∂θi

< 0,
the expected utility of relay i is non-decreasing with respect to θi. Thus, to
guarantee that constraints (8) holds, the lowest type must receive non-negative
profit. On the other hand, the relay with the lowest type can never receive a
positive profit, otherwise the source will reduce its profit by some small amount
and still guarantee that the contract is acceptable to all, which contradicts the
definition of Bayesian Nash Equilibrium. Thus, the lowest type relay should
receive zero profit.

Eθ−iVi(θi, θ−i) = 0 (24)

Plugging in, we get

Eθ−iVi(θi, θ−i) = −
∫ θi

θi

∂Eθ−iCi(θi, ri(θi, θ−i))

∂θi
dθi (25)

Suppose the type distribution function of relay i is Fi(θi) and the density is
fi(θi). Let R be the expected revenue of the source node. Then,
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R = Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, r0) −
∑

i

ti(θ)

⎫

⎬

⎭

= Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, r0) −
∑

i

Vi(θ) −
∑

i

Ci(θ)

⎫

⎬

⎭

= Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, r0) −
∑

i

Ci(θ)

⎫

⎬

⎭

+
∑

i

∫ θi

θi

fi(θi)Eθ−i

⎡

⎣

∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′
i

dθ
′
i

⎤

⎦ dθi

= Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, r0) −
∑

i

Ci(θ)

⎫

⎬

⎭

−
∑

i

∫

θi

θi

Eθ−i

⎡

⎣

∫

θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′
i

dθ
′
i

⎤

⎦ × d(1 − Fi(θi))

= Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, rs) −
∑

i

Ci(θ)

⎫

⎬

⎭

−
∑

i

Eθ−i

⎡

⎣

∫

θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′
i

dθ
′
i

⎤

⎦ × (1 − Fi(θi))|
θi
θi

+
∑

i

Eθ−i

∫ θi

θi

(1 − Fi(θi)) × d

⎡

⎣

∫ θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′
i

dθ
′
i

⎤

⎦

= Eθ

⎧

⎨

⎩

Ws(rs) − Cs(θs, r0) −
∑

i

Ci(θ)

⎫

⎬

⎭

+
∑

i

Eθ−i

∫

θi

θi

(1 − Fi(θi)) × d

⎡

⎣

∫

θi

θi

∂Ci(θ
′
i, ri(θ

′
i, θ−i))

∂θ′
i

dθ
′
i

⎤

⎦

= Eθ{Ws(rs) − Cs(θs, r0)} −
∑

i

Eθ−i

∫ θi

θi

Ci(θi, ri(θi, θ−i)) −
1 − Fi(θi)

fi(θi)

∂Ci(θi, ri(θ))

∂θi

fi(θi)dθi

= Eθ [Ws(rs) − Cs(θs, r0)] − Eθ

∑

i

(

Ci(θi, ri(θ)) −
1 − Fi(θi)

fi(θi)

∂Ci(θi, ri(θ))

∂θi

)

Thus, we obtain a game with complete information and full source bargaining
power where the revenue function is changed to Ji(θi, ri) rather than Ci(θi, ri).
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