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Abstract. In this paper we present analytical mean field techniques that
can be used to better understand the behavior of malware propagation
in opportunistic large networks. We develop a modeling methodology
based on stochastic mean field optimal control that is able to capture
many aspects of the problem, especially the impact of the control and
heterogeneity of the system on the spreading characteristics of malware.
The stochastic large process characterizing the evolution of the total
number of infected nodes is examined with a noisy mean field limit and
compared to a deterministic one. The stochastic nature of the wireless
environment make stochastic approaches more realistic for such types of
networks. By introducing control strategies, we show that the fraction of
infected nodes can be maintained below some threshold. In contrast to
most of the existing results on mean field propagation models which focus
on deterministic equations, we show that the mean field limit is stochastic
if the second moment of the number of object transitions per time slot
is unbounded with the size of the system. This allows us to compare
one path of the fraction of infected nodes with the stochastic trajectory
of its mean field limit. In order to take into account the heterogeneity
of opportunistic networks, the analysis is extended to multiple types of
nodes. Our numerical results show that the heterogeneity can help to
stabilize the system. We verify the results through simulation showing
how to obtain useful approximations in the case of very large systems.

1 Introduction

In modern times, the massive use of information formed an interconnected global
society of billions in which communication systems are vital infrastructures.
Among them, wireless communications is without doubt one of the most explo-
sive developments ever to have taken place in the telecommunications industry.
At the same time, over the last years, we have seen the power of microproces-
sors double about every 18 months, becoming considerably smaller, cheaper and
abundant; indeed, they are ubiquitous and are even finding their way into ev-
eryday objects. Those technology trends - tiny, cheap processors with integrated
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sensors and wireless communications formed the technological basis for a new
era of vast number of smart objects that communicate via wireless links.

Those incredibly diverse and complex wireless communication networks
brought several fundamental technical issues: networks must be designed to carry
out the intended functions in an efficient and predictable way; they must be man-
ageable and upgradeable; and the most of all: reliable. Today, one of the major
emerging threat against reliability is malware, that is, malicious self-replicating
code. Threats posed by malware ranges from attacks against the confidentiality
of the communication to attacks that actually alter the information traffic, hence
destroying the integrity of the network.

Recently, malware outbreaks designed for personal computer environments on
wired networks like those of Slammer and Code Red worms over the Internet
have already inflicted severe economic damages, infecting thousands of hosts in
short periods of time. Then, it is of vital importance to predict the limits of the
damages that the attackers can inflict in large wireless networks, subject to its
fundamental limitations, such as limited energy, unreliable communications and
topology changes due mobility.

In this work we illustrate how mean field approaches can be used to reduce the
complexity in the analysis of the damage that can be inflicted in a large network
with opportunistic interaction of the objects. Opportunistic networking is one of
the emerging communication paradigms in wireless mobile communications, in
which the communication opportunities are based on sporadic and intermittent
contacts. In contrast with the extensive work of malware propagation in wired
networks ([1]), large wireless networks have not yet received similar attention,
with a few exceptions ([2,3]).

Our Contribution

Contributions in this paper are twofold. First, from the theoretical point of view,
we present a novel mean field approach, which tries to overcome one of the limi-
tations of the “classical” mean field, that is, the approximation of an inherently
stochastic system with a deterministic representation (ordinary differential equa-
tion) [4]. We propose a new, more general approach in which we preserve the
main advantage of the classic mean field, that is, the reduction of the number of
parameters in the analysis of large systems, but adding a random or “noisy” com-
ponent. This new addition could lead to a more realistic mathematical model of
the original situation, for example when many local object transitions occurs at
the same time making the second moment unbounded. In this context the work
[5] is not applicable anymore because the second moment of the number of ob-
ject transitions per time slot may not vanish when the number of objects goes to
infinity. A typical scenario is when many players do parallel transitions. The idea
of the proposed analysis is that, if the third order in the Taylor approximation
of the regular function of the mean field is bounded, then the noise may not be
negligible but a convergence to a stochastic mean field limit can be established.
Inspired from the work of [6] based on multidimensional diffusion processes, we
were able to establish a mean field convergence to non-deterministic differential
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equations and extend the previous works in mean field interaction models (with
and without controls). This new mean field limit which is stochastic is called
”noisy” mean field limit and applied in this work to malware propagation in
opportunistic networks.

Second, from the malware propagation modelling point of view, we extend
the model developed in [7] in which the types are not used and the impact of
the control parameters are not specially studied. This leads to a limitation in
the results obtained, because different types of systems could lead for example
to slower rates of propagation. They can represent, for example, different oper-
ating systems, different versions of the operating systems or patched/unpatched
version of the same operating system. To the best of our knowledge, in most
of the related work about malware spreading in large networks authors do not
model the heterogeneity of the network.

Most of the mean field studies do not examine consider control framework. We
observe that control parameters are important in the mean field limit since they
give new insights to uncontrolled mean field framework which may be constrained
(energy limitation). This helps in controlling the proportion of infected nodes.

Organization

The rest of the paper is structured as follows. In next section we present basics
on stochastic games with random set of interacting players. In section ??, we
overview existing mean field models in discrete time. We develop a controlled
mean field framework in section 2 and in section 3 we provide a general conver-
gence to mean field which is characterized by a stochastic differential equation
and the payoff evolution are solution of partial differential equations. Finally, we
apply the noisy mean field framework to opportunistic wireless large networks.

2 Controlled Mean Field Interaction Model

In this section, we introduce a controlled mean field interaction model. The finite
version of this model is a particular case of stochastic games with individual
states. We restrict our attention into a particular class of behavioral strategies
within we are able to establish the mean field convergence. This restriction is
due to the fact that when the number goes to infinity, the dimension of the set of
stationary strategies goes to infinity as well as. By letting the size of the system
go to infinity, the discrete stochastic game problem is replaced by a limit of a
system of Hamilton-Jacobi-Bellman equations coupled with a mean field limit
ODE or coupled system of Bellman-Shapley optimality and discrete mean field
evolution, that are deterministic and where the dimensionality of the original
system has been transformed in the mass-behavior of the system.

Time t ∈ N is discrete. The global state of the system at time t is (S(t), Xn(t)) =
(S(t), Xn

1 (t), ..., X
n
n (t)). Denote by An(t) = (An

1 (t), . . . , A
n
n(t)) the action profile

at time t. The system (S(t), Xn(t)) is Markovian once the action profile An(t)
are drawn under Markovian strategies. We denote the set of Markovian strategies
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by U . Mn
x (t) is the fraction of players who belong to the population of individual

state x. Similarly, we associate the process Un
a (t) = 1

n

∑n
j=1 1l{An

j (t)=a} to the

fraction of actions.

Strategies and Random Set of Interacting Players

At time slot t, an ordered list Bn
t , of players in {1, 2, . . . , n}, is randomly selected

without repetition as follows: First we draw a random number of players kt such
that P(|Bn

t | = k | Mn(t) = m) =: Jn
k (m) where the distribution Jn

k (m) is given
for any n, m ∈ {0, 1

n ,
2
n , . . . , 1}|X |. Second, we set Bn

t to an ordered list of kt
players drawn uniformly at random among the n(n − 1)...(n − kt + 1) possible
ones.

Each player such that j ∈ Bn
t takes part in a one-shot interaction at time t, as

follows. First, each selected player j ∈ Bn
t chooses an action aj,t ∈ A(s, xj) with

probability u(aj | s, xj) where (s, xj) is the current player state. The stochastic
array u is the strategy profile of the population.

Denote the current set of interacting players Bn
t = {j1, . . . , jk}. Given the

actions aj1 , ..., ajk drawn by the k players, we draw a new set of individual
states (x′

j1 , ..., x
′
jk
) and resource state s′ with probability Ln

s;s′(k,m, a), where a
is the vector of the selected actions by the interacting players.

We assume that for any given Markovian strategy, the transition kernel Ln is
invariant by any permutation of the index of the players within the same type.
This implies in particular that the players are only distinguishable through their
individual state. Moreover, this means that the process Mn(t) is also Marko-
vian once the sequence of strategy is given. Denote by wn

s,s′ (u,m) the marginal
transition probability between the resource states. Given any Markov strategy
and any vector m of Δ, the resource state generates an irreducible Markov de-
cision process with limiting invariant measure ws(u,m). Then, we can simplify
the analysis by fixing the resource state S(t) = s without losing generality. The
model is entirely determined by the probability distributions Jn, the transition
kernels Ln and the strategy profile u.

3 Noisy Mean Field Approach

We provide a general convergence result of the mean field to a stochastic dif-
ferential equation and a martingale problem is formulated for the the law of
the process Mn

t . We are able to establish a mean field convergence to non-
deterministic differential equations, thus, extending the previous works in mean
field interaction, in mean field Markov decision teams, in mean field Markov
games [5,8,9,10]. We show that even if the expected number of players that do
a transition in one time slot is not bounded, one can have a mean field limit,
in such a case a stochastic one. This mean field limit is referred as noisy mean
field.
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Before presenting the main theoretical results of this paper, we first introduce
some preliminary notions. The evolution of the system depends on the decision
of the interacting players. Given a history ht = (S(0), Xn(0), An(0), . . . , S(t) =
s,Xn(t), An(t)). Xn(t+ 1) evolves according to the transition probability

Ln(x′;x, u, s) = P (Xn(t+ 1) = x′ | ht)

The term Ln(x′;x, u, s) is the transition kernel on Xn under the strategy Un.
Let xn = (xn

1 , . . . , x
n
n) such that 1

n

∑n
j=1 δxn

j
= m and define

Ln(m′;m,u, s) :=
∑

(x′
1,...,x′

n)

1
n

∑n
j=1

δ
x′
j
=m′

Ln(x′;x, u, s)

= P(Mn(t+1)=m′ |Mn(t)=m,Un(t)=u, S(t)=s) = P(Mn(t+1)=m′ |h̃t)

where h̃t = (S(t′), Xn(t′), An(t′), t′≤t, S(t)=s,Xn(t)=xn).The term Ln(m′;m,
u, s) corresponds to the projected kernel of Ln. Below we give sufficient con-
ditions on the transition kernels to get a weak convergence of the process Mn

t

under the strategy Un(t).
We now present the main assumptions of this paper.

A1: ws(u,m) is continuously differentiable in m and u. Note that this assump-
tion was already implicit in the approach of [7] via the smoothness of the drift.
A2: There exists a continuous mapping f : R

|X| × U × S −→ R
|X| such that

∀s ∈ S;
lim
n

sup
u∈U

sup
‖m‖≤1

‖ fn(m,u, s)

δn
− f(m,u, s) ‖= 0

where

fn
x (m,u, s)=

∫

m′∈R|X|
1l{‖m′−m‖≤2}(m′

x −mx)Ln(dm′;m,u, s),

for x ∈ X , and s ∈ S. This assumption is analogous to H2 in which control
parameters are added.
A3: There exists δn ↘ 0 and a continuous mapping a : R

|X|×U ×S −→ R
|X|×|X|

such that ∀s ∈ S;

lim
n

sup
u∈U

sup
‖m‖≤1

‖ an(m,u, s)

δn
− a(m,u, s) ‖= 0

where

anx,x′,s(m,u, s) =
∫

m′∈R|X|
1l{‖m′−m‖≤2}(m′

x−mx)(m
′
x′−mx′)Ln(dm′;m,u, s),

for (x, x′, s) ∈ X 2 × S, where the third moment is finite. Note that under H3,
a ≡ 0.
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A4: For all ε > 0 and ∀s ∈ S;

lim
n

sup
u∈U

1

δn

∫

m′∈R|X|
1l{‖m′−m‖>ε}Ln(dm′;m,u, s) = 0

Note that assumption H3 and lemma 3 from [7], implies A4.
A4’: ∀s ∈ S;

sup
u∈U

sup
m∈R|X|

sup
n≥1

[

‖ an(m,u, s)

δn
‖ + ‖ fn(m,u, s)

δn
‖
]

< ∞

The smoothness assumptions H4-H5 in [7] imply A4′ which implies A4 too.

Theorem 1. Let Mn
0 −→ π in law where π is a probability measure. Under

A1-A4 [resp. A1-A4’], the process Mn
t converges in law to a weak [resp. strong]

solution of the Itô stochastic differential equation given by

dm = f̃(m,u)dt+ σ̃(m,u)dWt

where σ̃σ̃t = ã, f̃(m,u) =
∑

s ws(m,u)f(m,u, s), ã(m,u) =
∑

s ws(m,u)
a(m,u, s) and w(m,u) is the invariant probability of the transition matrix L(m,u)

A proof can be found in [11].

Remark. This result generalizes the deterministic mean field limit conditions
established in [7] for U equal to a singleton. It generalizes also the deterministic
controlled mean field dynamics obtained in [5] for stationary strategies.

Remark. The conditions A1− A4, A4′ are weaker than those given in [7]. Un-
der the conditions in [7], the noise term 1

δn
an −→ 0 when n goes the infinity.

Moreover, the continuity assumption on the drift limit is not needed. If f̃ ad-
mits a unique integral curve, and ã is bounded and continuous then, the result
applies as well. This allows us to apply it in wide range of networking scenarios
with discontinuous drift limit but lower semi-continuity properties. Note that the
uniformity in u may not be satisfied. In that case, a local mean field solution is
derived. An example of such discontinuity is provided in [5]. Our result extends
also the convergence theorem in [5] which was restricted to stationary strategies.
Here ut is an admissible strategy at time t.

Definition 1 (Individual optimization framework). To a game as defined
above, we associate a macroscopic population game, defined as follows. Each
member j of the population, with state Xj(t) and a population profile m[u](t).
The initial condition of the game is S(0) = s,Xj(0) = x, m[u](0) = m0. The
population profile is solution to the noisy mean field evolution and S(t), Xj(t)
evolves as a jump process given by the marginal of q which depends on m(t), u(t)
and the strategy u′(t) of j. Further, let VT (s, x, u

′, u,m) be the T−stage payoff
of player j in this game, given that S(0) = s,Xj(0) = x and m(0) = m0, i.e.
VT (s, x, u

′, u,m) =

E

(

g(m(T )) +

∫ T

0

r(S(t), Xj(t), u
′(t), u(t),m(t))dt

∣
∣
∣s, x,m0

)
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where m is solution of the Itô SDE

dm(t) = f̃(m(t), u(t))dt + σ̃(m(t), u(t))dWt (1)

Using Itô’s formula [12] the expected payoff evolution for a fixed horizon T is
then given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vu′,u(T,m) = g(m)

−∂tvu′,u(t,m) = r̄(t,m, u, u′) +
∑

x∈X
f̃x(m,u)∂mxvu′,u(t,m)

+
1

2

∑

(x,x′)∈X 2

ãx,x′(m,u)∂2
mxmx′vu′,u(t,m)

where vu′,u(t,m) = ES,XjVT (s, x, u
′, u,m) starting at time t and r̄(t,m, u, u′) =

ES,Xjr(S,Xj , u
′, u,m) is the global expected mean field payoff.

Centralized Mean Field Control. We now provide the feedback optimality
principle for the global expected mean field payoff r̄(t,m, u, u). Please note that
in this case, each member of the population uses the same strategy. The T−stage
mean field optimization problem writes

sup
u

Eg(m(T )) +

∫ T

0

r̄(t,m(t), u(t), u(t)) dt

subject to the stochastic differential equation (1).
A strategy u∗(t) = φ(t,m) constitutes an optimal mean field solution if

there exist a continuously differentiable function v̄(t,m) satisfying the follow-
ing Hamilton-Jacobi-Bellman equation combined with the mean field SDE. By
combining the system, one gets the mean field optimality:

Proposition 1. The mean field optimality for horizon T is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̄(T,m) = g(m)

−∂tv̄ = sup
ut∈Ut

{

r̄(t,mt, ut, ut)+
∑

x∈X
f̃x(mt, ut)∂mx v̄

+
1

2

∑

(x,x′)∈X 2

ãx,x′(mt, ut)∂
2
mxmx′ v̄

⎫
⎬

⎭

dmt = f̃(mt, ut)dt+ σ̃(mt, ut)dWt, t > 0

m0 = m

where v̄ = v̄(t,m).

Please note that this kind of systems may not have a solution. Counterexamples
can be found in [11].
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Discrete Time Mean Field Limit

If the step-size δn is not vanishing when n goes to infinity, then the determin-
istic mean field limit is in discrete time and driven by the probability transi-
tion Lt(u,m). Given an initial population profile m0 and a terminal payoff, the
sequence of population profiles {mt}t is driven by the transition probabilities
{Lt,s,x,s′,x′(u,mt)}t.

mt+1(x) =
∑

x′∈X
mt(x

′)Lt,x,x′(ut,mt), (2)

where
Lt,x,x′(u,m) =

∑

k≥0

∑

s

ws(u,m)Lt,s,x,x′(u,m; k)Jk(m),

Lt,s,x,x′(u,m; k) is the limiting probability transition from x to x′ when the
resource state is s and the number of interacting players is k. Combining with
the Bellman-Shapley optimality criterion, one gets the following system in the
finite horizon case:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vj,t(s, x,m) = max
uj

⎧
⎨

⎩
r(s, x, u,mt)

+
∑

s′,x′
L(s′, x′|s, x, u,mt)vj,t+1(s

′, x′)

⎫
⎬

⎭

mt+1(x) =
∑

x′∈X
mt(x

′)Lt,x′,x(u,mt)

(3)

4 Application to Malware Propagation

In this section, we apply the mean field approach to a controlled malware prop-
agation in opportunistic networks. The malware propagation model is based on
[7] in which the impact of the control parameters is not examined and the player
types are not used. The types can represent, for example, different operating
systems, different versions of the operating systems, or patched/unpatched ver-
sion of the same operating system. In most of the related work about malware
spreading in large networks authors do not model the heterogeneity of systems
which forms the network, as far as we know. This leads to a limitation in the
results obtained, because different types of systems could lead for example to
slower rates of propagation.

In this example we have mobile nodes that can be infected by a malicious
code. There are two infected states: passive and active. Non infected nodes are
susceptible. Then, the set of possible state of a node is {P,A, S} (for passive,
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active and susceptible) and the set of possible types is {θ1, θ2}. The state of
the system at time t is Xn(t) = (P1(t), P2(t), A1(t), A2(t), S(t)), where P (t) +
A(t)+S(t) = n,

∑
j Pj(t) = P (t),

∑
j Aj(t) = A(t), ∀t and n is the total number

of mobiles in the system. In this example, there is no resource. The occupancy
measure is Mn

θ (t) = (Pθ(t)/n,Aθ(t)/n, S(t)/n) = (Pn
θ (t), A

n
θ (t), S

n(t)). At every
time step we want to control the proportion of infected nodes, which is In(t) :=
An(t) + Pn(t). There are two fundamental ways to get infected:

1. Caused by a system flaw. (e.g: an exploit that could allow arbitrary code
execution).

2. Caused by human flaw. (e.g: the user is deceived and executes a dangerous
piece of code).

We can model this system as a controlled mean field interaction model. The
interaction is simulated using the following rules:

1. A passive node may become susceptible (inoculation) with probability δP .
2. A passive node with type θ may opportunistically encounter another pas-

sive node of type θ′, and both become active. This occurs with probability
proportional to the frequency of other passive nodes at time t. For type
θ, the probability is λ(Pn

θ′(t) − 1
n1l{θ=θ′}). Note that the passive node can

decide to contact the other passive node or not, so there are two possible
actions: {m, m̄} (for meet and not meet). Those events will be modeled as
a Bernoulli random variable with success (meeting) probability δm, which
represents u(m|P, θ). Here we model the possibility of getting infected by a
system flaw.

3. An active node may become susceptible (inoculation) with probability δA.

4. An active node of type θ may become passive with probability β
Pn

θ (t)
hθ+Pn

θ (t)

at time t. Here is assumed that, at high concentrations of passive nodes,
each active node infects some maximum number of passive ones per time
step. This reflects finite total bandwidth. The parameter 0 ≤ β ≤ 1 has the
interpretation of the maximum infection rate. The parameter 0 ≤ hθ ≤ 1
is the passive node density at which the infection proceeds at half of its
maximum rate. Here we model the possibility of getting infected by a system
flaw.

5. A susceptible node may become active with probability δS
6. A susceptible node may become passive via two ways. First, δSm is the prob-

ability of getting infected by a human flaw. In this case, the susceptible node
can “decide” to get deceived or not, so there are two possible actions: {o, ō}.
The stationary strategy in this case will be modeled as a coin toss with
probability δe. Second, η(P

n
θ (t) + Pn

θ′(t)) models the probability of encoun-
tering a passive node. In this case, the passive node can decide to contact
the susceptible node or not, and it is modeled analogously to the other two
cases.
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Table 1. Probabilities, effects, actions and payoffs

Case Transition proba. (θ, θ′ ∈ {1, 2}). Mn
θ (t+ 1)−Mn

θ (t) Actions Payoff contrib.
1 Pn

θ (t)δP (−1, 0, 1)/n singleton set −1/n
2 Pn

θ (t)δ2mλ(Pn
θ (t)− 1

n
) (−2, 2, 0)/n {m, m̄} 0

3 An
θ (t)δA (0,−1, 1)/n singleton set −1/n

4 An
θ (t)β

Pn
θ (t)

hθ+Pn
θ
(t)

(−1, 1, 0)/n singleton set 0

5 Sn(t)δS (0, 1,−1)/n singleton set 1/n
6 Sn(t)(δeδSm + δmηPn(t)) (1, 0,−1)/n {o, ō,m, m̄} 1/n

At every time step, one of the transitions is randomly selected and performed.
The number of nodes that do a transition in one time slot is always 0, 1 or 2.
In order to control the infected population, each transition has a certain payoff
contribution which could be 0 if no infected node is inoculated, 1/n if there is
a node which is inoculated and −1/n if one node is infected. In Table 1 are
the transition probabilities, the contribution to Mn(t + 1) − Mn(t), the set of
actions, and the contribution to the total payoff.

The intensity, that is, the probability that one arbitrary object does a tran-
sition in one time slot is of the order of 1/n. The drift, that is, the expected
change of Mn in one time step, given the current state of the system is:

fn
θ (m) = nE(Mn

θ (t+ 1)−Mn
θ (t)|Mn(t) = m) =

⎛

⎝
−pθδP −2pθδ

2
mλnpθ−1

n −aθβ
pθ

hθ+pθ
+s(δeδSm+δmη(pθ+pθ′))

2pθδ
2
mλnpθ−1

n − aθδA + aθβ
pθ

hθ+pθ
+ sδS

pθδP + aθδA − sδS − s(δeδSm+δmη(pθ+pθ′))

⎞

⎠

where m = (pθ, pθ′ , aθ, aθ′ , s). Then the limit f(m) is

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−pθδP −2λp2θδ
2
m −aθβ

pθ

hθ+pθ
+s(δeδSm+δmη(pθ+pθ′))

−pθ′δP −2λp2θ′δ2m −aθ′β pθ′
hθ′+pθ′

+s(δeδSm+δmη(pθ+pθ′))

2λp2θδ
2
m − aθδA + aθβ

pθ

hθ+pθ
+ sδS

2λp2θ′δ2m − aθ′δA + aθ′β pθ′
hθ′+pθ′

+ sδS
(pθ+pθ′)δP+(aθ+aθ′)δA−2sδS−2s(δeδSm+δmη(pθ+pθ′))

⎞

⎟
⎟
⎟
⎟
⎟
⎠

4.1 Homogeneous System

We briefly mention the homogeneous mean field. The drift is obtained by comput-
ing the expected changes in one time slot: fn(m) = E(Mn(t+1)−Mn(t)|Mn(t) =
m) =

1

n

⎛

⎝
−pδP − 2pδ2mλnp−1

n − aβ p
h+p + s(δeδSm + δmηp)

2pδ2mλnp−1
n − aδA + aβ p

h+p + sδS
pδP + aδA − sδS − s(δeδSm + δmηp)

⎞

⎠

where m = (p, a, s). Then the limit is
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f(m) =

⎛

⎝
−pδP − 2p2δ2mλ− aβ p

h+p + s(δeδSm + δmηp)

2p2δ2mλ− aδA + aβ p
h+p + sδS

pδP + aδA − sδS − s(δeδSm + δmηp)

⎞

⎠

In all the simulations, we kept this parameters unchanged: β = 10−2, δA =
5× 10−3 and δP = δS = δSm = 10−4. On parameter h (the passive node density
at which the infection of active nodes proceeds at half of it maximum value)
depends the stability of the system. Here we set h = 10−2 in order to obtain an
unstable behaviour. Regarding the control parameters, δm = 1, δe = 1 means no
control.

We investigate the evolution of the system in the following scenarios:

– Trajectory of one run of the simulation (figure 1),
– Mean trajectory of multiple simulations (figure 2),
– Mean field limit trajectory (figure 3),
– Trajectory of the payoff function,
– Controlled mean field limit (figure 4),
– Trajectory of the heterogeneous malware propagation (figure 6),
– Optimal control under the mean field limit (figure 7),
– Noisy mean field (stochastic path), (figure 8).

These configurations are analyzed with control and without control parameters.

We observe that the time mean 1
T

∫ T

0 m(s)ds is asymptotically close to the sta-
tionary point inside the limit cycle.

Uncontrolled Behaviour. In figures 1,2,3 we can see the simulation results,
using the well-known algorithm for exact simulation of a discrete time Markov
chain. The initial configuration is (0.2, 0, 0.8). An oscillating behaviour of the
total reward can be seen.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Passive

A
ct

iv
e

Simulation path, Particles = 1000

 

 
Trajectory
Starting point
Time mean of trajectory

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ot

al
 r

ew
ar

d

 

 

Total Reward
Time mean

Fig. 1. Left: Path of one simulation without control. Right: Total reward.

Controlled Behaviour. In order to illustrate the control parameters, suppose
we want to keep the proportion of infected nodes below 0.9 for all times. One
simple way to achieve this is to reduce the contact tendency of a passive node.
Then, we set δm = 0.075, which is the more relevant control parameter. The
results can be seen in figures 4 and 5.
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Fig. 2. Leftmost: Mean of simulation trajectories without control. Rightmost: Total
reward.
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Fig. 3. Left: Deterministic mean field without control. Right: Total reward.

4.2 Heterogeneous System

We investigate numerically the behavior of the mean field limit for two types θ
and θ′. In figure 6 we can see that it is possible to stabilize the homogeneous
system using classes.

4.3 Optimal Strategy for the Homogeneous System

Since the payoff function is the same for all the players i.e. rj(·) = r(·) the
discounted stochastic game with common payoff can be transformed in a team
problem. Moreover, the set of actions is the same for all the players. In figure 7,
we plot the optimal strategy obtained by solving the system in the finite horizon
case (equation (3)). The existence of a dominant strategy can be observed in the
plot.
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Fig. 4. Leftmost: Deterministic mean field with controlled passive node contact ten-
dency. Rightmost: Total reward.
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Fig. 5. Evolution of the limit point of the time mean, for δm = 0, 0.025, .., 0.925, 1

4.4 Noisy Mean Field

In order to give some feeling on how the noisy mean field evolves with time,
we show in figure 8 two different realizations, for n = 1000 and n = 2000. The
variance of the noise is obtained from σ̃n = 1

δn
fn − f which its norm sup is

bounded by 2Dλ
n , then we have dm̃ = f(m̃)dt + σ̃ndWt. Note that the smooth

version of the last equation can be ṁn = fn(mn)
δn

. It is worth to mention that, in
this case, the simulation algorithm is only exact when the numerical time step
vanishes. In figure 9 we compare the deterministic mean field versus the mean
trajectory of the noisy mean field.
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Fig. 6. Left: Unstable deterministic mean field, for h1 = 0.05, h2 = 0.05. Right: Stable
mean field h1 = 0.09, h2 = 0.01.

Fig. 7. Optimal strategy using backward induction for the homogeneous system
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Fig. 8. Left: Path of one simulation of the noisy mean field, for n = 1000, Right:
n = 2000

4.5 Effect of the System Size

In this subsection we examine the effect of n of the mean field object Mn.
We represent the evolution (in time) for different value of n and same state-
component (see figures 10).
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Fig. 9. Left: Deterministic mean field, Right: Mean of noisy trajectories
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Fig. 10. Mean field vs Simulation: Impact of n

5 Concluding Remarks

We have studied mean field stochastic games and established a mean field con-
vergence to Itô stochastic differential equations. Our convergence result opens
new questions for discontinuous mapping (namely the drift and the variance). In
that case one may expect to have a stochastic differential inclusion as in [13] for
which the existence of solution needs more attention. This leads to ask what will
happen when the discontinuities are coming from the strategies as it is the case
for the best response correspondence? We do not have answers to this question
and postpone it to future work. In practical scenarios, when the second moment
conditions are not satisfied, the conditions for mean field convergence given in
[5,14] are not applicable. In these cases, the weak conditions that we provided
here cover a wide range of networking scenarios. The cycling behavior of the
fraction of infected is sensitive to the control parameters. It would be useful to
understand this relationship better by taking into account the network topology.
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