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Abstract. Motivated attackers cannot always be blocked or deterred.
In the physical-world security context, examples include suicide bombers
and sexual predators. In computer networks, zero-day exploits unpre-
dictably threaten the information economy and end users. In this paper,
we study the conflicting incentives of individuals to act in the light of
such threats.

More specifically, in the weakest target game an attacker will always
be able to compromise the agent (or agents) with the lowest protection
level, but will leave all others unscathed. We find the game to exhibit a
number of complex phenomena. It does not admit pure Nash equilibria,
and when players are heterogeneous in some cases the game does not
even admit mixed-strategy equilibria.

Most outcomes from the weakest-target game are far from ideal. In
fact, payoffs for most players in any Nash equilibrium are far worse than
in the game’s social optimum. However, under the rule of a social planner,
average security investments are extremely low. The game thus leads to
a conflict between pure economic interests, and common social norms
that imply that higher levels of security are always desirable.
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1 Introduction

Motivated by observations about widespread and frequent security failures, Hal
Varian started a conversation on the role of public goods dilemmas in the reli-
ability and security context [19]. We continued this investigation by analyzing
three canonical interdependency scenarios (i.e., weakest-link, average effort and
best-shot) in the presence of two investment strategies [7]. Under the assump-
tion of these particularly strong interdependencies, a failure to achieve a common
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protection goal leads to a compromise of the entire network of agents. For ex-
ample, in the weakest-link game the lack of protection effort by a single agent
will immediately be exploited by an attacker to harm all agents.1

However, such strong interdependency effects are not always present in prac-
tice or attackers will not be able to exploit them efficiently under all circum-
stances. Similarly, even with significant protection investments a highly moti-
vated attacker can rarely be fully blocked and deterred.2 Rather, many situations
result in asymmetric security consequences, i.e., some agents have their security
violated while others remain unharmed.3 We considered this case by proposing
a novel strategic security interaction: the weakest-target game [7].4 Here, an at-
tacker will always be able to compromise the agent (or agents) with the lowest
protection level, but will leave all others unscathed. Many financially motivated
attacks can be explained by considering the weakest target game. For example,
botnet herders need to compromise a large number of computing resources at
low cost to implement several of their small margin business concepts (e.g., spam
distribution [9]). For such purposes, miscreants frequently utilize relatively com-
plex malware that supports a number of attack strategies [18]. A comprehensive
defense against such malware becomes increasingly cumbersome because of the
inclusion of zero-day exploits, the delivery via different channels (automated
scans, email, peer-to-peer networks, ...) and the targeting of different operating
systems.5

In this paper, we conduct an in-depth investigation of the weakest-target game
considering homogeneous and heterogeneous agents. We add to our previous
work [7,8] by deriving more general results and related proofs about properties
of the game. In particular, we provide a non-existence proof for pure Nash equi-
libria, and exact conditions for mixed Nash equilibria for 2-player and N -player
games under different parameter conditions. We also discuss important effects
that result from the group dynamics inherent in the game.

The weakest target game is not anticipated to be a “bearer of good news” to
the security community because it further exacerbates the conflicting incentives
of defensive actors. On the one hand, agents, in their avoidance efforts to become
the weakest target, may want to engage in significant security investments. On

1 Variations can be considered with less strict contribution and associated failure
conditions. See, for example, the literature on better-shot and weaker-link games
[4].

2 See, for example, the recent successful attacks against Google, Visa/Mastercard, and
the US government.

3 In complementary work, we also discussed this observation and distinguished more
generally between tightly and loosely coupled networks [6].

4 We discussed a simplified version of this game initially in the context of network
economics [3].

5 Consider, for example, the Stuxnet worm that carried four zero-day exploits. Further,
it initially infected targets via USB drives, while newer information suggested that
Stuxnet also replicated via computer networks. See:
http://www.eweek.com/c/a/Security/Sophisticated-

Stuxnet-Worm-Uses-4-Microsoft-Zeroday-Bugs-629672/

http://www.eweek.com/c/a/Security/Sophisticated-Stuxnet-Worm-Uses-4-Microsoft-Zeroday-Bugs-629672/
http://www.eweek.com/c/a/Security/Sophisticated-Stuxnet-Worm-Uses-4-Microsoft-Zeroday-Bugs-629672/
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the other hand, the availability of a cheap mitigation alternative weakens the
incentives of all agents to invest in prevention. A similar effect occurs when the
population of agents includes at least one subject that has little of value to lose.
The result is a game with a particularly perverse set of incentives yielding very
ineffective defensive strategies.

In the remainder of this paper, we first conduct a brief discussion on relevant
concepts in classical game-theory and security economics. We then present the
mathematical model and analysis before offering concluding remarks.

2 Related Work

The strategic aspects apparent in the weakest-target game are complementary to
incentive structures analyzed in diverse games in the area of conflict studies. For
example, in the Game of Chicken, two agents are driving a car towards a cliff.
Both agents can agree to partake in a low-payoff safe choice by stopping early.
Alternatively, one of them might dare to deviate by jumping from the car late
causing an increase in her own reputation and a reduction of the other’s social
status. But if both players opt for the daring choice, the result is of disastrous
proportions: aiming for an edge, both agents fall off the cliff [16]. In this promi-
nent example for an anti-coordination game, there are two pure Nash equilibria
with asymmetric appeal to the players. However, drivers can agree to disagree
by selecting a mixed Nash to moderate between the agents’ desires (e.g., [5]).

In the Prisoner’s Dilemma, rational agents fail to cooperate when facing the
enticement of individually beneficial defection from the socially desirable out-
come [15]. Following these incentives, the players have to settle for a low-payoff
Nash equilibrium. The Prisoner’s Dilemma has been motivation for recent re-
search work on interdependent security in which an agent can invest in protection
effort against attacks directly targeting her, but is helpless if an attack is un-
knowingly spread by her peers [11]. Interdependent security games are helpful to
better understand large group effects in the presence of misaligned or conflicting
incentives. For example, these games exhibit strong tipping effects that can shift
the economy of agents from full prevention efforts to passivity, and vice versa
[10]. (See also [12] for an analysis with a similar focus.)

Recent work on linear influence networks also introduce complexity in the
decision-making process. Linear influence networks allow for the fine-grained
modeling of asset and risk interdependencies (see [13] and [14]). These studies
offer an alternative approach to capturing diversity and heterogeneity of incen-
tives for security decision-making. For further research considering the impor-
tance of network interdependencies, we also refer to a number of recent review
efforts in the area of security economics [1,2,17].

3 Model

Each of N ∈ N players is responsible for choosing security investments for a
single computer that is connected to other computers through a network. The
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network is subject to the risk of an external breach that occurs with exogenous
probability p ∈ (0, 1]. If the network is breached, the attacker finds the player
(or players) with the least amount of protection investment and obliterates her
(their) computer(s).6 All may not be lost though, as players may choose among
two types of security investments to mitigate against damages of a successful
breach. They may choose a protection investment, which benefits the public
network, and is exemplified by investments such as installing antivirus software
or firewalls; or they can choose a self-insurance investment, which benefits only
the contributing user and is exemplified by an investment such as maintaining
extensive private data backups [7]. A full protection investment costs bi ∈ R

+

to player i, and a full self-insurance investment costs ci ∈ R
+. Players may

also choose a partial investment. The choice variables are thus a protection
investment level ei ∈ [0, 1] and a self-insurance investment level si ∈ [0, 1].
Player i begins the game with an initial endowment Mi ∈ R

+, and suffers a
maximum loss of Li ∈ R

+ if a security breach occurs. The utility for player i as
a result of the investment choice (ei, si) is given by

Ui(ei, si) = Mi − pLi · 1ei≤minj �=i ej · (1− si)− bei − csi , (1)

where 1ei≤minj �=i ej = 1 if ei ≤ minj �=i ej and 0 otherwise.

4 Analysis

We begin by proving that the game does not admit a pure strategy Nash equi-
librium. The result holds for any number of players, and assumes only that the
cost and risk parameters (pLi, ci, bi) are all positive.

We next provide a complete characterization of mixed-strategy Nash equilib-
ria in the weakest target game with two players. In brevity, we show that, when
either the parameters are symmetric, or when the maximum payoff of players
is determined by protection costs rather than self-insurance costs, then exists a
well-defined mixed strategy equilibrium. If parameters are not symmetric and
self-insurance costs for one player are low, we show that a mixed strategy equi-
libria does not exist.

Finally, we address the case of N players. We begin by exhibiting a mixed
strategy equilibrium in the homogeneous version. Then we derive a framework
for addressing the full heterogeneous version.

4.1 No Pure Strategies

Theorem 1. The weakest target game does not admit a pure strategy Nash
equilibrium.

6 In previous work, we referred to this scenario as the weakest target game without
mitigation. A slightly different version (with mitigation) allows agents to invest in
full protection with the benefit of immunity from attacks [7].
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Proof. We will divide into three parts the set of configurations in which each
player plays a pure strategy. For each part we will then show that a strategy
configuration of the prescribed type fails to be a Nash equilibrium.

First suppose that the strategy configuration has ei = 0 for every i. In this
case, the utility of each player i is Mi − min{ci, pLi}. In such a configuration,
if any one player i were to play (ei, si) = (ε, 0) with ε < min{ci, pLi}, then she
would no longer be a weakest target, and her payoff would improve to Mi − ε >
Mi − min{ci, pLi}. Thus, a strategy configuration of this type is not a Nash
equilibrium.

Next suppose that the strategy configuration has ei = x for every i, with
x > 0. In this case, every player is a weakest target, the utility of player i is
Mi−bix−pLi. Player i could now improve her utility by playing (ei, si) = (0, 0),
and reaping Mi − pLi > Mi − bix − pLi. Thus, such a strategy configuration
cannot be a Nash equilibrium.

Finally, suppose the strategy configuration is such that some two players i
and j have different protection investment levels (say ei < ej). In such a config-
uration, player j is not the weakest target, and thus has a utility of M − bjej . If

player j were to select a slightly lower investment level, say x =
ej+ei

2 , then the
corresponding utility would become Mj−bjx > Mj−bjej. Thus, a configuration
of this type cannot be a Nash equilibrium.

This exhausts all cases of pure strategies. We have shown that none of the
cases is a Nash equilibrium strategy. Thus, no pure strategy Nash equilibrium
can exist.

4.2 Mixed Strategies

Mixed Strategy Descriptions. Best response pure strategies for agent i al-
ways have one of the two forms: (ei, si) = (0, 1) or (ei, si) = (x, 0) for some
x ∈ [0, 1]. So to describe a mixed strategy over this set of pure strategies, it suf-
fices to specify the probability of playing si = 1 given ei = 0, and a cumulative
distribution function Fi : R → [0, 1] defined such that Fi[x] is the probability
that ei < x.7

We will dispense with giving the first part of the equilibrium conditions (in-
volving self-insurance versus passivity in the case of no protection investment)
because that part of the strategy is trivial to determine8 and it does not affect
whether the strategy is part of an equilibrium.9 So, to describe a mixed strat-
egy for player i, it suffices to define a non-decreasing left-continuous function
Fi : R → [0, 1] satisfying Fi(x) = 0 for x ≤ 0 and Fi(x) = 1 for x > 1.

7 The use of < in our definition of Fi differs from the standard treatment of cumulative
distributions, which uses ≤ instead. We adopt the former convention so that the
probabilities we care about are easy to describe in terms of Fi.

8 The structure of the game dictates that player i would self-insure in this instance if
and only if ci ≤ pLi

9 The choice between self-insuring and remaining passive poses no externalities.
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Mixed Strategy Equilibria for 2 Players

Theorem 2. In a two-player weakest target game with parameter conditions

satisfying min{b1,c1,pL1}
b1

= min{b2,c2,pL2}
b2

, the following mixed strategy is a Nash
equilibrium.

F1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b2x
pL2

+ 1− min{c2,pL2}
pL2

for x ∈
(
0, min{b2,c2,pL2}

b2

]

1 for x > min{b2,c2,pL2}
b2

F2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b1x
pL1

+ 1− min{c1,pL1}
pL1

for x ∈
(
0, min{b1,c1,pL1}

b1

]

1 for x > min{b1,c1,pL1}
b1

Proof. See Appendix 6.1

Theorem 3. In a two-player weakest target game with parameter conditions sat-

isfying min{b1,c1,pL1}
b1

< min{b2,c2,pL2}
b2

and pL1 ≤ c1, the following mixed strategy
is a Nash equilibrium.

F1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b2x
pL2

+ 1− b2L1

b1L2
for x ∈

(
0, pL1

b1

]

1 for x > pL1

b1

F2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b1x
pL1

for x ∈
(
0, pL1

b1

]

1 for x > pL1

b1

Proof. See Appendix 6.2

Theorem 4. In the remainingparameter condition, min{b1,c1,pL1}
b1

< min{b2,c2,pL2}
b2

and c1 < pL1, there does not exist a mixed-strategy Nash equilibrium.

Proof. See Appendix 6.3

Mixed Strategy Equilibria for N Players. First we consider what happens
in a game where the parameters are homogeneous – that is, ci = c, bi = b, and
Li = L. This scenario was addressed for a limited parameter range in [7].

Theorem 5. In the case of homogeneous parameters, a Nash equilibrium occurs
when each player plays the following mixed strategy.

Fi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0

1− N−1

√
min{c,pL}−bx

pL for x ∈
(
0, min{b,c,pL}

b

]

1 for x > min{b,c,pL}
b

Proof. See appendix 6.4
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With fully heterogeneous parameters, the analysis becomes significantly more
complex. We derive a basic framework for a mixed equilibrium strategy involv-
ing N heterogeneous agents, but omit the exact specification of the necessary
conditions for space reasons and will include them in the extended version.

Theorem 6. The following mixed strategy describes an equilibrium in which
each player j receives an expected utility of Mj −min{cj , pLj} for a continuous

range of plays. (Assume WLOG that min{b1,c1,pL1}
b1

≤ min{bj ,cj ,pLj}
bj

for j > 1).

Fi(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x ≤ 0

1−
N−1

√∏N
j=1

min{cj,pLj}−bjx

pLj

min{ci,pLi}−bix

pLi

for x ∈
(
0, min{b1,c1,pL1}

b1

]

1 for x > min{b1,c1,pL1}
b1

Proof. See Appendix 6.5

4.3 Social Optimum: The Sacrificial Lamb

In the weakest target game, the least protected players always bear the brunt
of the attack. The socially desirable outcome then ensures a minimization of
the aggregate loss for all players. Typically, a planner will elect a specific agent,
i.e., the sacrificial lamb, to invest in the smallest possible security effort to at-
tract the attacker. If self-insurance is less costly than the loss from a security
compromise, then the planner will invest in mitigation for the designated agent.
Under heterogeneity assumptions, the social planner must undertake this com-
parison across all agents, i.e., she typically needs to identify the two agents who
have the least to lose, cmin = min{ci}, and the lowest cost self-insurance option,
pLmin = min{pLj}, respectively.10 She will then select the agent with the lower
of the two values. All other agents will merely invest in a token security effort,
ε, to escape the attack.

With this strategy configuration, the total cost for all players is approximately
min{cmin, pLmin}+ε. This is the best strategy possible up to a factor of epsilon.

5 Discussion

In the absence of the mediating presence of a social planner, agents are struggling
to find a cheap way to ameliorate the threat from the attacker and the behavior
of the agents can become quite complex. In the following, we illustrate two main
behavioral trends related to the mixed strategy play identified in the analysis
section.

First, when for all agents the cost of protection is lower than the cost of self-
insurance, bi < ci, and preventive efforts are considered worthwhile, bi < pLi,

10 It is, of course, possible that a single agent acts in both roles, i = j.
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then agents’ behavior can be described as a “race against the wall,” i.e, they
try to avoid a security compromise by selecting a very high protection effort.
But according to the rules of the game an escape from the attacker’s wrath is
not possible and agents understand that collusion on the highest protection level
would only benefit the attacker and would be wasteful from a cost perspective.
Therefore, all agents probabilistically lower their security efforts to a certain
degree with smaller probabilities assigned to lower protection levels. That is,
agents engage in an implicit and tacit process of risk sharing. Theorem 2, when
bi < min{ci, pLi}, is an example for this type of behavior.

Second, a more nuanced behavior can be observed when the population in-
cludes at least one player with a low self-insurance cost, ci < bi and ci < pLi, or
a low potential loss, pLi < bi. We term this agent an implicit leader in the game.
It is easy to see that she would not invest more than a certain threshold amount,

emax = min{ci,pLi}
bi

, in protection efforts. And other players can infer that they

will lose at most bj ·
(

min{ci,pLi}
bi

+ ε
)
by investing a small amount more than

emax in preventive efforts. However, to achieve an equilibrium outcome close to
this scenario the other players need to motivate the leader to invest in emax,
otherwise, the game play would unravel. That is, they need to ensure that for
a whole range of parameters, the leader has an incentive to invest in protec-
tion efforts. In order to achieve this goal they need to “support the leader and
share the burden” by engaging in probabilistic protection efforts below emax. An
example for this scenario is put forward in Theorem 3.

Adding more players and more heterogeneous preferences to the game play
increases the complexity of the outcome. For example, if an agent is endowed
with a extremely low cost of self-insurance it is very difficult to persuade her
to act as a leader. In future work we will more thoroughly cover the nuances in
the N -player version of the game, and illustrate the important behaviors with
graphical representations. In the future, we also plan to engage in experimental
validations of the predicted outcomes.

6 Conclusion

The weakest target game is interesting and well-motivated, but difficult to ana-
lyze. It does not admit pure Nash equilibria, and when players are heterogeneous
in some cases the game does not even admit mixed-strategy equilibria. When
mixed strategy equilibria do occur they are dominated by phenomena which we
identified in the discussion section.

Most outcomes are far from ideal. In fact, payoffs for most players in any
Nash equilibrium are far worse than in the game’s social optimum. However,
under the social planner rule average security investments are extremely low.
This leads to a conflict between budgetary interests and a desire for increased
security readiness.
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2. Böhme, R., Schwartz, G.: Modeling cyber-insurance: Towards a unifying frame-
work. In: Proceedings of the Ninth Workshop on the Economics of Information
Security (WEIS 2010), Cambridge, MA (June 2010)

3. Christin, N., Grossklags, J., Chuang, J.: Near rationality and competitive equilibria
in networked systems. In: Proceedings of ACM SIGCOMM 2004 Workshop on
Practice and Theory of Incentives in Networked Systems (PINS), Portland, OR,
pp. 213–219 (August 2004)

4. Cornes, R., Sandler, T.: The theory of externalities, public goods, and club goods.
Cambridge University Press, Cambridge (1986)

5. Dixit, A., Skeath, S.: Games of Strategy. Norton & Company, New York (1999)
6. Fultz, N., Grossklags, J.: Blue versus Red: Towards a Model of Distributed Security

Attacks. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 167–183.
Springer, Heidelberg (2009)

7. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic anal-
ysis of information security games. In: Proceedings of the 2008 World Wide Web
Conference (WWW 2008), Beijing, China, pp. 209–218 (April 2008)

8. Grossklags, J., Christin, N., Chuang, J.: Security and insurance management in
networks with heterogeneous agents. In: Proceedings of the 9th ACM Conference
on Electronic Commerce (EC 2008), Chicago, IL, pp. 160–169 (July 2008)

9. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V.,
Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In:
Proceedings of the Conference on Computer and Communications Security (CCS),
Alexandria, VA, pp. 3–14 (October 2008)

10. Kearns, M., Ortiz, L.: Algorithms for interdependent security games. In: Thrun, S.,
Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems
16, pp. 561–568. MIT Press, Cambridge (2004)

11. Kunreuther, H., Heal, G.: Interdependent security. Journal of Risk and Uncer-
tainty 26(2-3), 231–249 (2003)

12. Lelarge, M., Bolot, J.: Network externalities and the deployment of security fea-
tures and protocols in the Internet. In: Proceedings of the ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
2008), Annapolis, MA, pp. 37–48 (June 2008)

13. Miura-Ko, A., Yolken, B., Mitchell, J., Bambos, N.: Security decision-making
among interdependent organizations. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF 2008), Pittsburgh, PA, pp. 66–80 (June
2008)

14. Nguyen, K., Alpcan, T., Basar, T.: Stochastic games for security in networks with
interdependent nodes. In: Proceedings of the International Conference on Game
Theory for Networks (GameNets 2009), Istanbul, Turkey, pp. 697–703 (May 2009)

15. Rapoport, A., Chammah, A.: Prisoner’s Dilemma: A Study in Conflict and Coop-
eration. Ann Arbor Paperbacks, University of Michigan Press (1965)

16. Rapoport, A., Chammah, A.: The game of chicken. American Behavioral Scien-
tist 10(3), 10–28 (1966)



Weakest Target Security Games with Heterogeneous Agents 453

17. Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of
game theory as applied to network security. In: Proceedings of the 43rd Hawaii
International Conference on System Sciences (HICSS 2010), Koloa, HI, pp. 1–10
(January 2010)

18. Skoudis, E.: Malware: Fighting malicious code. Prentice Hall, Upper Saddle River
(2004)

19. Varian, H.: System reliability and free riding. In: Camp, J., Lewis, S. (eds.) Eco-
nomics of Information Security. Advances in Information Security, vol. 12, pp. 1–15.
Kluwer Academic Publishers, Dordrecht (2004)

Appendix

6.1 Proof of Theorem 2

Proof. First note that under the specified parameter conditions, each Fi is a
left-continuous increasing function on R, that Fi(x) = 0 for x ≤ 0 and that
Fi(x) = 1 for x ≥ 1. Thus Fi describes a valid mixed strategy for player i.
To show that the mixed-strategy configuration is a Nash equilibrium, we will
consider two parameter sub-cases separately.

Case 1: bi ≤ min{ci, pLi} for i = 1, 2

In this case, we have min{b1,c1,pL1}
b1

= 1. So the mixed strategies simplify
to:

F1(x) =

⎧
⎪⎨

⎪⎩

0 for x ≤ 0
b2x
pL2

+ 1− min{c2,pL2}
pL2

for x ∈ (0, 1]

1 for x > 1

F2(x) =

⎧
⎪⎨

⎪⎩

0 for x ≤ 0
b1x
pL1

+ 1− min{c1,pL1}
pL1

for x ∈ (0, 1]

1 for x > 1
As the strategies are now symmetric it suffices to assume that player 1
is playing F1 and show that player 2’s response strategy is optimal. So
assume player 1 is playing F1.

– If player 2 plays e2 = 0, her resulting payoff will be M2 −min{c2, pL2}.
– If player 2 plays e2 = x ∈ (0, 1], her resulting payoff will be M2 −

b2x − pL2(1 − F1(x)) = M2 − b2x − pL2

(
min{c2,pL2}

pL2
− b2x

pL2

)
= M2 −

min{c2, pL2}
We see that player 2 receives the same payoff regardless of her choice
of strategies. Thus, playing a mixed strategy distribution over all pos-
sible strategies is an optimal response strategy, and hence the strategy
configuration is a mixed-strategy equilibrium.

Case 2: min{c1, pL1} < b1 and min{c1,pL1}
b1

= min{c2,pL2}
b2

In this case the mixed strategies simplify to:

F1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b2x
pL2

+ 1− min{c2,pL2}
pL2

for x ∈
(
0, min{c2,pL2}

b2

]

1 for x > min{c2,pL2}
b2
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F2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ 0
b1x
pL1

+ 1− min{c1,pL1}
pL1

for x ∈
(
0, min{c1,pL1}

b1

]

1 for x > min{c1,pL1}
b1

Again the strategies are symmetric so it suffices to assume player 1 is
playing F1 and consider the best response of player 2.

– Again, if player 2 plays e2 = 0, her resulting payoff will be M2 −
min{c2, pL2}.

– If player 2 plays e2 = x ∈
(
0, min{c2,pL2}

b2

]
, her resulting payoff will be

M2 − b2x − pL2(1 − F1(x)) = M2 − b2x − pL2

(
min{c2,pL2}

pL2
− b2x

pL2

)
=

M2 −min{c2, pL2}.
– If player 2 were to play e2 = x > min{c2,pL2}

b2
, her resulting payoff would

be M2 − b2x − pL2(1 − F1(x)) = M2 − b2x < M2 − b2 · min{c2,pL2}
b2

=
M −min{c2, pL2}.
We see that the first two options yield the same payoff, and the third
option yields a suboptimal payoff. Since response strategy for player 2
described by F2 is a mixed strategy over pure strategies of only the first
two forms, it is a best response strategy. We see again in this case that
the mixed strategy configuration is a Nash equilibrium.

6.2 Proof of Theorem 3

Proof. Again Fi describes a valid mixed strategy for player i. Assume that player
1 is playing F1 and consider the utility of player 2’s response strategy.

– If player 2 were to play e2 = 0, she would reap M2 − min{c2, pL2}. (Note
that according to F2 she plays this strategy with probability zero.)

– If player 2 plays e2 = x ∈
(
0, pL1

b1

]
, her payoff is M2−b2x−pL2(1−F1(x)) =

M2 − b2x − pL2

(
b2L1

b1L2
− b2x

pL2

)
= M2 − b2L1

b1
> M2 − b2 · min{c2,pL2}

b2
= M −

min{c2, pL2}.
– Finally, if player 2 were to play e2 = x > pL1

b1
, her payoff would be M2−b2x <

M2 − b2 · pL1

b1
.

We see that the optimal payoff player 2 can achieve is M2 − b2pL1

b1
. She achieves

this utility exactly when she plays x ∈
(
0, pL1

b1

]
; and this is exactly the set of

strategies that she plays according to her mixed-strategy specification F2.
Next assume that player 2 is playing F2 and consider the utility of player 1’s

response strategy.

– If player 1 plays e1 = 0, she reaps M − pL1.

– If player 1 plays e1 = x ∈
(
0, pL1

b1

]
, she reaps M1 − b1x− pL1(1− F2(x)) =

M1 − b1x− pL1

(
1− b1x

pL1

)
= M − pL1.
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– Lastly, if player 1 plays e1 = x > pL1

b1
, she reaps M1 − b1x < M1 − b1 · pL1

b1
=

M1 − pL1.

We see that player 1 maximizes her utility by playing any of the first two strategy
conditions, and this conforms to the prescription of F1. So player 1 is playing an
optimal response strategy.

This completes the proof that this strategy configuration is a Nash equilib-
rium.

6.3 Proof of Theorem 4

Proof. First note that the parameter conditions imply that min{b1,c1,pL1}
b1

�= 1
and hence c1 < min{pL1, b1}.

Suppose that there does exist a mixed strategy Nash equilibrium under these
parameter conditions. For i = 1, 2, let Xi be the set of pure strategies that occur
in player i’s mixed strategy; and let Fi be the cumulative distribution function
for ei in player i’s mixed strategy, defined so that Fi(x) = Pr[ei < x]. Note that
each Fj in monotone non-decreasing and left-continuous.11

We next prove a sequence of lemmas that give more structure to the functions
Fj . Ultimately, these lemmas will result in a contradiction involving the behavior
of F2 near the point x = 0, demonstrating that functions satisfying the prescribed
properties cannot exist.

Lemma 1. There exists a real number β with 0 < β ≤ c1
b1

such that for each j,
Fj(β) = 1, but for every real number α < β, Fj(α) < 1.

Proof. The utility of player 1’s mixed strategy is at least M1 − c1. Hence any
choice of e1 > c1

b1
is deterministically suboptimal. Let β be the least upper bound

on e1 in player 1’s mixed strategy. (More formally, we could define β to be the
maximum element inX1). Then β ≤ c1

b1
. Interpreting the definition of least upper

bound into the language of F1, we also have F1(α) < 1 for every α < β, and
F1(γ) = 1 for every γ > β.

Now, player 2 must have elements in her mixed strategy that take e2 arbitrar-
ily close to β from below. Otherwise, player 1 would have chosen an upper bound
lower than β to obtain a better utility. Thus we have F2(α) < 1 for every α < β.
Also player 2 cannot have any part of her mixed strategy include a protection
level strictly higher than β, for otherwise she would have preferred to reduce this
expenditure by a small amount to be closer to β and obtain an improved utility.
Thus F2(γ) = 1 for every γ > β.

Next we see that player 1 cannot play the pure strategy e1 = β with positive
probability. Otherwise, the discontinuity of F1 at β would cause player 2 to

11 Note that our use of < as opposed to ≤ differs from the standard treatment of
cumulative distribution functions. Our notation yields left-continuous as opposed to
right continuous. The reason we use the formulation with < is that we need to know
when ei ≥ x; this is easily expressed algebraically in terms of the predicate ei < x,
but using ≤ would make it cumbersome.
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receive a strictly higher payoff from playing β + ε (for sufficiently small ε) than
from playing β− ε. This contradicts the presumed optimality of player 2’s mixed
strategy, which contains plays greater than β−ε for every ε but no plays of β+ε.
Similarly F2(β) = 1 by a completely analogous argument to the one above.

This completes the proof of the lemma.

Lemma 2. limx→0+ F2(x) = 0

Proof. In words, this lemma says that player 2’s mixed strategy cannot contain
a pure strategy component of the form e2 = 0 with positive probability. To
see this, observe that the maximum benefit player 2 can achieve from playing
e2 = 0 is M2−min{c2, pL2}. However, using the result from the previous lemma,
if player 2 were to play e2 = c1

b1
, she would fail to be the weakest target with

probability 1, and would thus receive a utility of M−b2 · c1b1 . Since our parameter

conditions imply c1
b1

< min{c2,pL2}
b2

, we have M − b2 · c1
b1

> M − b2 · min{c2,pL2}
b2

=
M − min{c2, pL2}. Thus playing e2 = 0 is a suboptimal strategy for player 2.
I.e., limx→0+ F2(x) = 0.

Lemma 3. For j �= i, and for w, x ∈ Xj, we have Fj(w) = Fj(x)− bi
pLi

(x−w).

Proof. From the weakest target game definition, player j loses pLj whenever
0 < ej ≤ ei, and this happens with probability 1−Fi(ej). We see that for x > 0
and for j �= i the utility of player j is directly related Fi via

Uj(x, 0) = Mj − bjx− pLj(1 − Fi(x)).

Now in a mixed strategy equilibrium all pure strategy components yield the
same utility, hence for each w, x ∈ Xi we have Ui(w) = Ui(x). By rewriting the
expression in terms of Fj , we obtain the result

Fj(w) = Fj(x)− bi
pLi

(x− w).

Lemma 4. For j �= i, and for w ∈ Xj, we have Fj(w) = 1− bi
pLi

(β − w).

Proof. Since each Fj is left continuous, we have limα→β− Fj(α) = Fj(β) = 1.
Let w ∈ Xj and let 〈αn〉n∈N

be a sequence from Xj that converges to β. (Such a
sequence exists in Xj from the arguments given in Lemma 1.) Then from Lemma
3 we have Fj(w) = Fj(αn) − bi

pLi
(αn − w) for each n. Taking the limit of both

sides yields

Fj(w) = 1− bi
pLi

(β − w).

Lemma 5. For j �= i, and for z ∈ (0, β), we have Fj(z) ≥ 1− bi
pLi

(β − z).
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Proof. If z /∈ Xi, then we cannot use equality of utilities, but using Lemma 4
and the properties of Fj as a cumulative distribution, we have for z ∈ (0, β):

Fj(z) = inf{Fj(w) : w ∈ Xj and w > z}

= inf

{

1− bi
Li

(β − w) : w ∈ X and w > z

}

≥ 1− bi
pLi

(β − z)

Finally, for the punchline,
Using Lemma 5, for every ε ∈ (0, β) we have

F2(ε) ≥ 1− b1
pL1

(β − ε)

= 1 +
b1
pL1

ε− b1
pL1

β

> 1− b1
pL1

· c1
b1

= 1− c1
pL1

In particular, limε→0+ F2(ε) ≥ 1 − c1
pL1

> 0. This contradicts the conclusion of
Lemma 2.

We conclude that no mixed strategy equilibrium can exist.

6.4 Proof of Theorem 5

Proof. Fi describes a valid mixed strategy for player i. Assume that all players
j �= i are playing Fj and consider the best response of player i.

– If player i plays ei = 0, she reaps M −min{c, pL}.
– If player i plays ei = x ∈

(
0, min{b,c,pL}

b

]
, her payoff is M − bx − pL ·

∏
j �=i(1−Fj(x)) = M − bx−pL ·∏j �=i

(
N−1

√
min{c,pL}−bx

pL

)

= M − bx−pL ·
min{c,pL}−bx

pL = M −min{c, pL}.
– Finally, if player i were to play ei = x > min{b,c,pL}

b , then this is possible
only if min{b, c, pL} = min{c, pL}, and in this case, her payoff would be at

most M − bx < M − b · min{c,pL}
b = M −min{c, pL}.

We see that the optimal payoff player i can achieve is M − min{c, pL}. She
achieves this utility exactly when she plays x ∈

[
0, min{b,c,pL}

b

]
; and this is

exactly the set of strategies that she plays according to her mixed-strategy spec-
ification Fi.
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6.5 Proof of Theorem 6

Proof. The algebraic part of the formula is derived as follows:

Mi −min{ci, pLi} = Mi − bix− pLi

∏

j �=i

(1− Fj(x))

min{ci, pLi} − bix

pLi
=

∏

j �=i

(1 − Fj(x))

N∏

k=1

min{ck, pLk} − bkx

pLk
=

N∏

k=1

(1− Fk(x))
N−1

∏N
k=1

min{ck,pLk}−bkx
pLk

(
min{ci,pLi}−bix

pLi

)N−1
=

∏N
k=1 (1− Fk(x))

N−1

(∏
j �=i(1− Fj(x))

)N−1

∏N
k=1

min{ck,pLk}−bkx
pLk

(
min{ci,pLi}−bix

pLi

)N−1
= (1− Fi(x))

N−1

N−1

√
√
√
√
√

∏N
k=1

min{ck,pLk}−bkx
pLk

(
min{ci,pLi}−bix

pLi

)N−1
= (1− Fi(x))

1− N−1

√
√
√
√
√

∏N
k=1

min{ck,pLk}−bkx
pLk

(
min{ci,pLi}−bix

pLi

)N−1
= Fi(x)
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