Jamming Game in a Dynamic Slotted ALOHA
Network

Andrey Garnaev', Yezekael Hayel?,
Eitan Altman?®, and Konstantin Avrachenkov*

! Saint Petersburg State University
St Petersburg, Russia
garnaev@yahoo.com
2 University of Avignon
Avignon, France
yezekael .hayel@univ-avignon.fr
3 INRIA Sophia Antipolis
Sophia Antipolis, France
altman@sophia.inria.fr
4 INRIA Sophia Antipolis
Sophia Antipolis, France
k.avrachenkov@sophia.inria.fr

Abstract. In this paper we suggest a development of the channel ca-
pacity concept for a dynamic slotted ALOHA network. Our object is to
find maxmin successful transmissions of an information over a dynamic
communication channel. To do so, we analyze an ALOHA-type medium
access control protocol performance in the presence of a jammer. The
time is slotted and the system is described as a zero-sum multistage
matrix game. Each player, the sender and the jammer, have different
costs for respectively sending their packets and jamming, and the jam-
mer wants to minimize the payoff function of the sender. For this case,
we found explicit expression of the equilibrium strategies depending on
the costs for sending packets and jamming. Properties of the equilibrium
are investigated. In particular we have found a simple linear correlation
between the probabilities to act for both players in different channel
states which are independent on the number of packets left to send. This
relation implies that increasing activity of the jammer leads to reducing
activity of the user at each channel state. The obtained results are gener-
alized for the case where the channel can be in different states and change
according to a Markov rule. Numerical illustrations are performed.

1 Introduction

The first work related Game theory and Information theory through a max-min
problem was proposed in 1952 by Mandelbrot in his PhD Thesis Contribution a
la theorie mathematique des jeux de communication. He has studied the problem
of communication through a noisy channel as a two-player zero-sum game where
the sender maximizes mutual information and the noise minimizes it, subject to
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average power constraints. It has been shown that an i.i.d Gaussian signaling
scheme and an i.i.d. Gaussian noise distribution are robust, in that any deviation
of either the signal or noise distribution reduces or increases (respectively) the
mutual information. Hence, the solution to this game-theoretic problem yields a
rate of log(1 + ]50 ) which is defined now as the Shannon capacity.

Recall that channel capacity is the tightest upper bound on the amount of
information that can be reliably transmitted over a communication channel with
noise. In this paper we suggest a development of this channel capacity concept
for a dynamic slotted ALOHA network. Our object is to find maxmin successful
transmissions of an information over a dynamic communication channel. There-
fore, our work extends in a simple way the concept of Shannon capacity in a
ALOHA network.

The ALOHA protocol proposed in[d], is a totally decentralized mechanism for
defining a medium access protocol without carrier sense in a multi-user environ-
ment. The slotted-ALOHA has been proposed in [5] by introducing the synchro-
nization between the devices. This distributed mechanism leads several exten-
sions and is the base of several cellular networks protocols like GSM. There are
several works on the the study of non-cooperation between users in an ALOHA
network. For example in [6], the authors consider an ALOHA game which the
users decides and advertises their transmission probability but keeps their de-
sired throughput private. They study the existence of equilibrium points that
could possibly be reached by the users for given user throughput demands. The
users’ convergence to equilibrium points is analyzed using a specified potential
function that governs their dynamics. We can cite also the papers [§] and [9] in
which the authors extend the previous model by incorporating channel state in-
formation as affecting the transmission policy. They have also shown that there
exists particular configurations with several Nash equilibrium. Another model
with partial information is proposed in [7] in which mobiles do not know the
number of backlogged packets at other nodes. A Markov chain analysis is used
to obtain optimal and equilibrium retransmission probabilities and throughput.
Jamming in an ALOHA network has been first study in [2]. The performance
of the system is defined as the minmax of a two-person constant sum game.
The author considers the expected forward progress by taking into account ge-
ometrical considerations and routing protocols. In [3], the authors consider an
ALOHA non-cooperative game in which one player is a jammer. The authors
consider only probability of sending packet or jamming without an energy cost.
In [10] jamming and transmission costs were employed for the plot of one step
jamming game. Note that besides ALOHA network the jamming problem has
been studied for a variety of wireless network settings including sensor networks
[11] and other general wireless network models [T2JT3IT4/T5T6].

In this paper we assume that a user wants to transmit a message of N pack-
ets in a time smaller or equal to T'. In fact, we assume that T is an exponen-
tially distributed random variable with the mean 1/A. Why exponentially dis-
tributed? Delay-tolerant networks (DTN) are complex distributed systems that
are composed of wireless mobile/fixed nodes, and they are typically assumed to
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experience frequent, long-duration partitioning, and intermittent node connec-
tion [I8]. There have been various research works on the characteristics of the
intercontact time between nodes [19]. Initial works typically assumed that the
CCDF (complementary cumulative distribution function) of the inter-contact
time decays exponentially over time and it is generally modeled using an expo-
nential random variable [20]. This assumption is supported by numerical simu-
lations conducted under most existing mobility models in the literature [21].

Note that as T is a duration, we should have A\ < 1. This parameter represents
the average time between two transmission attempts. We consider a slotted
model. In each slot, the user sends a packet with probability p and the jammer
tries to jam with probability q. The user obtains one as the reward only if
he sends successfully the file of N packets within the time frame T, otherwise
the user gets the zero reward. We describe this plot using a multistage zero-sum
game. The value of the game and the optimal strategies are found in closed form.
In particular we show that if the transmission cost is too big then the game has
a saddle point. At this equilibrium, for both players there is no sense to act i.e.
to transmit and to jam. If the jamming cost is too big and the transmission cost
is not too big then there is no sense for the jammer to jam. Of course, since
there is no jamming threat and the transmission is not too costly then the user
transmits packets safely. If both jamming and transmission costs are not too big,
then mixed equilibrium arises where both players act equalizing chances for the
opponent. We have established a conservation law for the activities of the user
and the jammer. In particular, an increase of the jammer activity results in a
decrease of the user activity. Furthermore, the conservation law is invariant with
respect to the amount of data to send.

1.1 Organization of the Paper

The rest of this paper is organized as follows. In Section 2 and its subsection
formulation and solution of the ALOHA game is given. Numerical modelling
is performed in Section 3. In Section 4 the obtained results are generalized for
the case where the channel can be in different states and change according to a
Markov rule. Discussion of the obtain result and also a possible generalization
of the game can be found in Section 5.

2 Model

We analyze an ALOHA-type medium access control protocol performance in the
presence of a jammer with static channel state. We assume that a user wants to
transmit a message of N packets in a time smaller or equal to T'. In each slot
the user sends a packet with probability p and the jammer tries to jam with
probability gq. The user obtains R as the reward only if he sends successfully
the file of N packets within the time frame T, otherwise the user gets the zero
reward.
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For each transmission attempt, the sender will pay a cost Cr, and respectively,
for each jamming attack, the jammer will pay C;. Let V; be the expected reward
for total successful transmission when there are still i packets needed to be sent.

Vi = max,min, (—Crp+ Cyq+ p(1 — ¢)AVic1 + (1 — p(1 — q))AV;)

with Vy = R, where R is the reward for successful transmission of all the packets.
Then the problem can be reformulated in the following multistage form:

J N
- 1 T ([ -Cr+Cjy /\(V;fl - Vz) - Cr
V= 1 )\V&lN ( c, 0 ) (1)

where val means either maxmin or the value of the game if maxmin coincides
with minmax.

We study now the optimal strategies of the players and the value of the game.
The results are collected in Theorems [II [3] and their proofs are supplied in
Appendix.

First, we will show that if the transmission cost is too big then the game has
a saddle point telling that for both players there is no sense to act (to transmit
and to jam).

Theorem 1. Let there be still i packets needed to be sent. Then (N,N) is a
saddle point if and only if

)\‘/;',1 < CT)

then V; = 0.
In particular, if the transmission cost Cr is too big, namely,

AR < Cr (2)

then V; = 0, i > 1 and for both players there is no sense to act (to transmit and
to jam).

Second, we will show that if jamming cost C; is too big then there is no sense
for the jammer to jam. Of course, since there is no jamming thread and the
transmission is not too costly then the user transmit packets safely.

Theorem 2. Let there be still i packets needed to be sent. Let assume that
Cr < AR and RA(1 = \) + \Cr < (. (3)

Then (T, N) is a saddle point for i < i., (N,N) is a saddle point for i > i, and

1=\

N -
vi={ T
0, P> s,

Cr, 1<,
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where i, is given as follows:

IH(MRUf?M+Gﬂ)
In())

Ty =

(4)

Finally we will consider the case where jamming and transmission costs are not
too big. Then mixed equilibrium arises in which both players act with some
probabilities.

Theorem 3. Let there be still i packets needed to be sent. Let
Cr < AR and Cj < RA(1 — \) + \Cr. (5)

Then the game has mized equilibrium for i < i, where i, is the minimal integer
such that

Cy c; \° | C;Cr _ 2max{Cr,C,}
i-1— i1 — 4 < .
Vi 1/\+\/(V1 1/\> Tra- A

The value of the game for i < i, is given by

e or 1
ml—A(lAlhl—W)' (6)

The equilibrium mized strategies (pi,1 —p;) and (gi,1 — q;) are given as follows:

o Cy - Cr
PiE i —viy T T AW - )

Fori>i, V; =0 and (N, N) is a saddle point.

It is interesting to note that there is a simple linear correlation between the
probabilities to act for both players, namely

Crpi +Cyq; = Cjy. (7)

This relation is independent of the number of number of packets left to send
and moreover, this relation establishes a conservation law for the total activities
of the user and the jammer in the regime of mixed strategies. In particular,
an increase of the jammer activity results in a decrease of the user activity.
Furthermore, this conservation law is invariant with respect to the amount of
data to send.
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3 Numerical Illustrations

As a numerical example consider situation with A = 0.9 and R = 1. The value of
the game in Figure 1 for transmission cost Cp € [0.001,0.02], 2,3 and 4 packets
left to send and jamming cost C; = 0.005 and C'; = 0.01. Also the optimal user
strategy for transmission cost Cr € [0.001,0.02], 2 and 4 packets left to send
and jamming cost C'; = 0.005 and C; = 0.01. The optimal jammer strategy
and 2 and 4 packets left to send and jamming cost C; = 0.01. We can restrict
ourself mainly to the optimal use’s strategies because a strong linear correlation
between them and the jammer’s strategies ().

One can see that the value of the game and the optimal use’s strategies are
very sensitive to the changing of the environment. We observe that the activity of
the user is decreasing with the cost of transmission, which is an intuitive result.
Moreover, if jamming cost is decreasing then jammer activity arises (because the
activity of the user decreases) and the value of the game goes down.

Finally, when transmission cost Cr increases, difference in user’s payoff is
increasing under different environment conditions.
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Fig. 1. The value of the game and the user’s equilibrium strategy

4 Markov ALOHA Game

In this section we consider a variation of the game for the case where the channel
can be in two states: good (1) and bad (0), and it can change its state according
to a Markov rule. We denote by X; the state of the channel at time slot t.
Namely, with probability oy, ,y = 0,1 the channel switches from state = to
state y, i.e. Prob(X¢11 = y| X = ). So, azo + az1 =1 and agy + a1y = 1. We
also assume that the probability of successful transmission in state x, if there
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is no jamming, is 7., where 73 = 1 and vy = 7. So, if there is jamming then
transmission is blocked with sure. If there is no jamming in the good channel
state, then the transmission performs with sure and in the bad channel state it
carries on with probability 7. Let V; ; be the expected reward for total successful
transmission when there are still ¢ packets needed to be sent and the channel
is in state x. The action of the sender and the jammer depends on the state x
of the channel. We define now by p, (resp. ¢,) the probability of transmission
(resp. of jamming) when the channel is in state z. Then, in general case for V; ,
the following maxmin equations hold:

Vi« = max min{—Csz +Crg
Pz Qo

A (Poe (@ Viw + €y Vi)

+ px(l - qgc)(%camc‘/i—l,x + 'Yacaacyvvi—l,y) (8)
+ (]— 7pz)(a:r:rv;,z + amyv;,y))}
with

and {z,y} = {0,1}.
Then the problem can be reformulated in the following multistage form:

Vii — Ma11Vip + aioVip)

J N
(10)
_ valT —Cr+Cy Man1Wii +a1oWio) — Cr
Cy 0 ’
and
Vio — MaooVio + ao01Vin)
J N
(11)
_ valT —-Cr+C; M(agWio+anW;1) —Cr
Cy 0 ’
with

Wiy =Vic1p — Vig forz=1,2,

where val means either maxmin or the value of the game if maxmin coincides
with minmax.

4.1 Solution of Markov ALOHA Game

In this Section we will find solution of the Markov ALOHA game. First note
that straightforward from ([{) and () and Theorem [ we have the following
result.
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Theorem 4. (N, N) is a saddle point for both state if and only if

a11Vicig +aoVieio < COr /A,
a01Vic1,1 + Vim0 < Cr/(VA).
In particular, if V;1 = 0 then V; o = 0. Also, if the transmission cost Cr is too

big, namely,
Cr > AR

then there is no sense in transmission at all and so in jamming, then
Vio=Vii=0, i>1

So, we can assume now that
Cr < AR

Then we have only for situation left to deal with:

(a) the jamming cost is too big that jammer does not jam in both state, so users
can send packets safely,

(b) the jamming cost is too big for bad channel state and not to big for good
channel state, so in bad channel state users stick to pure equilibrium strate-
gies (T, N) meanwhile in the bad channel state users employ mixed equilib-
rium strategies,

(c) the jamming cost is not big and then the users acts according to mixed
equilibrium strategies.

These three situations are described in the following theorems.

Theorem 5. (T, N) is the saddle point for both states if and only if

Vii = Ma1Vii + a10Vio) — Cr,

'yaoo + A1 - )amaw
50 = A i—
Vio ~ A1 = )ag 1,0
1-— 12
)\7@01 —|—)\( )a01a11 Vi, (12)
— Al =)o

1+ /\(1 —¥)ao
1 A1 = y)aoo

and
T Cy
\ <a11(Vici1 — Vip) +a10(Vic1,0 — Vip) < \
C

)\z < ap1(Vic11 — Vi) + ago(Vici,0 — Vio) < )\i
In particular fori=1:

Vii=AR-Cr,

g7 + api A1 —7) 1+ apA(1—7) Or (13)

1 —agA1l—7) 1—apA(l—"7)
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and
C C
R— )\J <anVii+awVio<R- )\T7
C C
rR- "7 < apoVi,0 +anVip < R— T
Ay Ay

Now we consider the situation where both players in both states according to
equilibrium apply mixed strategies.

Theorem 6. (p; 4, ), © = 0,1 be the equilibrium in mized strategy if and only

if
Pin = Maa1Viei1 + aoVie1,0 — a11Vin — Vi)
g1 =1- cr
ol Mag1Vicig + a1oVic10 — a1 Vi — a1oVio)’
Pio = M (a1 Vi1 + aooVie1,0 — @1 Vin — aooVio)'

Cr
Gio=1- ;
M(ao1Vici1 + aooViei,0 — o1 Vi — aooVio)

and Vi1 and V; o are solutions of equations

Vii — MainVig + aoVip)

CrCy
Ma11Vicig + aioVie10 — a1 Vin — aaoVip) '
Vio — ManVia + aooVio)

:CJ—

o CrC,y
J My (01Vie11 + aooVie1,0 — @01Vin) — aooVio)’

where the following conditions have to hold:

max{Cr,Cs} < Mo (Vici1 — Vin)
+ Oé10(V§71,0 - V;,O)L

max{Cr,C;} < M[ao1 (Vi1 — Vi)
+ aoo(Vic1,0 — Vi)

It is interesting to note that there is a simple linear correlation independent on
the number packets left to send between the probabilities to act for both players
in different channel states, namely

Crpie+Cigis=Cy, x=0,1
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which implies the fact that increasing activity of the jammer leads to reducing
activity of the user at each channel state.

Finally we consider the situation with jamming cost which is to high to jam
in the good channel state and at the same time it allows to jam in the good
channel state.

Theorem 7. (p;1,¢i1) and (T, N) be the equilibrium for good and bad channel
states if and only if

Vio = M (aooVic1,0 + @o1Vie1,1) — Cr . A1 — )01 Vi01
v 1= A1 —7)aoo 1= A1 —7)aoo
and

Vii — MainVig + a10Vio)
CrCy
Mo Vi1 + a1oVici,0 — a11Vip — a1oVip) '

where the following conditions have to hold:

C C
)\T <a11(Vici1 = Vip) +a10(Vic1,0 — Vip) < )\J7
maX{CT,CJ}

\ < a11(Vici,1 = Vix) + c10(Vici,0 — Vio)-

Then, we have obtained, in a general framework, where the channel can be in
good or bad state, the existence of different equilibrium even in pure or in mixed
strategy. In the next section, we explore a particular asymmetric case for the
transition probabilities.

4.2 A Particular Case: The Asymmetric Case

In this Section we consider in detail the asymmetric case 11 = ap1 = « and
ago = apr = 1 — . Then in the situation with mixed strategies in both states
by Theorem [B] we have that

Vii—AMaVii+ (1 —a)Vig) =Cjy
CrCy
C MaVicii + (1= a)Vimio — Vi — (1 — a) Vi)
Vio—AMaVii + (1 —a)Vig) =Cjy
CrCy
C M(aVieig + (1 =) Vi — aVig — (1 — )Vig)’

Summing up the last two equations multiply by a and 1 — « respectively, and
substracting from the first equation the second one multiplied by + we obtain
the following two relations first of them give a recurrent formula for finding the
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expected value of payoff aVi1 + (1 — a)Vi at different states, and the second
one gives a strong linear correlation between payoffs:
(1 — )\)(()&Vzﬂ + (1 — a)Vi,o) =Cy
CrCila+ (1 —a)/v) (15)
MaVicig+ (1 —a)Vicip—aVip — (1 —a)Vio)’

(1= A1 = )a)Vi
=+ A1 =)A= a)Vio+Cs(1 =)
Then, subtracting (I6) from (T3] implies:

aViir+ (1 —-a)Vio=B8

with
Cy

aVicii+ (1 —a)Vicio+ 1

B =
2

1 Cr; \?
5 [<QW1,1 +(1—-—a)Vicio— 1 _J)\)

(A=) a))CJCT} 1/2
(I—=X)A
Thus, the optimal payoffs are given as follows:

1-Xa(l—7)B—a(l —)Cy
Vio =

1—a(l—7) ’
v = 0 FAd =11 -a))B+(1-a)(1-7)Cy
i1 =
’ l—a(l—-7)

5 Discussion and Extensions

In this paper we suggested a development of the channel capacity concept for
a dynamic slotted ALOHA network. We found maxmin successful transmission
of an information over a dynamic communication channel. To do so, we ana-
lyzed a simple ALOHA-type medium access control protocol performance in the
presence of a jammer as a zero-sum dynamic game. The obtained results are
generalized for the case where the channel can be in different states and change
according to a Markov rule. We considered only the simplest case the channel
can be in two states: good (1) and bad (0). If there is jamming then transmission
is blocked with sure. If there is no jamming in the good channel state, then the
transmission performs with sure and in the bad channel state it carries on with a
probability . The probabilities with which the channel switches from one state
to the other are known and fixed. For this game also the recurrent formulas for
finding the optimal solution are obtained. As the other direction of the investi-
gation we are planning to deal with the uncomplete information case, say, when
jamming cost and transmission costs are unknown to the rival correspondingly.
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6 Appendix

Before solving our game () let us remind the following result [I] which supplies
all the equilibrium for 2 x 2 matrix zero-sum game.

Theorem 8. Let A be the zero-sum game with the following matriz:
Aq1 Aga
A= .
(A21 Azz)

This game

(a) either has a saddle point (each saddle point can be found as the an element
of this matriz which is the minimal one in its row and it is the maximal one
in its column),

(b) or a couple of mized equilibrium strategies (x,1 — x), (y,1 —y) where

o Ao — Ay
Ay — Ao + Agg — Aoy’
Ao — Ar2

v= Ay — Ao + Agg — Aoy’
Ai1A — Ai1pAn

v = .
A1r — A1g + Ags — Agy

Note that the mized equilibrium ezists if and only if either

A > Ag, Arg < Agg, Aag > Agy, Asn < Ay (17)
or

A < Ag, A1 > Aga, Aoy < Agi, Az > Axg. (18)

In our case

A11 = —CT + CJ7 A12 = )‘(V(Z - 1) - V(Z)) - CT’

19
Ag1 = Cy, Ay =0. (19)

Then, only two pairs of strategies (N, N) and (T, N) could be saddle points in
our game under some circumstance. Theorems [I] and supply the condition
under which either (N, N) or (T, N) is saddle point. Theorem [3] deals with the
rest case, namely, where the mixed equilibrium arises.

Proof of Theorem[1: By ([I3)) (IV, N) presents a saddle point if and only if
AViz1 = Vi) = Cp <0 for any 1.
and the result follows.

Proof of Theorem[2: By [[3)) (T, N) presents a saddle point if and only if

AViiy = Vi) = Cr >0
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and
Cy—Cpr>AVis1 = V)= Crp

which is equivalent to
Cr < ANVie1 —V;) < Cy. (20)

Thus, by 20Q), (T, N) is a saddle point if the jamming cost has to be bigger than
the transmission one, namely

Cr < Cjy. (21)
Also, since (T, N) is a saddle point, by (Il), we have that
1
Vi= 1_)\()‘(‘/;71*‘/;)*CT)'
Thus,
Vi=AVi_1 — Cr. (22)
Substituting (22)) into 20) turns 20) into the following equivalent form:
Cr 1
<Vi, < —ACr). 2
y SV 1_)\(1_>\)(CJ Cr) (23)

Now let have a look at (23) for ¢ = 1. Since Vp = R then the left part of ([23)) is
clear. The right part of (23] holds if

RA(1 =X+ \Cp < Cy. (24)
Then by induction from ([22)) we can obtain that
11—\
1—A
Also, since ACr > R then (24]) implies 2I)).

Tt is clear that V; is decreasing function from Vy = R and Voo = —Cr/(1 — )
and (@) holds, where i, is the root of the equation

V; = R\ — Cr while Z3)) holds.

L 1=N L Op
RN = Cr =]

Finally note that by (3)
max{Cr, R\(1 = X\) + A\Cr} = RA(1 — \) + ACr.

This completes proof of Theorem [2l

Proof of Theorem[3: In this Theorem we want to find mixed strategies and the
condition where they take place. Since by (I3 Az = Cy > Cy — Cr = Aj; then
the situation (I7) cannot hold. Also, Ass = 0 < Cy = Ag;. Then conditions (I])
are equivalent to the following two inequalities:

—Cr+Cjy< )\(V;,l — V;) —Crand 0 < )\(V;,l — V;) — Cr.
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Thus, we have the following condition for existence of equilibrium in mixed
strategies:
max{Cr,C;} < ANV;_1 = V). (25)

Then, by Theorem B we have that (@) holds. Introduce the following notation:
Wi=Vi1-V,.
In the new notation, (@) can be presented in the following way:

e Cr
W= @ (- ). (26)

So,

Oy Oy C,;Cr
Vi1 1—>\i\/(vl—1 1A
W, = .

2
Since, by (28), W; > 0 from the last relation we have that

. — Cy g _ Cy 2 C;Cr

Vi 1A+\/(VZ1 1A A0

W; = (27)

2

Then, substituting (27) into (23] implies the following equivalent presentation
for (28) just in terms of V;_q:

QCT CJ CJ CJCT
< . —_ L —_ 2 .
y SVia 1_)\+\/(V;1 y +4(1_A)/\ (28)
Also, 27) yields that V() has the form

Cy cr \? CyCr
i— - -1 — 4
Vet \/(V1 1—>\> T
and
Cy 2 C;Cr Cy
V"1+\/(1—,\V“) +4(1—A),\* 1—A (30)
Vici—=Vi=

9 > 0.

Thus, V; given by (29) is decreasing on i. Then by @27)) W; is also decreasing.
Finally, we have to check whether (28] holds for ¢ = 1. By ([B0) it is equivalent
to

Cy > C,0r Cy 2 max{Cr,C;}
— 4 > - ’ . 31
\/(1>\ R) T T i A B

Since for Cp > C the inequality ([B1) is equivalent to Cp < AR, and for Cr < C;
the inequality (BI]) is equivalent to Cy < ACr + AR(1 — X) we have the following
result supplying the value of the game. This completes proof of Theorem [3
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