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Abstract. In this paper we study resource allocation in decentralized
information local public good networks. A network is a local public good
network if each user’s actions directly affect the utility of an arbitrary
subset of network users. We consider networks where each user knows
only that part of the network that either affects it or is affected by it.
Furthermore, each user’s utility and action space are its private infor-
mation, and each user is a self utility maximizer. This network model
is motivated by several applications including social networking, online
advertising and wireless communications. For this network model we
formulate a decentralized resource allocation problem and develop a de-
centralized resource allocation mechanism (game form) that possesses
the following properties: (i) All Nash equilibria of the game induced by
the mechanism result in allocations that are optimal solutions of the
corresponding centralized resource allocation problem (Nash implemen-
tation). (ii) All users voluntarily participate in the allocation process
specified by the mechanism (individual rationality). (iii) The mechanism
results in budget balance at all Nash equilibria and off equilibrium.

Keywords: network, local public good, decentralized resource alloca-
tion, mechanism design, Nash implementation, budget balance, individ-
ual rationality.

1 Introduction

In networks individuals’ actions often influence the performance of their directly
connected neighbors. Such an influence of individuals’ actions on their neighbors’
performance can propagate through the network affecting the performance of the
entire network. Examples include several real world networks. As an instance,
when a jurisdiction institutes a pollution abatement program, the benefits also
accrue to nearby communities. Or, when a university builds a new library, other
colleges also benefit from the subscription to the new library. In online advertis-
ing, the utility (users’ attention) that an advertisement gets may be increased
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or decreased due to adjacent advertisements on the webpage. The influence of
neighbors is also observed in the spread of information and innovation in so-
cial and research networks. Networks with above characteristics are called local
public good networks.

A local public good network differs from a typical public good system in
that a local public good (alternatively, the action of an individual) is accessi-
ble to and directly influences the utilities of individuals in a particular local-
ity/neighborhood within a big network. On the other hand a public good is
accessible to and directly influences the utilities of all individuals in the system
([9, Chapter 11]). Because of the localized interactions of individuals, in local
public good networks (such as ones described above) the information about the
network is often localized; i.e., the individuals are usually aware of only their
neighborhoods and not the entire network. In many situations the individuals
also have some private information about the network or their own characteristics
that are not known to anybody else in the network. Furthermore, the individuals
may also be selfish who care only about their own benefit in the network. Such a
decentralized information local public good network with selfish users gives rise
to several research issues. In the next section we provide a literature survey on
prior research in local public good networks.

1.1 Literature Survey

There exists a large literature on local public goods within the context of local
public good provision by various municipalities that follows the seminal work
of [14]. These works mainly consider network formation problems in which in-
dividuals choose where to locate based on their knowledge of the revenue and
expenditure patterns (on local public goods) of various municipalities. In this
paper we consider the problem of determining the levels of local public goods
(actions of network agents) for a given network; thus, the problem addressed
in this paper is distinctly different from those in the above literature. Recently,
Bramoullé and Kranton [1] and Yuan [3] analyzed the influence of selfish users’
behavior on the provision of local public goods in networks with fixed links
among the users. The authors of [1] study a network model in which each user’s
payoff equals its benefit from the sum of efforts (treated as local public goods)
of its neighbors less a cost for exerting its own effort. For concave benefit and
linear costs, the authors analyze Nash equilibria (NE) of the game where each
user’s strategy is to choose its effort level that maximizes its own payoff from
the provision of local public goods. The authors show that at such NE, special-
ization can occur in local public goods provision. Specialization means that only
a subset of individuals contribute to the local public goods and others free ride.
The authors also show that specialization can benefit the society as a whole be-
cause among all NE, the ones that are “specialized” result in the highest social
welfare (sum of all users’ payoffs). However, it is shown in [1] that none of the
NE of abovementioned game can result in a local public goods provision that
achieves the maximum possible social welfare. In [3] the work of [1] is extended
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to directed networks where the externality effects of users’ efforts on each others’
payoffs can be unidirectional or bidirectional. The authors of [3] investigate the
relation between the structure of directed networks and the existence and nature
of Nash equilibria of users’ effort levels in those networks. For that matter they
introduce a notion of ergodic stability to study the influence of perturbation of
users’ equilibrium efforts on the stability of NE. However, none of the NE of
the game analyzed in [3] result in a local public goods provision that achieves
optimum social welfare.

In this paper we consider a generalization of the network models investigated
in [1,3]. Specifically, we consider a fixed network where the actions of each user
directly affect the utilities of an arbitrary subset of network users. In our model,
each user’s utility from its neighbors’ actions is an arbitrary concave function of
its neighbors’ action profile. Each user in our model knows only that part of the
network that either affects it or is affected by it. Furthermore, each user’s utility
and action space are its private information, and each user is a self utility max-
imizer. Even though the network model we consider has similarities with those
investigated in [1,3], the problem of local public goods provision we formulate in
this paper is different from those in [1,3]. Specifically, we formulate a problem
of local public goods provision in the framework of implementation theory1 and
address questions such as – How should the network users communicate so as
to preserve their private information, yet make it possible to determine actions
that achieve optimum social welfare? How to provide incentives to the selfish
users to take actions that optimize the social welfare? How to make the selfish
users voluntarily participate in any action determination mechanism that aims
to optimize the social welfare? In a nutshell, the prior work of [1,3] analyzed
specific games for local public good provision, whereas our work focusses on de-
signing a mechanism that can induce (via taxation) “appropriate” games among
the network users so as to implement the optimum social welfare in NE.

Previous works on implementation approach (Nash implementation) for (pure)
public goods can be found in [5,7,15,2]. For our work, we obtained inspiration from
[7]. In [7] Hurwicz presents a Nash implementation mechanism that implements
the Lindahl allocation (optimum social welfare) for a public good economy. Hur-
wicz’ mechanism also possesses the properties of individual rationality (i.e. it in-
duces the selfish users to voluntarily participate in the mechanism) and budget
balance (i.e. it balances the flow of money in the system). A local public good net-
work can be thought of as a limiting case of a public good network, in which the
influence of each public good tends to vanish on a subset of network users. How-
ever, taking the corresponding limits in the Hurwicz’ mechanism does not result
in a local public good provision mechanism with all the original properties of the
Hurwicz’ mechanism. In particular, such a limiting mechanism does not retain the
budget balance property which is very important to avoid any scarcity/wastage
of money. In this paper we address the problem of designing a local public good

1 Refer to [8,13,12] and [11, Chapter 3] and for an introduction to implementation
theory.
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provision mechanism that possesses the desirable properties of budget balance,
individual rationality, and Nash implementation of optimum social welfare. The
mechanism we develop is more general than Hurwicz’ mechanism, and Hurwicz’
mechanism can be obtained as a special case of our mechanism. To the best of
our knowledge the resource allocation problem and its solution that we present in
this paper is the first attempt to analyze a local public goods network model in
the framework of implementation theory. Below we state our contributions.

1.2 Contribution of the Paper

The key contributions of this paper are: 1. The formulation of a problem of
local public goods provision in the framework of implementation theory. 2. The
specification of a game form2 (decentralized mechanism) for the above problem
that, (i) implements in NE the optimal solution of the corresponding centralized
local public good provision problem; (ii) is individually rational;3 and (iii) results
in budget balance at all NE and off equilibrium.

The rest of the paper is organized as follows. In Section 2.1 we present the
model of local public good network. In Section 2.2 we formulate the local public
good provision problem. In Section 3.1 we present a game form for this problem
and discuss its properties in Section 3.2. We conclude in Section 4 with a dis-
cussion on future directions.

Notation used in the paper
We use bold font to represent vectors and normal font for scalars. We use bold
uppercase letters to represent matrices. We represent the element of a vector by a
subscript on the vector symbol, and the element of a matrix by double subscript
on the matrix symbol. To denote the vector whose elements are all xi such that
i ∈ S for some set S, we use the notation (xi)i∈S and we abbreviate it as xS .
We treat bold 0 as a zero vector of appropriate size which is determined by the
context. We use the notation (xi,x

∗/i) to represent a vector of dimension same
as that of x∗, whose ith element is xi and all other elements are the same as
the corresponding elements of x∗. We represent a diagonal matrix of size N ×N
whose diagonal entries are elements of the vector x ∈ R

N by diag(x).

2 The Local Public Good Provision Problem

In this section we present a model of local public good network and formulate a
resource allocation problem for it. We first describe the components of the model
and the assumptions we make on the properties of the network. We then present
the resource allocation problem and formulate it as an optimization problem.4

2 See [11, Chapter 3] and [12,13,8] for the definition of “game form”.
3 Refer to [11, Chapter 3] and [12] for the definition of “individual rationality” and
“implementation in NE.”

4 A discussion on applciations that motivate Model (M) can be found in [11].
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2.1 The Network Model (M)

We consider a network consisting of N users and one network operator. We
denote the set of users by N := {1, 2, . . . , N}. Each user i ∈ N has to take
an action ai ∈ Ai where Ai is the set that specifies user i’s feasible actions. In
a real network, a user’s actions can be consumption/generation of resources or
decisions regarding various tasks. We assume that,

Assumption 1. For all i ∈ N , Ai is a convex and compact set in R that in-
cludes 0.5 Furthermore, for each user i ∈ N , the set Ai is its private information,
i.e. Ai is known only to user i and nobody else in the network.

Set Ri

Set Cj

i
j

Fig. 1. A local public good network depicting the Neighbor sets Ri and Cj of users i
and j respectively

Because of the users’ interactions in the network, the actions taken by a
user directly affect the performance of other users in the network. Thus, the
performance of the network is determined by the collective actions of all users.
We assume that the network is large-scale, therefore, every user’s actions directly
affect only a subset of network users in N . Thus we can treat each user’s action
as a local public good. We depict the above feature by a directed graph as
shown in Fig. 1. In the graph, an arrow from j to i indicates that user j affects
user i; we represent the same in the text as j → i. We assume that i → i
for all i ∈ N . Mathematically, we denote the set of users that affect user i by
Ri := {k ∈ N | k → i}. Similarly, we denote the set of users that are affected by
user j by Cj := {k ∈ N | j → k}. We represent the interactions of all network
users together by a graph matrix G := [Gij ]N×N . The matrix G consists of 0’s
and 1’s, where Gij = 1 represents that user i is affected by user j, i.e. j ∈ Ri

and Gij = 0 represents no influence of user j on user i, i.e. j /∈ Ri. Note that
G need not be a symmetric matrix. Because i → i, Gii = 1 for all i ∈ N . We
assume that,

5 In this paper we assume the sets Ai, i ∈ N , to be in R for simplicity. However,
the decentralized mechanism and the results we present in this paper can be easily
generalized to the scenario where for each i ∈ N , Ai ⊂ R

ni is a convex and compact
set in higher dimensional space Rni . Furthermore, each space Rni can be of a different
dimension ni for different i ∈ N .
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Assumption 2. The sets Ri, Ci, i ∈ N , are independent of the users’ action
profile aN := (ak)k∈N ∈ ∏

k∈N Ak. Furthermore, for each i ∈ N , |Ci| ≥ 3.

For examples of applications where Assumption 2 holds, see [11, Chapter 5]
and [3,1]. The performance of a user that results from actions taken by the users
affecting it is quantified by a utility function. We denote the utility of user i ∈ N
resulting from the action profile aRi := (ak)k∈Ri by ui(aRi). We assume that,

Assumption 3. For all i ∈ N , the utility function ui : R
|Ri| → R ∪ {−∞} is

concave in aRi and ui(aRi) = −∞ for ai /∈ Ai.
6 The function ui is user i’s

private information.

The assumptions that ui is concave and is user i’s private information are mo-
tivated by applications described in [11, Chapter 5] and [3,1]. The assumption
that ui(aRi) = −∞ for ai /∈ Ai captures the fact that an action profile (aRi) is
of no significance to user i if ai /∈ Ai. We assume that,

Assumption 4. Each network user i ∈ N is strategic and non-cooperative/selfish.

Assumption 4 implies that the users have an incentive to misrepresent their
private information, e.g. a user i ∈ N may not want to report to other users or
to the network operator its true preference for the users’ actions, if this results
in an action profile in its own favor.

Each user i ∈ N pays a tax ti ∈ R to the network operator. This tax can be
imposed for the following reasons: (i) For the use of the network by the users.
(ii) To provide incentives to the users to take actions that achieve a network-
wide performance objective. The tax is set according to the rules specified by a
mechanism and it can be either positive or negative for a user. With the flexibility
of either charging a user (positive tax) or paying compensation/subsidy (negative
tax) to a user, it is possible to induce the users to behave in a way such that a
network-wide performance objective is achieved. For example, in a network with
limited resources, we can set “positive tax” for the users that receive resources
close to the amounts requested by them and we can pay “compensation” to
the users that receive resources that are not close to their desirable ones. Thus,
with the available resources, we can satisfy all the users and induce them to
behave in a way that leads to a resource allocation that is optimal according to
a network-wide performance criterion. We assume that,

Assumption 5. The network operator does not have any utility associated with
the users’ actions or taxes. It does not derive any profit from the users’ taxes
and acts like an accountant that redistributes the tax among the users according
to the specifications of the allocation mechanism.

Assumption 5 implies that the tax is charged in a way such that

∑

i∈N
ti = 0. (1)

6 Note that ai is always an element of aRi because i → i and hence i ∈ Ri.
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To describe the “overall satisfaction” of a user from the performance it receives
from all users’ actions and the tax it pays for it, we define an “aggregate utility
function” uA

i (aRi , ti) : R
|Ri|+1 → R ∪ {−∞} for each user i ∈ N :

uA
i (aRi , ti) :=

{−ti + ui(aRi), if ai ∈ Ai, aj ∈ R, j ∈ Ri\{i},
−∞, otherwise.

(2)

Because ui and Ai are user i’s private information (Assumptions 1 and 3), the ag-
gregate utility uA

i is also user i’s private information. As stated in Assumption 4,
users are non-cooperative and selfish. Therefore, the users are self aggregate util-
ity maximizers.

In this paper we restrict attention to static problems, i.e. we assume,

Assumption 6. The set N of users, the graph G, users’ action spaces Ai, i ∈
N , and their utility functions ui, i ∈ N , are fixed in advance and they do not
change during the time period of interest.

We also assume that,

Assumption 7. Every user i ∈ N knows the set Ri of users that affect it as
well as the set Ci of users that are affected by it. The network operator knows
Ri and Ci for all i ∈ N .

In networks where the sets Ri and Ci are not known to the users beforehand,
Assumption 7 is still reasonable because of the following reason. As the graph G
does not change during the time period of interest (Assumption 6), the informa-
tion about the neighbor sets Ri and Ci, i ∈ N , can be passed to the respective
users by the network operator before the users determine their actions. Alter-
natively, the users can themselves determine the set of their neighbors before
determining their actions.7 Thus, Assumption 7 can hold true for the rest of the
action determination process. In the next section we present a local public good
provision problem for Model (M).

2.2 The Decentralized Local Public Good Provision Problem (PD)

For the network model (M) we wish to develop a mechanism to determine the
users’ action and tax profiles (aN , tN ) := ((a1, a2, . . . , aN ), (t1, t2, . . . , tN )). We
want the mechanism to work under the decentralized information constraints of
the model and to lead to a solution to the following centralized problem.
The centralized problem (PC)

max
(aN ,tN )

∑

i∈N
uA
i (aRi , ti)

s.t.
∑

i∈N
ti = 0

(3)

7 The exact method by which the users get information about their neighbor sets in
a real network depends on the network characteristics.
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≡ max
(aN ,tN )∈D

∑

i∈N
ui(aRi)

where, D := {(aN , tN ) ∈ R
2N | ai ∈ Ai ∀ i ∈ N ;

∑

i∈N
ti = 0}

(4)

The centralized optimization problem (3) is equivalent to (4) because for (aN , tN )
/∈ D, the objective function in (3) is negative infinity by (2). Thus D is the set of
feasible solutions of Problem (PC). Since by Assumption 3, the objective func-
tion in (4) is concave in aN and the sets Ai, i ∈ N , are convex and compact,
there exists an optimal action profile a∗

N for Problem (PC). Furthermore, since
the objective function in (4) does not explicitly depend on tN , an optimal so-
lution of Problem (PC) must be of the form (a∗

N , tN ), where tN is any feasible
tax profile for Problem (PC), i.e. a tax profile that satisfies (1).

The solutions of Problem (PC) are ideal action and tax profiles that we would
like to obtain. If there exists an entity that has centralized information about
the network, i.e. it knows all the utility functions ui, i ∈ N , and all action spaces
Ai, i ∈ N , then that entity can compute the above ideal profiles by solving
Problem (PC). Therefore, we call the solutions of Problem (PC) optimal central-
ized allocations. In the network described by Model (M), there is no entity that
knows perfectly all the parameters that describe Problem (PC) (Assumptions 1
and 3). Therefore, we need to develop a mechanism that allows the network
users to communicate with one another and that leads to optimal solutions of
Problem (PC). Since a key assumption in Model (M) is that the users are strate-
gic and non-cooperative, the mechanism we develop must take into account the
users’ strategic behavior in their communication with one another. To address
all of these issues we take the approach of implementation theory [8] for the
solution of the decentralized local public good provision problem for Model (M).
Henceforth we call this decentralized allocation problem as Problem (PD). In
the next section we present a decentralized mechanism (game form) for local
public good provision that works under the constraints imposed by Model (M)
and achieves optimal centralized allocations.

3 A Decentralized Local Public Good Provision
Mechanism

For Problem (PD), we want to develop a game form (message space and out-
come function) that is individually rational, budget balanced, and that imple-
ments in Nash equilibria the goal correspondence defined by the solution of
Problem (PC).

8 Individual rationality guarantees voluntary participation of the
users in the allocation process specified by the game form, budget balance guar-
antees that there is no money left unclaimed/unallocated at the end of the
allocation process (i.e. it ensures (1)), and implementation in NE guarantees

8 The definition of game form, goal correspondence, individual rationality, budget
balance and implementation in Nash equilibria is given in [11, Chapter 3].
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that the allocations corresponding to the set of NE of the game induced by
the game form are a subset of the optimal centralized allocations (solutions of
Problem (PC)).

We would like to clarify at this point the definition of individual rationality
(voluntary participation) in the context of our problem. Note that in the net-
work model (M), the participation/non-participation of each user determines the
network structure and the set of local public goods (users’ actions) affecting the
participating users. To define individual rationality in this setting we consider
our mechanism to be consisting of two stages as discussed in [4, Chapter 7]. In
the first stage, knowing the game form, each user makes a decision whether to
participate in the game form or not. The users who decide not to participate are
considered out of the system. Those who decide to participate follow the game
form to determine the levels of local public goods in the network formed by
them.9 In such a two stage mechanism, individual rationality implies the follow-
ing. If the network formed by the participating users satisfies all the properties
of Model (M),10 then, at all NE of the game induced by the game form among
the participating users, the utility of each participating user will be at least as
much as its utility without participation (i.e. if it is out of the system). This
in turn imples that, if there are at least two other participating users that are
affected by the actions of a user, then such a user voluntarily participates in the
game form.

We would also like to clarify the rationale behind choosing NE as the solution
concept for our problem. Note that because of assumptions 1 and 3 in Model (M),
the environment of our problem is one of incomplete information. Therefore one
may speculate the use of Bayesian Nash or dominant strategy as appropriate
solution concepts for our problem. However, since the users in Model (M) do
not possess any prior beliefs about the utility functions and action sets of other
users, we cannot use Bayesian Nash as a solution concept for Model (M). Fur-
thermore, because of impossibility results for the existence of non-parametric ef-
ficient dominant strategy mechanisms in classical public good environments [6],
we do not know if it is possible to design such mechanisms for the local public
good environment of Model (M). The well known Vickrey-Clarke-Groves (VCG)
mechanisms that achieve incentive compatibility and efficiency with respect to
non-numeraire goods, do not guarantee budget balance [6]. Hence they are inap-
propriate for our problem as budget balance is one of the desirable properties in
our problem. VCG mechanisms are also unsuitable for our problem because they
are direct mechanisms and any direct mechanism would require infinite message
space to communicate the generic continuous (and concave) utility functions of

9 This network is a subgraph obtained by removing the nodes corresponding to non-
participating users from the original graph (directed network) constructed by all the
users in the system.

10 In particular, the network formed by the participating users must satisfy Assump-
tion 2 that there are at least three users affected by each local public good in this
network. Note that all other assumptions of Model (M) automatically carry over to
the network formed by any subset of the users in Model (M).
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users in Model (M). Because of all of above reasons, and the known existence
results for non-parametric, individually rational, budget-balanced Nash imple-
mentation mechanisms for classical private and public goods environments [6],
we choose Nash as the solution concept for our problem. Because NE in general
describe strategic behavior of users in games of complete information, we inter-
pret NE in the incomplete information environment of Model (M) in the way
suggested by [6, Section 4] and [10]. Specifically, by quoting [6, Section 4], “we
do not suggest that each user knows all of system environment when it com-
putes its message. We do suggest, however, that the complete information Nash
game-theoretic equilibrium messages may be the possible stationary messages of
some unspecified dynamic message exchange process.” Alternatively, by quoting
[10], “we interpret our analysis as applying to an unspecified (message exchange)
process in which users grope their way to a stationary message and in which the
Nash property is a necessary condition for stationarity.”

We next construct a game form for the resource allocation problem (PD)
that achieves the abovementioned desirable properties – Nash implementation,
individual rationality, and budget balance.

3.1 The Game Form

In this section we present a game form for the local public good provision prob-
lem presented in Section 2.2. We provide explicit expressions of each of the
components of the game form, the message space and the outcome function.
We assume that the game form is common knowledge among the users and the
network operator.

The message space

Each user i ∈ N sends to the network operator a message mi ∈ R
|Ri|×R

|Ri|
+ =:

Mi of the following form:

mi := ( ai Ri
, πi Ri

); ai Ri
∈ R

|Ri|, πi Ri
∈ R

|Ri|
+ , (5)

where, ai Ri
:= ( ai k)k∈Ri and πi Ri

:= ( πi k)k∈Ri , i ∈ N . (6)

User i also sends the component ( ai k, πi k), k ∈ Ri, of its message to its neighbor
k ∈ Ri. In this message, ai k is the action proposal for user k, k ∈ Ri, by user
i, i ∈ N . Similarly, πi k is the price that user i, i ∈ N , proposes to pay for the
action of user k, k ∈ Ri. A detailed interpretation of these message elements is
given in Section 3.2.

The outcome function
After the users communicate their messages to the network operator, their ac-
tions and taxes are determined as follows. For each user i ∈ N , the network
operator determines the action âi of user i from the messages communicated
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Set Cj

i
j

h

k

l

p

1

2

3

4

5

0

Ilj = 3
Cj(3) = l

Ijj = 4
Cj(4) = j

Iij = 5
Cj(5) = i

Ikj = 2
Cj(2) = k

Ihj = 1 = Iij + 1
Cj(1) = h

Ipj = 0

Fig. 2. Illustration of indexing rule for set Cj shown in Fig. 1. Index irj of user r ∈ Cj

is indicated on the arrow directed from j to r. The notation to denote these indices
and to denote the user with a particular index is shown outside the dashed boundary
demarcating the set Cj .

by its neighbors that are affected by it (set Ci), i.e. from the message profile
mCi := (mk)k∈Ci :

âi(mCi) =
1

|Ci|
∑

k∈Ci

ak i, i ∈ N . (7)

To determine the users’ taxes the network operator considers each set Cj , j ∈ N ,
and assigns indices 1, 2, . . . , |Cj| in a cyclic order to the users in Cj . Each index
1, 2, . . . , |Cj | is assigned to an arbitrary but unique user i ∈ Cj . Once the indices
are assigned to the users in each set Cj, they remain fixed throughout the time
period of interest. We denote the index of user i associated with set Cj by iij . The
index iij ∈ {1, 2, . . . , |Cj |} if i ∈ Cj , and iij = 0 if i /∈ Cj. Since for each set Cj ,
each index 1, 2, . . . , |Cj| is assigned to a unique user i ∈ Cj , therefore, ∀ i, k ∈ Cj
such that i 	= k, iij 	= ikj . Note also that for any user i ∈ N , and any j, k ∈ Ri,
the indices iij and iik are not necessarily the same and are independent of each
other. We denote the user with index k ∈ {1, 2, . . . , |Cj |} in set Cj by Cj(k). Thus,
Cj(iij) = i for i ∈ Cj . The cyclic order indexing means that, if iij = |Cj |, then
Cj(iij+1) = Cj(1), Cj(iij+2) = Cj(2), and so on. In Fig. 2 we illustrate the above
indexing rule for the set Cj shown in Fig. 1.

Based on the above indexing, the users’ taxes t̂i, i ∈ N , are determined as
follows.

t̂i((mCj )j∈Ri) =
∑

j∈Ri

lij(mCj ) âj(mCj ) +
∑

j∈Ri

πi j

(
ai j − a

Cj(iij+1)

j

)2

−
∑

j∈Ri

π
Cj(iij+1)

j

(
a

Cj(iij+1)

j − a
Cj(iij+2)

j

)2

, i ∈ N ,

(8)

where, lij(mCj ) = π
Cj(iij+1)

j − π
Cj(iij+2)

j , j ∈ Ri, i ∈ N . (9)
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The game form given by (5)–(9) and the users’ aggregate utility functions in (2)
induce a game (×i∈NMi, (âi, t̂i)i∈N , {uA

i }i∈N ). In this game, the set of network
users N are the players, the set of strategies of a user is its message space

Mi, and a user’s payoff is its utility uA
i

((
âj(mCj )

)
j∈Ri

, t̂i
(
(mCj )j∈Ri

))
that it

obtains at the allocation determined by the communicated messages. We define
a NE of this game as a message profile m∗

N that has the following property:

uA
i

((
âj(m

∗
Cj
)
)
j∈Ri

, t̂i
(
(m∗

Cj
)j∈Ri

)) ≥

uA
i

((
âj(mi,m

∗
Cj
/i)

)
j∈Ri

, t̂i
(
(mi,m

∗
Cj
/i)j∈Ri

))
, ∀ mi ∈ Mi, ∀ i ∈ N .

(10)

As discussed earlier, NE in general describe strategic behavior of users in games
of complete information. This can be seen from (10) where, to define a NE, it
requires complete information of all users’ aggregate utility functions. However,
the users in Model (M) do not know each other’s utilities; therefore, the game
induced by the game form (5)–(9) and the users’ aggregate utility functions (2)
is not one of complete information. Therefore, for our problem we adopt the NE
interpretation of [10] and [6, Section 4] as discussed at the beginning of Section 3.
That is, we interpret NE as the “stationary” messages of an unspecified (message
exchange) process that are characterized by the Nash property (10).

In the next section we show that the allocations obtained by the game form
presented in (5)–(9) at all NE message profiles (satisfying (10)), are optimal
centralized allocations.

3.2 Properties of the Game Form

We begin this section with an intuitive discussion on how the game form pre-
sented in Section 3.1 achieves optimal centralized allocations. We then formalize
the results in Theorems 1 and 2.

To understand how the proposed game form achieves optimal centralized al-
locations, let us look at the properties of NE allocations corresponding to this
game form. A NE of the game induced by the game form (5)–(9) and the users’
utility functions (2) can be interpreted as follows: Given the users’ messages
mk, k ∈ Ci, the outcome function computes user i’s action as 1/|Ci|

(∑
k∈Ci

ak i

)
.

Therefore, user i’s action proposal ai i can be interpreted as the increment that i
desires over the sum of other users’ action proposals for i, so as to bring its allo-
cated action âi to its own desired value. Thus, if the action computed for i based
on its neighbors’ proposals does not lie in Ai, user i can propose an appropriate
action ai i and bring its allocated action within Ai. The flexibility of proposing
any action ai i ∈ R gives each user i ∈ N the capability to bring its alloca-
tion âi within its feasible set Ai by unilateral deviation. Therefore, at any NE,
âi ∈ Ai, ∀ i ∈ N . By taking the sum of taxes in (8) it can further be seen, after
some computations, that the allocated tax profile (t̂i)i∈N satisfies (1) (even at

off-NE messages). Thus, all NE allocations
(
(âi(m

∗
Ci
))i∈N , (t̂i((m

∗
Cj
)j∈Ri))i∈N

)

lie in D and hence are feasible solutions of Problem (PC).
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To see further properties of NE allocations, let us look at the tax function
in (8). The tax of user i consists of three types of terms. The type-1 term is∑

j∈Ri
lij(mCj ) âj(mCj ); it depends on all action proposals for each of user

i’s neighbors j ∈ Ri, and the price proposals for each of these neighbors by

users other than user i. The type-2 term is
∑

j∈Ri
πi j

(
ai j − a

Cj(iij+1)

j

)2

; this

term depends on ai Ri
as well as πi Ri

. Finally, the type-3 term is the following:

−∑
j∈Ri

π
Cj(iij+1)

j

(
a

Cj(iij+1)

j − a
Cj(iij+2)

j

)2

; this term depends only on the mes-

sages of users other than i. Since πi Ri
does not affect the determination of user

i’s action, and affects only the type-2 term in t̂i, the NE strategy of user i, i ∈ N ,
that minimizes its tax is to propose for each j ∈ Ri, πi j = 0 unless at the NE,

ai j = a
Cj(iij+1)

j . Since the type-2 and type-3 terms in the users’ tax are similar
across users, for each i ∈ N and j ∈ Ri, all the users k ∈ Cj choose the above
strategy at NE. Therefore, the type-2 and type-3 terms vanish from every users’
tax t̂i, i ∈ N , at all NE. Thus, the tax that each user i ∈ N pays at a NE m∗

N is
of the form

∑
j∈Ri

lij(m
∗
Cj
) âj(m

∗
Cj
). The NE term lij(m

∗
Cj
), i ∈ N , j ∈ Ri, can

therefore be interpreted as the “personalized price” for user i for the NE action
âj(m

∗
Cj
) of its neighbor j. Note that at a NE, the personalized price for user i

is not controlled by i’s own message. The reduction of the users’ NE taxes into
the form

∑
j∈Ri

lij(m
∗
Cj
) âj(m

∗
Cj
) implies that at a NE, each user i ∈ N has a

control over its aggregate utility only through its action proposal.11 If all other
users’ messages are fixed, each user has the capability of shifting the allocated
action profile âRi to its desired value by proposing an appropriate ai Ri

∈ R
|Ri|

(See the discussion in the previous paragraph). Therefore, the NE strategy of
each user i ∈ N is to propose an action profile ai Ri

that results in an allocation
âRi that maximizes its aggregate utility. Thus, at a NE, each user maximizes its
aggregate utility for its given personalized prices. By the construction of the tax
function, the sum of the users’ tax is zero at all NE and off equilibria. Thus, the
individual aggregate utility maximization of the users also result in the maxi-
mization of the sum of users’ aggregate utilities subject to the budget balance
constraint which is the objective of Problem (PC).

It is worth mentioning at this point the significance of type-2 and type-3 terms
in the users’ tax. As explained above, these two terms vanish at NE. However,
if for some user i ∈ N these terms are not present in its tax t̂i, then, the price
proposal πi Ri

of user i will not affect its tax and hence, its aggregate utility.

In such a case, user i can propose arbitrary prices πi Ri
because they would

affect only other users’ NE prices. The presence of type-2 and type-3 terms in
user i’s tax prevent such a behavior as they impose a penalty on user i if it
proposes a high value of πi Ri

or if its action proposal for its neighbors deviates
too much from other users’ proposals. Even though the presence of type-2 and

11 Note that user i’s action proposal determines the actions of all the users

j ∈ Ri; thus, it affects user i’s utility ui

((
âj(m

∗
Cj
)
)
j∈Ri

)
as well as its tax∑

j∈Ri
lij(m

∗
Cj
) âj(m

∗
Cj
).
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type-3 terms in user i’s tax is necessary as explained above, it is important that
the NE price lij(m

∗
Cj
), j ∈ Ri of user i ∈ N is not affected by i’s own proposal

πi Ri
. This is because, in such a case, user i may influence its own NE price in an

unfair manner and may not behave as a price taker. To avoid such a situation,
the type-2 and type-3 terms are designed in a way so that they vanish at NE.
Thus, this construction induces price taking behavior in the users at NE and
leads to optimal allocations.

The results that formally establish the above properties of the game form are
summarized in Theorems 1 and 2 below.

Theorem 1. Let m∗
N be a NE of the game induced by the game form presented

in Section 3.1 and the users’ utility functions (2). Let (â∗
N , t̂∗N ) := (âN (m∗

N ),

t̂N (m∗
N )) :=

(
(âi(m

∗
Ci
))i∈N , (t̂i((m

∗
Cj
)j∈Ri ))i∈N

)
be the action and tax profiles

at m∗
N determined by the game form. Then,

(a) Each user i ∈ N weakly prefers its allocation (â∗
Ri

, t̂∗i ) to the initial alloca-
tion (0, 0). Mathematically,

uA
i

(
â∗
Ri

, t̂∗i
)
≥ uA

i

(
0, 0

)
, ∀ i ∈ N .

(b) (â∗
N , t̂∗N ) is an optimal solution of Problem (PC). �

Theorem 2. Let â∗
N be an optimum action profile corresponding to Problem (PC).

Then,

(a) There exist a set of personalized prices l∗ij , j ∈ Ri, i ∈ N , such that

â∗
Ri

= argmax
âi∈Ai

âj∈R, j∈Ri\{i}

−
∑

j∈Ri

l∗ij âj + ui(âRi), ∀ i ∈ N .

(b) There exists at least one NE m∗
N of the game induced by the game form pre-

sented in Section 3.1 and the users’ utility functions (2) such that, âN (m∗
N ) =

â∗
N . Furthermore, if t̂∗i :=

∑
j∈Ri

l∗ij â
∗
j , i ∈ N , the set of all NE m∗

N =

(m∗
i )i∈N = ( ai ∗

Ri
, πi ∗

Ri
) that result in (â∗

N , t̂∗N ) is characterized by the so-
lution of the following set of conditions:

1

|Ci|
∑

k∈Ci

ak ∗
i = â∗i , i ∈ N ,

Cj(iij+1)π∗
j − Cj(iij+2)π∗

j = l∗ij , j ∈ Ri, i ∈ N ,

πi ∗
j

(
ai ∗
j − Cj(iij+1)a∗j

)2

= 0, j ∈ Ri, i ∈ N ,

πi ∗
j ≥ 0, j ∈ Ri, i ∈ N . �

Because Theorem 1 is stated for an arbitrary NEm∗
N of the game induced by the

game form of Section 3.1 and the users’ utility functions (2), the assertion of the
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theorem holds for all NE of this game. Thus, part (a) of Theorem 1 establishes
that the game form presented in Section 3.1 is individually rational, i.e., at any
NE allocation, the aggregate utility of each user is at least as much as its aggre-
gate utility before participating in the game/allocation process. Because of this
property of the game form, each user voluntarily participates in the allocation
process. Part (b) of Theorem 1 asserts that all NE of the game induced by the
game form of Section 3.1 and the users’ utility functions (2) result in optimal
centralized allocations (solutions of Problem (PC)). Thus the set of NE alloca-
tions is a subset of the set of optimal centralized allocations. This establishes
that the game form of Section 3.1 implements in NE the goal correspondence
defined by the solutions of Problem (PC). Because of this property, the above
game form guarantees to provide an optimal centralized allocation irrespective
of which NE is achieved in the game induced by it.

The assertion of Theorem 1 that establishes the above two properties of the
game form presented in Section 3.1 is based on the assumption that there exists
a NE of the game induced by this game form and the users’ utility functions
(2). However, Theorem 1 does not say anything about the existence of NE.
Theorem 2 asserts that NE exist in the above game, and provides conditions that
characterize the set of all NE that result in optimal centralized allocations of the
form (â∗

N , t̂∗N ) = (â∗
N , (

∑
j∈Ri

l∗ij â
∗
j )i∈N ), where â∗

N is any optimal centralized
action profile. In addition to the above, Theorem 2 also establishes the following
property of the game form. Since the optimal action profile â∗

N in the statement
of Theorem 2 is arbitrary, the theorem implies that the game form of Section 3.1
can obtain each of the optimum action profiles of Problem (PC) through at least
one of the NE of the induced game. This establishes that the above game form
is not biased towards any particular optimal centralized action profile.

Due to lack of space, we are not presenting the proofs of Theorem 1 and
Theorem 2 here. The proofs are available in [11, Chapter 5].

4 Future Directions

The problem formulation and the solution of the local public goods provision
problem presented in this paper open up several new directions for future re-
search. First, the development of efficient mechanisms that can compute NE is
an important open problem. To address this problem there can be two differ-
ent directions. (i) The development of algorithms that guarantee convergence to
Nash equilibria of the games constructed in this paper. (ii) The development of
alternative mechanisms/game forms that lead to games with dynamically stable
NE. Second, the network model we studied in this paper assumed a given set of
users and a given network topology. In many local public good networks such as
social or research networks, the set of network users and the network topology
must be determined as part of network objective maximization. These situa-
tions give rise to interesting admission control and network formation problems
many of which are open research problems. Finally, in this paper we focused
on static resource allocation problem where the characteristics of the local pub-
lic good network do not change with time. The development of implementation
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mechanisms under dynamic situations, where the network characteristics change
during the determination of resource allocation, are open research problems.

Acknowledgements. The authors are grateful to Yan Chen and A. Anasta-
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