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Abstract. N independent sources choose their provider depending on the per-
ceived costs associated with each provider. The perceived cost is the sum of the
price and quality of service proposed by the provider coefficiented by the source
sensitivity to the quality of service. The source chooses the smallest cost provider
or refuses to subscribe if all the perceived costs are above her maximum ad-
missible opportunity cost. First, we detail the market segmentation between the
providers as function of the quality of service sensitivity. Then, we prove that in
case where coalitions emerged and under defensive equilibria, the game charac-
teristic function would be submodular meaning that the Shapley value would be
a fair and stable way to share the grand coalition revenue.

Keywords: cooperative game, Shapley value.

1 Introduction

The inter-carrier network of Internet that interconnects different operator domains is a
wide and diversified network in constant growth in terms of number of domain oper-
ators. These operators have to manage complex technical and economic interactions.
In this context, the different operators first provide (and sell) network services needed
to ensure the level of performance required by the end-user applications. The inter-
carrier network is thus today a technico-economic system in which competition and
inter-dependencies prevail. The study presented in this paper is a contribution to the
FP7 project ETICS that aims at creating a new ecosystem of innovative QoS-enabled
interconnection models between Network Service Providers allowing for a fair distri-
bution of revenue shares among all the actors of the service delivery value-chain.

The objective of this paper is to evaluate the benefit of network providers acting on
a same market when they have together a privileged partnership in terms of economic
alliance. As an example of network scenario in this context, we briefly describe here
the Game as a Service scenario studied in the context of ETICS (see Figure 1). We
consider a set of network providers, each one proposing a catalogue of on-line games
to final users (such providers act as service retailers). The games they propose are de-
veloped and managed by cloud providers and require network transport services. In
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the context of the present article, cloud providers and network services are considered
as cost impacts for service retailers, and these costs can be shared by some of these
retailers if they choose to be member of a same alliance.

Fig. 1. ”Game as a service” scenario

Most articles in economics assume that the providers have a fixed consumer basis
i.e., that no churn is possible, or that demand is simply a linear function of price. In
the rapid growing literature on revenue management, one of the most important issues
is how to model provider demand forecasting. Demand is usually represented as an
explicit/implicit function of price and the root tactic upon which revenue management
is based is to change prices dynamically to maximize immediate or short-run revenue
[9]. Kwon et al. propose a novel approach in [5] where non-cooperative providers learn
dynamically their demand which is governed by a continuous time differential equa-
tion based on an evolutionary game theory perspective. However, the learning process
requires data to efficiently update its forecastings. The problem is that in most real sys-
tems, data are missing or even altered by noise or measurement errors. The idea of our
article is to take into account the source perception of both the prices and quality of ser-
vice of the providers, and also their capacity to churn from one provider to the others or
even, to refuse to subscribe. Moreover, uncertainty on the providers’ knowledge about
the sources’ preferences is incorporated by assuming that their sensitivity to the quality
of service is distributed according to a density function.

Taking into account the individual source preferences, the article shows that providers
have always interest to cooperate through a grand coalition, provided the coalition rev-
enue is shared according to the Shapley value, and that this is a stable organization of
the market. Besides, most articles in the economic literature are restricted to monopo-
listic or duopolistic cases of competition [4]; on the contrary, our article is extended to
an arbitrary large number of interacting providers using specific game properties.

The paper is organized as follow. The game is described in Section 2: first the rela-
tions between two interacting providers are analyzed in Section 2.1, then a two provider
game is solved in Section 2.2 and generalized to the case of three providers in Sec-
tion 2.3. Finally, the game is extended to the n provider case in Section 3: the market
segmentation is determined in Section 3.1 and we prove that the characteristic function
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associated with the cooperative game is submodular, implying that the grand coalition
should remain stable with the Shapley value as revenue sharing mechanism, in Sec-
tion 3.2. We conclude in Section 4.

2 Game Description

In this work, n providers in competition want to interconnect with N sources. On one
hand, each provider i’s quality of service (QoS) level qi, is fixed and known publicly. It
proposes an access price pi according to its QoS level qi. On the other hand, the sources
have the choice either to connect or not. Besides, they select their provider depending
on the QoS they perceive and also on the proposed access prices. The provider selection
process of a generic source k depends its opportunity cost. Opportunity cost is the cost
related to the best choice available to someone who has picked among several mutually
exclusive choices.

In our article, the sources have indeed the choice between buying an access to one
of the n providers or refusing to subscribe. Opportunity cost is a key concept in eco-
nomics [1]; it has already been applied to the telecommunications bundle offer mar-
ket [12] and to the pricing of virtual mobile network operators’ services [6]. In our
model, each source k (k = 1, 2, ..., N ) has an opportunity cost towards each provider
i (i = 1, 2, ..., n). It is defined as ck(i) = pi − βkqi where pi and qi are the access
price and QoS level for provider i respectively, while βk ∈ [0; 1] captures source k’s
sensitivity to the QoS.

Besides, we make the assumption that all source have a same maximum opportunity
cost cmax > 0, above which they will refuse to buy access. The need to introduce a
maximum admissible opportunity cost results from the following observation: a source
will refuse to buy access or delay the subscription process either if the access price is
too high, or if the QoS is not good enough.

We make the fundamental assumption that the source chooses the provider having
the smallest opportunity cost or refuses to subscribe if this latter is larger than cmax.

ni measures provider i’s market share. Provider i’s utility is the difference between
the revenue generated by the source subscriptions and his fixed cost Ii. Let ni be the
pourcentage of sources subcribing to provider i

πi = niNpi − Ii (1)

In a non-cooperative setting, each provider aims at maximizing his own utility by de-
termining the optimal access price. The two-level game between the providers can be
described as follows

(1) Providers determine simultaneously and independently their access prices.
(2) Depending on the perceived opportunity costs, source k chooses the provider

having the smallest opportunity cost or refuses to connect.
To cope with the uncertainty on the sources’ preferences, we assume that the QoS

sensitivity parameter is distributed according to the uniform density on the interval [0; 1]
i.e., βk ∼ U [0; 1]. Besides, the QoS levels being fixed a priori, we make the assumption
that 0 < qn < qn−1 < qn−2 < ... < q1 < +∞.
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2.1 Relationship between Two Providers

We focus on two providers i, j. Without loosing generality, we assume that i < j. As
already stated, the opportunity cost associated by source k to provider i is

ck(i) = pi − βkqi (2)

and for provider j, we get
ck(j) = pj − βkqj (3)

According to the assumptions introduced previously in this section, we know that the
QoS are initially fixed so that 0 < qj < qi < +∞.

Lemma 1. Source k prefers provider i over provider j if, and only if, 0 < pi < pj .

Proof of Lemma 1. Suppose that 0 < pi < pj . It implies that ck(i) < ck(j) by definition
of both providers’ opportunity costs as described in Equations (2) and (3). But, it means
that provider j would not have any client i.e., his market share, as defined in Section 1,
would vanish (nj = 0) since by definition, the sources subscribe to the provider having
the smallest opportunity cost.
An immediate consequence of Lemma 1 is that it is mandatory to impose 0 < pj < pi
to guarantee that both providers i and j might have non-negative market shares.

We now aim at determining the values of the indifference bounds when studying the
interactions between two providers only.

Lemma 2. For any provider i, source k prefers provider i to no subscription if, and
only if, Bi < βk where Bi ≡ pi−cmax

qi
.

Proof of Lemma 2. Source k prefers provider i to no subscription when ck(i) < cmax

(by definition of opportunity cost). So, we have

ck(i) < cmax ⇔ pi − βkqi < cmax.

This last inequality can be re-ordered to give a lower bound for βk

pi − βkqi < cmax ⇔ pi − cmax

qi
< βk

Note that if Bi = βk, source k is indifferent between provider i and no subscription.

Lemma 3. For any providers i < j, source k prefers provider i to provider j if, and
only if, Bi,j < βk where Bi,j ≡ pi−pj

qi−qj
.

Proof of Lemma 3. Source k prefers provider i to provider j if, and only if, ck(i) <
ck(j). The last inequality can be rewritted as follow:pi − βkqi < pj − βkqj . So, this
last inequality gives a lower bound for βk.

pi − βkqi < pj − βkqj ⇔ pi − pj < βk(qi − qj)

⇔ pi − pj
qi − qj

< βk.
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Presently, we aim at ordering these bound values on the interval [0; 1] which will en-
able us to determine the analytical expressions of both providers’ market shares. For
the remaining of this paper, we will introduce some notations : for any providers i, j,
we define Bi ≡ pi−cmax

qi
. and Bi,j ≡ pi−pj

qi−qj
. Moreover, an additional proposition is

required:

Proposition 1. Let two providers i, j such that i < j.

Bj < Bi,j ⇔ Bj < Bi < Bi,j

Due to the lack of place, the proof of this proposition is in [2].

2.2 Case of Two Providers

In this section, we assume that provider 1 and 2 only, propose access services to N
independent sources. We want to determine the complete ordering of the bounds B1,
B2, B1,2. Using Proposition 1, two cases might arise.

Case (1): B2 < B1,2 ⇔ B2 < B1 < B1,2.
Case (2) : B1,2 < B2 ⇔ B1,2 < B1 < B2.

We detail these two cases below.
Case (1): B2 < B1,2 ⇔ B2 < B1 < B1,2.
Figure 2 represents the source preferences ordered according to their βk values. We

have placed the indifference bounds on the βk-axis. Using Lemmas 2 and 3, we infer the
source prefences as functions of the βk values. If βk ∈ [0;B2[, then the source prefers
to not subscribe; if βk ∈ [B2;B1,2[, the source prefers provider 2; if βk ∈ [B1,2; 1], the
source prefers provider 1.

Fig. 2. Case where B2 < B1 < B1,2

Now, we will focus on Case (2) : B1,2 < B2 ⇔ B1,2 < B1 < B2. Figure 3
represents the source preferences ordered according to their β. We have placed the in-
difference bounds on the βk-axis. Using the same way as Case (1) (applying Lemmas 2
and 3), we infer the source prefences as functions of the βk values. If βk ∈ [0;B1[, then
the source prefers to not subscribe; if βk ∈ [B1; 1], the source prefers provider 1.
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Fig. 3. Case where B1,2 < B1 < B2

Note that in Case (1), both providers might have non-negative market shares. Under
such assumptions, both providers would have the opportunity to survive and to contract
with sources. As a consequence, a duopoly might emerge [7], [11]. Recall that a duopoly
is the simplest case of oligopoly. In economics, duopoly models are shared between
cooperative equilibrium models like cartel and non-cooperative equilibrium models like
Cournot, Stackelberg or Bowley duopoly models [7]. On the contrary, in Case (2),
solely provider 1 can survive on the market leading to a monopol [7], [11]. This remark
is summarized in the following corollary.

Corollary 1. In case of two providers, a duopoly might emerge if, and only if B2 <
B1 < B1,2.

We want to determine conditions on the game parameters q1, q2 and the access prices
upper bound denoted by pmax, so that the game belongs to Case (1). We let α1,2 =
p1 − p2 be providers 1 and 2’s price margin and suppose that there exists a real ε > 0
such that ε < α1,2.

Proposition 2. If ε and pmax are chosen so that pmax

ε < q2
q1−q2

, then a duopoly might
emerge.

Proof of Proposition 2. The game belongs to Case (1) if, and only if

B1,2 > B2 ⇔ p1q2 − p2q1 > −cmax(q1 − q2)
︸ ︷︷ ︸

<0

A sufficient condition to guarantee the emergence of a duopoly is to have

p1q2 − p2q1 > 0 ⇔ α1,2

p2
>

q1
q2

− 1

⇔ p2 < α1,2
q2

q1 − q2

If pmax < ε q2
q1−q2

, the last inequality is automatically satisfied. This condition is equiv-
alent with pmax

ε < q2
q1−q2

.
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As already stated, the sources’ QoS sensitivity being distributed according to the
uniform density on the interval [0; 1], it is easy to infer both providers’ market shares
using Figure 2:

n1 = 1−B1,2 = 1− p1 − p2
q1 − q2

,

n2 = B1,2 −B2 =
p1 − p2
q1 − q2

− p2 − cmax

q2
.

This short computation enables us to obtain the market segmentation as a function of
the game parameters.

In a non-cooperative setting, each provider determines selfishly the access price max-
imizing his utility using the market segmentation. This is summarized in the following
proposition.

Proposition 3. In a non-cooperative game, the prices maximizing the providers’ utili-

ties are p∗1 = (q1 − q2)
[

1
2 + 1

4q1−q2
( q22 + cmax)

]

and p∗2 = 2 q1−q2
4q1−q2

[

q2
2 + cmax

]

.

Proof of Proposition 3. Provider i (i = 1, 2)’s utility has been introduced in Equation 1:
πi = niNpi − Ii where Ii is provider i’s fixed cost. By differentiation of π1 with
respect to p1, we obtain p∗1 as a linear function of p∗2 i.e., p∗1 =

(q1−q2)+p∗
2

2 , provider
1’s cost (I1) being fixed. Identically, by differentiation of π2 with respect to p2, we
obtain p∗2 as a linear function of p∗1 i.e., p∗2 = q2

2q1
p∗1 +

cmax(q1−q2)
2q1

. Note that π1 and π2

are second order polynomial equations in p1 and p2 respectively whose highest order
coefficient is negative; hence the extremum obtained by differentiation of their utilities
coincides with a global maximum. Solving a linear system of two equations with two

unknown variables, we obtain p∗1 = (q1 − q2)
[

1
2 + 1

4q1−q2
( q22 + cmax)

]

and p∗2 =

2 q1−q2
4q1−q2

[

q2
2 + cmax

]

.

To end this two provider game section, we compare the profit resulting from cooperation
for the providers against the selfish maximization of their utilities and try to answer the
following question: in case of a duopoly, do the providers have incentives to cooperate?

We suppose that when the access providers become allied, they share the alliance
revenue according to the Shapley value. There exists many other sharing mechanisms
like the nucleolus, proportional allocation, supply chain contract mechanisms, etc. [11],
[13]. But, their study is out of the scope of the present article.

We prove that in this case, the providers always prefer to form an alliance than to
maximize their utility independently. This result is summarized in the following lemma.

Lemma 4. In the case of a duopoly, the providers always prefer to become allied than
to selfishly maximize their own utility provided the alliance revenue is shared according
to the Shapley value.

Note that Lemma 4 is simply a by-product of the Shapley value definition [11].
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2.3 Case of Three Providers

In this section, we focus on the case of three interacting providers. As previously, we
assume that the QoS levels are ordered so that 0 < q3 < q2 < q1 < +∞. Generalizing
Propostion 2 to the case of three interacting providers, we obtain the following price
ordering: 0 < p3 < p2 < p1.

Applying Proposition 2 to all the coalitions containing two providers and assuming
that there exists a real ε > 0 such that ε < min{αi,j |∀(i, j) ∈ {1, 2, 3}2, i �= j},
where αi,j is the difference between provider i’s price and provider j’s price (i.e :
αi,j = pi − pj). We obtain three relations on the bound ordering:

– If pmax

ε < q2
q1−q2

then B2 < B1 < B1,2.

– If pmax

ε < q3
q1−q3

then B3 < B1 < B1,3.

– If pmax

ε < q3
q2−q3

then B3 < B2 < B2,3.

If these three relations are simultaneously satisfied then B3 < B2 < B1.
Presently, we want to determine the total ordering ofB2,3, B1,3, B1,2 on the interval

[0; 1].

Lemma 5.
B1 < B1,2 ⇔ B1 < B2,3 < B1,2

Due to the lack of place, the proof of Lemma 5 is in [2].
As in the case with two providers, we want to determine conditions on the game

parameters q1 , q2, q3, cmax, pmax guaranteeing that competition is possible on the
market i.e., that the three providers might have non-negative market shares. Note that
in this case, the competition would be total (i.e : all providers are in competition).

Proposition 4. If ε and pmax, cmax are chosen so that pmax−cmax

ε < q1
q1−q2

, then the
competition would be total.

Proof of Proposition 4.

B1 < B1,2 ⇔ p1 − cmax

q1
<

p1 − p2
q1 − q2

⇔ p1 − cmax < α1,2
q1

q1 − q2

A sufficient condition to satisfy this last inequality is to have pmax − cmax < ε q1
q1−q2

.

Under the conditions introduced in Propositions 5 and 4, we obtain the following indif-
ference bound ordering in case of three providers in competition: 0 < B3 < B2,3 <
B1,2 < 1 as depicted in Figure 4.

This reinforces the economic intuition behind the problem. Indeed, the market should
enable competition between providers which might improve the sources’ welfare. Com-
petition is possible if each provider’s market share remains positive. Besides, it is quite
logical to note that on the βk-axis, the provider with the smallest QoS (q3) captures the
sources having small βk values; the provider with intermediate QoS (q2) captures the
sources having intermediate βk values; the provider with the highest QoS (q1) captures
the sources having hight sensitivites in the QoS.
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Note that according to Lemma 5, if B1 > B1,2 then B1 > B2,3 > B1,2 and provider
2 market share equals zero since provider 2 is always dominated by the other provider
in the source preferences. This point is summarized in the corollary below.

Corollary 2. In case of three providers, the competition is total if, and only if B1 <
B2,3 < B1,2.

Fig. 4. Indifference bound ordering in case of three providers in competition

3 Can Cooperation Emerge in Case of n Providers?

In this section, we aim at generalizing the results obtained in Section 2 to the case of n
interacting providers.

3.1 Generalization of the Game Resolution to n Providers

The indifference bound ordering derived in Sections 2.1 and 2.3, can be generalized
recursively, to give the following ordering for n providers.

Theorem 1. In case of n ≥ 2 providers, the competition is total if, and only if, 0 <
Bn < Bj−1,j < Bj−2,j−1 < 1 for any integer j such that 3 ≤ j ≤ n. Moreover, in
this case each source k prefers j if Bj,j+1 ≤ βk ≤ Bj−1,j where 2 ≤ j ≤ n − 1, 1 if
B1,2 ≤ βk ≤ 1, and n if Bn ≤ βk ≤ Bn−1,n.

Proof of Theorem 1. We proceed by recurrence on the numbern, of interacting providers.
For n = 3, the result has been proved in Corollary 2.

Suppose that at rank n, Bn < Bn−1,n < Bn−2,n−1 < ... < B1,2 and each source k
prefers j if Bj,j+1 ≤ βk ≤ Bj−1,j where 2 ≤ j ≤ n− 1, 1 if B1,2 ≤ βk ≤ B1, and n
if Bn ≤ βk ≤ Bn−1,n.

At rank n + 1, a new provider enters the market. Using the assumption introduced
in Section 2, provider n + 1 chooses his QoS so that 0 < qn+1 < qn < qj for any
integer j such that 3 ≤ j < n. Using Lemma 1, we obtain the following ordering on
the providers’ prices: pn+1 < pn < pj for any integer j such that 3 ≤ j < n.

Now, we want to order Bn, Bn,n+1, Bn+1 and Bn−1,n. We need to compare Bn,n+1

to Bn. Two cases are possible: Bn,n+1 < Bn and Bn,n+1 > Bn.
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If Bn,n+1 < Bn then from Proposition 1, we get Bn,n+1 < Bn+1 < Bn. But, from
Lemma 3, source k prefers provider n+1 to provider n if Bn,n+1 > βk. Moreover,
from Lemma 2 source k prefers no subcription to providern if Bn,n+1 < βk < Bn.
And by recurrence hypothesis, each source k prefers another provider to provider
n if βk > Bn. So, in this case, provider n market share would vanish since each
source prefers n+ 1 to n. Therefore, the competition cannot be total.
If Bn < Bn,n+1 then from Proposition 1, we infer that Bn,n+1 > Bn > Bn+1. In
this case, we need to compare Bn−1,n to Bn,n+1.
By absurd reasoning, assume that Bn−1,n < Bn,n+1. From Lemma 2 source k
prefers no subcription to provider n if βk < Bn. Moreover, source k prefers
provider n+1 to provider n if Bn < βk < Bn,n+1 and also if Bn < βk < Bn−1,n.
Moreover, by recurrence hypothesis, each source k prefers another provider to
provider n if Bn,n+1 < βk. So, on any sub-interval on [0; 1], provider n would
be dominated by an other provider meaning that none of the sources would agree
to subscribe to provider n’s service. Thus, provider n market share would vanish
and the competition cannot be total.
Finaly, we focus on the fact that Bn+1 < Bn,n+1 < Bn−1,n. By recurrence
hypothesis, we have each source k prefers j if Bj,j+1 ≤ βk ≤ Bj−1,j where
2 ≤ j ≤ n − 1, 1 if B1,2 ≤ βk ≤ 1. Moreover each source k prefers n to
provider � if Bn ≤ βk ≤ Bn−1,n and if 1 ≤ � < n. It remains to focus on inter-
val [Bn+1, Bn,n+1]. From Lemma 3, each source k prefers n + 1 to provider n if
βk ≤ Bn,n+1 and n to provider n+1 otherwise. So, it this case, the competition is
total is total and the reccurence hypothesis holds.

Hence, the competition is total if, and only if Bn−1,n > Bn,n+1 > Bn > Bn+1.
Note that all the other indifference bounds (Bj−1,j forall integer j such that 2 ≤ j <

n) remain identical to the n provider case.
Using the same principles as in Sections 2.1 and 2.3, the sources are shared between

the providers according to the following rule.
For provider k = 2, ..., n − 1, the market share is nk = Bk−1,k − Bk,k+1 (from

Theorem 1). On the boundaries, provider 1’s market share takes the form n1 = 1−B1,2

while provider n’s market share is nn = Bn−1,n − Bn. The market segmentation is
perfectly determined as a function of the game parameters i.e., cmax, q1, q2, ..., qn.

To determine the prices maximizing each provider’s utility, we substitute the analyti-
cal expressions of the providers’ market shares in their utility as defined in Equation (1)
and derive the providers’ utilities with respect to the prices. It gives us a linear system
on n equations in the n unknown prices

p∗1 =
1

2
p∗2 +

1

2
(q1 − q2),

p∗k =
1

2

qk − qk+1

qk−1 − qk+1
p∗k−1 +

1

2

qk−1 − qk
qk−1 − qk+1

p∗k+1, for k = 2, ..., n− 1,

p∗n =
1

2

qn
qn−1

p∗n−1 +
1

2

qn−1 − qn
qn−1

.
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The problem can be written under a matricial form. To simplify the expressions, we let

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2

0 0 . . . 0 0 0
1
2

q2−q1
q1−q3

0 1
2

q1−q2
q1−q3

0 . . . 0 0 0

. . .
. . .

. . . 0 0 0 0 0

0 . . . 1
2

qk−qk+1

qk−1−qk+1
0 1

2

qk−1−qk
qk−1−qk+1

0 . . . 0

0 0
. . .

. . .
. . . 0 . . . 0

0 0 . . . 0 0 1
2

qn−1−qn
qn−2−qn

0 1
2

qn−2−qn−1

qn−2−qn

0 0 0 . . . 0 0 1
2

qn
qn−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that An is a tri-diagonal matrix. Using this notation, the linear system of equations
in the prices can be arranged to give

⎛

⎜

⎜

⎜

⎝

p∗1
p∗2
...
p∗n

⎞

⎟

⎟

⎟

⎠

(I −An)
︸ ︷︷ ︸

Bn

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q1−q2
2
...
0
...

cmax(qn−1−qn)
2qn−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4)

Lemma 6. The prices maximizing the providers’ utilities are uniquely defined as solu-
tions of the matricial Equation (4).

Proof of Lemma 6. For the sake of simplicity, we let Bn = I − An. The prices maxi-
mizing the providers’ utilities are uniquely defined if, and only if, Bn is invertible i.e.,
its determinant does not vanish. We proceed by recursion.

At rank n = 1, we have B1 = 1 and hence det B1 = 1 > 0.
At rank n = 2, det B2 = 1− 1

4
q2−q3
q2−q3

. We check that det B2 > 3
4 . A fortiori, we get:

det B2 − 1
4det B1 > 0.

At rank n− 1, we make the recursive hypothesis that: det Bn−1 − 1
4det Bn−2 > 0.

At rank n, Bn being a tri-diagonal matrix, we have the following well-known re-
lation between its determinant and the minor determinants: det Bn = det Bn−1 −
1
4

qn
qn−1

qn−2−qn−1

qn−2−qn
det Bn−2. We check easily that: − 1

4
qn

qn−1

qn−2−qn−1

qn−2−qn−1
> − 1

4 . Then,

det Bn − 1
4det Bn−1 > det Bn−1 − 2

4det Bn−2 > 0 using rank n − 1 recursive
hypothesis.

3.2 Stability of the Shapley Value as a Revenue Sharing Mechanism

Suppose that S is the set of all the possible coalitions of providers. It is well-known that
the cardinal of S equals 2n − 1 provided n providers are interacting on the market. The
providers cooperate in order to maximize their joint utility by increasing the alliance
total market share. Formally, it can be described as follows: for any coalition s ∈ S, πs

is the utility of coalition s, and we have
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max
ns

πs =
∑

k∈s

πk

max
nS−s

πS−s =
∑

k∈S−s

πk (5)

where ns (resp. nS−s) contains coalition s (resp. S − s) total market share. Going back
to the analytical expressions of the providers’ market shares, we note that coalition s
market share relies solely on the prices proposed by the providers having the highest
and the worst QoS levels respectively, in the coalition.

Proposition 5. The utility π(.) is submodular in the n providers cooperative game de-
scribed by Equations (5).

Proof of Proposition 5. Consider two coalitions s, s′ such that s ⊂ s′ ⊂ {1, 2, ..., n}
and a provider j ∈ {1, 2, ..., n}− s′. We want to show that πs∪j − πs ≥ πs′∪j − π′

s ⇔
πs∪j − πs′∪j ≥ πs − π′

s.
We observe that
[πs∪j − πs′∪j ]− [πs − π′

s] = (p′s − ps′,j)ns′ − (ps − ps,j)ns + (ps,j − ps′,j)nj
︸ ︷︷ ︸

≥0

.

Now, we note that (p′s − ps′,j)ns′ − (ps − ps,j)ns ≥ (p′s − ps,j)ns′ − (ps − ps,j)ns

since s ⊂ s′ implies that ps ≥ p′s and in turn that ps,j ≥ ps′,j .
We let l be the provider belonging to coalition s which proposes the smallest QoS

in coalition s i.e., ql = mini∈s qi and k be the provider belonging to coalition s′ which
proposes the smallest QoS in coalition s′ i.e., qk = mini∈s′ qi.

Then ns = B − pk−pl

qk−ql
and ns′ = B − pj−pk

qj−qk
with Bj,k ≤ Bk,l and B the upper

indifference bound delimiting coalitions s and s′ market shares. By definition and using
the inclusion property (ps′ − ps,j)(Bj,k − B) ≥ (ps − ps,j)(Bk,l − B). Multiplying
each term of the inequality by −1 we obtain the proposition result.

The Shapley value is then the center of gravity of the core of the n provider cooperative
game as described in Equations (5). Therefore, it is still a fair and stable revenue sharing
mechanism.

4 Conclusion

We have proved that the Shapley value is the center of gravity of the n provider co-
operative game taking into account the sources’ individual preferences. Therefore, it
is always a stable mechanism to share the grand coalition total revenue, meaning that
none of the providers has incentives to deviate from it or leave the grand coalition. It is
therefore most likely that tacit alliances emerge, to the disadvantage of the sources.

However, in practice, alliances do not emerge on every market since for instance,
collusion may be forbidden due to competition policy. Indeed, courts punish explicit
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accords whose objectives are clearly to decrease the competition. Heavy sanctions have
been applied to the international accords on the vitamin market (855 millions of euros),
on lysine and citric acid (200 millions of dollars and emprisonment years) [?] and more
recently, on the memory chip market (331 millions of euros).

In the present article, we have assumed that the providers’ QoS levels were fixed.
Extensions should be envisaged by adding another level in the game description. The
resulting three level game resolution might be tackled using numerical approaches.
In practice i.e., in the telecommunication business area, when information about the
providers’ QoS is known publicly, it is possible for some providers to set a price that
kick other providers out of the market. However, QoS is difficult to estimate with ac-
curacy and performance measures are usually very costly to perform. Consequently, it
might be interesting to assume that in the game with the other providers, each provider
ignores his rivals’ true QoS levels but try to infer them using side observations.

Finally, hierarchical relations between the providers should be taken into account.
Indeed, some of them might lack the infrastructure and buy their QoS to some oth-
ers, owning a network. The QoS fixation/negotiation market will add another level of
complexity to the game and the revenue sharing mechanism might be more complex
to design [10]. Generally speaking, it might be possible to design contract mechanisms
which would force the providers to cooperate. Analogies with the supply chain theory
is possible [3] but it would require to evaluate complex power relations between all
the involved providers. This task is not straightforward compared to the Shapley value
which provides a direct measure of the providers’ inter-relations.
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