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Abstract. The popularity of Peer-to-Peer (P2P) file sharing has re-
sulted in large flows between different ISPs, which imposes significant
transit fees on the ISPs in whose domains the communicating peers are
located. The fundamental tradeoff faced by a peer-swarm is between free,
yet delayed content exchange between intra-domain peers, and inter-
domain communication of content, which results in transit fees. This
dilemma is complex, since peers who possess the content dynamically
increase the content capacity of the ISP domain to which they belong.

In this paper, we study the decision problem faced by peer swarms
as a routing-in-time problem with time-varying capacity. We begin with
a system of two swarms, each belonging to a different ISP: One swarm
that has excess service capacity (a steady-state swarm) and one that
does not (a transient swarm). We propose an asymptotically accurate
fluid-approximation for the stochastic system, and explicitly obtain the
optimal policy for the transient swarm in the fluid regime.

We then consider the more complex case where multiple transient
swarms compete for service from a single steady-state swarm. We utilize a
proportional-fairness mechanism for allocating capacity between swarms,
and study its performance as a non-cooperative game. We characterize
the resulting Nash equilibrium, and study its efficiency both analytically
and numerically. Our results indicate that while efficiency loss incurs due
to selfish decision-making, the actual Price of Anarchy (PoA) remains
bounded even for a large number of competing swarms.

Keywords: peer-to-peer, overlay network, game theory, price of anarchy.

1 Introduction

Recent trends suggest estimate that 35-90% of bandwidth is consumed by peer-
to-peer (P2P) file-sharing applications [1–3]. While there has been some drop in
the fraction of P2P traffic for file distribution [4], there has been increased use
of P2P for video streaming in systems such as PPLive [5] and QQLive [6]. Thus,
P2P applications are likely to increase in number as they prove to be a relatively
cheap means of media distribution from a content distributor’s perspective.
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Fig. 1. The MultiTrack architecture described in [7]. The system uses multiple BitTor-
rent Trackers to achieve a desired delay-tariff tradeoff appropriate to the system state
at that time instant. In this paper, we explicitly account for the dynamics of the P2P
swarm capacities as a function of time.

P2P networks attempt to keep delays small by leveraging as much end-user
bandwidth and storage as possible. However, they are often oblivious of the
transit tariff that they impose on the hosting Internet Service Providers (ISPs)
due to such optimizations. The pricing architecture of the Internet is tiered,
wherein a lower tier ISP must pay a higher tier ISP (from which it obtains
service) a tariff for all traffic entering or exiting its domain [8]. Since such lower
tier ISPs are usually the ones that provide Internet connectivity to end-users,
P2P communication between end-users across ISP domains causes significant
tariffs for both of the terminal ISPs. Thus, there appears to be an implicit
conflict between P2P applications that seek to find appropriate (lowest delay)
peers regardless of the ISP domain in which such a peer might be located, and
ISPs that seek to keep traffic localized within their domains. Such conflict has
led to efforts by some ISPs to restrict P2P traffic [9].

The most popular P2P system nowadays is BitTorrent [10], which uses a
system of Trackers to enable peers to find each other. When a peer without the
content (called a leech) enters the system, it obtains a list of peers that it can
communicate with from such a Tracker. The set of peers that is controlled by the
Tracker in this fashion is known as the peer swarm (or P2P swarm) associated
with that Tracker. While the original BitTorrent Tracker is ISP agnostic, Figure
1 depicts a system called MultiTrack described in [7] in which each ISP domain
has a different P2P swarm for the same piece of content, with admission to each
one being controlled by a separate mTracker. While a single seed is enough for
whole swarm to receive the piece of content using P2P methods, it may take
a long time to do so. Hence, the mTracker controlling an overloaded swarm
(transient swarm) could request service from an mTracker controlling a swarm
that has spare capacity (steady-state swarm). This leads to a natural tradeoff
between minimization of delay versus transit tariff. However, [7] performs an
instantaneous optimization and does not model the phenomenon that when a
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peer obtains the content it becomes a seed server, effectively increasing the peer-
swarm capacity with time.

The dynamic evolution of the peer-swarm capacity results in a problem of
“routing-in-time”, where it is required to route traffic in a system of time-varying
capacity so as to minimize costs. However, unlike a general routing-in-time prob-
lem, there are predictive models that describe the evolution of the swarm ca-
pacity [11–13], which are employed in the present paper. Since each peer is
hosted within a particular ISP domain, once served, that peer could become a
seed server in its host domain. Hence, each mTracker must take a decision on
whether to keep a request local (and potentially incur a delay cost) or to forward
it to a different ISP domain (and incur a transit tariff) with the knowledge that a
request forwarded to a different domain at a particular time instant could result
in a new local seed once that request has been satisfied. In this paper, we will
consider two important questions pertaining to routing in P2P swarms:

– What is the appropriate routing in time profile that would minimize delay
plus tariff costs in a transient swarm?

– Assuming there are multiple transient swarms competing for capacity avail-
able at a steady-state swarm, how should be capacity divided, and what are
the consequences of non-cooperative competition for capacity?

1.1 Related Work

While the original BitTorrent Tracker was ISP agnostic, there have been several
attempts to enable Trackers to become ISP-aware. Papers such as [7, 14–16] seek
for the right tradeoff between delay costs and transit tariffs by attempting to
keep traffic local whenever possible. For example, [15] suggests to optimize for
minimum tariffs, and then develops heuristics for allowing a certain fraction of
peers to be non-local so as to ensure that delays are not excessively large. In [7]
the objective is to design a distributed control scheme called MultiTrack, that
would achieve a desired delay-tariff tradeoff in a distributed fashion. However,
as stated above, none of these references considers the evolution of peer-swarm
capacity as a function of time.

We implicitly make the assumption that the newly created seeds would be
willing to serve content to the leeches in their ISP domain. Incentives for such a
seeds to share content may be provided by trading a local currency in exchange
for files, see, e.g., [17, 18]. The objective in this paper is to optimize over the
predicted capacity of P2P swarms, assuming that a mechanism for such trade is
in place.

1.2 Contribution and Content

In this paper, we study a P2P model consisting of multiple ISP domains, each
associated with a Tracker and a peer swarm that has N peers. Each swarm
consists of peers that possess the content (seeds) and leeches, who may become
seeds over time. We assume that one of the ISPs has a peer swarm that is in
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steady-state, meaning that its offered load is lower than the available content-
capacity. Such peer swarm can act as a content server to boost the performance
of those swarms that have not yet reached steady state. However, a transit tariff
must be paid for access to remote swarms, and Trackers must take decisions on
whether to request remote service or keep traffic local.

In Section 2, we develop a general stochastic model for a system with a single
transient swarm. We propose a deterministic fluid model which is amenable for
analysis, and has a similar behavior as the stochastic model as the swarm size
N becomes large. In Section 3, we use the fluid model to show the optimality of
an intuitive remote service profile, which is to request the entire capacity from
the steady state swarm until a “stopping time”, after which no more service
should be requested. We obtain an explicit expression for this stopping time. We
demonstrate through simulations (Section 4) that the optimal routing policy ob-
tained for the fluid model is near-optimal with respect to the original stochastic
model. In Section 5, we adopt a proportional-fairness like mechanism for dividing
the capacity of a steady state swarm between multiple transient swarm. Such a
mechanism naturally gives rise to a non-cooperative game between the swarms,
each of which selfishly decides on a bid and a stopping time. We analyze the
resulting game and provide bounds on the “Price of Anarchy” under symmetry
assumptions. We supplement the analysis of the non-cooperative game with sim-
ulations in Section 6, which indicate that the experienced efficiency loss in terms
of overall user cost is not more than 30%, and much less for a small number of
swarms.

2 Single Transient Swarm

We first consider the case of a single transient swarm with N peers interested
in a certain piece of content, and a single steady-state swarm that has a total
upload capacity of NC distributed among N seeds. Thus, C is the maximum
“per-requester capacity” available from the steady-state swarm. The transient
swarm can make a time-varying request for service C(t) from the steady state
swarm. There are two ways in which the leeches in the transient swarm can obtain
the content of interest. First, they contact other peers in the transient swarm
uniformly and at random, and if the contacted peer has the file (i.e., it is a seed)
the content may be downloaded. Alternatively, based on the choice of C(t), seeds
in the steady-state swarm are directed by the Tracker controlling their swarm to
contact the Tracker controlling the transient swarm. This Tracker selects a peer
that does not possess the content (i.e., a leech) from the transient swarm, and
the seed from the steady-state swarm uploads the content to this peer. Below,
we will develop a stochastic model corresponding to above dynamics, and then
simplify it to a deterministic fluid model.

2.1 Stochastic System Model

We can think of the transient swarm as a graphG = (V,E), with vertex set V cor-
responding to the set of peers, and edge set E corresponding to a communication
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link between two peers. By assumption, we haveN = |V |. For simplicity of presen-
tation, we consider a fully-connected graphG. However, our conclusions can easily
be generalized to ensemble of randomly chosenK-regular graphs. LetP(t) ⊆ V be
the set of seeds in the transient swarm at some time t, such that there are P (t) =
|P(t)| seeds.
Assumption 1. We assume that the capacity requested by the transient-swarm
is piece-wise constant with time. Thus, time is divided into phases j ∈ N0 with

C(t) = Cj ∀t ∈ [Tj−1, Tj), where T−1 = 0 and Cj ≤ C for all j.

We denote the time spent in phase i as τi = Ti−Ti−1. We will see later that our
results hold for a general C(t) as well. Leeches in the transient swarm contact
each other uniformly and at random and download the file at rate η if it is
available with the contacted peer. Also, in the jth phase the seeds in the steady
state swarm are randomly directed to serve one of the leeches in the transient
swarm with an upload rate Cj each. We create a tractable stochastic model by
making the following simplifying assumptions.

Assumption 2. We assume that each leech in the transient swarm is equipped
with a clock, which ticks at a random interval that is an independent and expo-
nentially distributed random variable Xk, with mean η−1 for peer k /∈ P(t) in the
transient swarm. Similarly each seed l in the steady-state swarm l ∈ {1, 2, . . . , N}
has a clock that ticks at times that are denoted by exponential i.i.d. random vari-
ables Yl with mean C−1

j in the jth phase.

When its clock ticks, each leech in the transient swarm contacts a neighbor
uniformly at random. If the contacted peer k happens to be a seed (i.e., k ∈ P (t)),
the leech downloads the content. When the clock of a seed in the steady state
swarm ticks, it contacts its Tracker that directs it (via the Tracker controlling
the transient swarm) to one of the leeches in the transient swarm, and uploads
the content. A final assumption completes the model.

Assumption 3. We assume that content is downloaded instantaneously.

The assumption implies that an if a leech contacts a peer without the file of
interest, it has to wait for a random interval of time before trying again. This
allows for load balancing at seeds, since the number of leeches contacting each
seed would be finite with high probability. Our approach provides a lower bound
on system performance. The following lemma characterizes the evolution of the
number of seeds as a continuous-time Markov chain (CTMC).

Proposition 1. Let P (t) be the number of seeds at any time t, in the single
transient swarm model described above, that satisfies Assumptions 1, 2, and 3.
If we assume that phase changes can occur only at the instants when P (t) in-
creases, then the number of seeds P (t) evolves according to a CTMC as depicted
in Figure 2, where the state-dependent jump-rate in phase j is

λP (t) = NCj +
P (t)(N − P (t))

N
η, P (t) ∈ {1, . . . , N}.
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Fig. 2. Continuous time Markov chain governing the evolution of the number of seeds
in the transient swarm

We show that as the peer-population N grows large, the evolution of the
number of seeds P (t) in the transient swarm can be modeled deterministically
by the following differential equation

dP (t)

dt
= λP (t). (1)

To this end, we show that for large N , the time-interval to increase the number
of seeds from m to n in the deterministic model is identical to the corresponding
time-interval in the stochastic model with probability one.

Theorem 1. For a user population N , we denote the time-interval Tmn(N) =
tn+1 − tm for number of seeds to increase from m to n+ 1 under the stochastic
model under consideration. As user population N grows large

lim
N→∞

Tmn(N) =

∫ n
N

m
N

dy

ηy(1− y) + Cj
with probability 1. (2)

Notice (2) is the integral form of the expected differential equation in (1).

2.2 Delay Calculation Using the Fluid Model

As before, let P (t) be the number of seeds in the transient swarm at t. From
Theorem 1, the evolution of P (t) is given by (1), restated below:

dP

dt
(t) = η

P (t)

N
(N − P (t)) +NC(t). (3)

We consider the evolution of P (t) until P (t) = N − 1, at which point we say
that the remaining one leech will be served in constant time. Let y(t) = P (t)/N
be the fraction of seeds in the system at time t. We denote the fraction of seeds
at the beginning of phase i by yi−1 = y(Ti−1), with the convention T−1 = 0.
We further define fraction αi � (θi − ηyi−1)/(ηyi−1 − θ′i), where θi ≥ θ′i are the
solutions to the quadratic equation θ2 − ηθ− ηCi = 0. The explicit evolution of
y(t) in time is presented in the following lemma.

Proposition 2. We can write y(t) in terms of positive difference Δθi = θi − θ′i
as

y(t) =
θ′i
η

+
Δθi/η

1 + αie−Δθi(t−Ti−1)
t ∈ [Ti−1, Ti). (4)
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For a finite number of K + 1 phases, we can compute the total delay seen
by all the leeches as the difference in area between curves N and P (t) for the
interval [0, TK ], where P (TK) = N − 11. That is, we have T0 ≤ Tj ≤ TK such
that y(TK) = 1 − 1/N . The average per-requester delay D seen by leeches is
the area between the curve d(t) = 1 (which is the demand curve, since the all
leeches demand service at time zero) and y(t), (the service curve) which can be
expressed in terms of rates η, {(θj , θ′j)} and fractions {αj}.
Proposition 3. The average per-requester delay Di in phase i can be expressed
as

Di =
θ′iτi
η

− 1

η
ln

(
ηyi−1 − θ′i
ηyi − θ′i

)
. (5)

The aggregate average per-requester delay in K+1 finite phases is D =
∑K

i=0 Di.

Now that we have expressions for the delay experienced in each phase, we opti-
mize over delay and transit tariff in the following section.

3 Single Swarm Optimization

Let the transit tariff per unit traffic be denoted by p. Since this value is fixed, we
can equivalently assume that the Tracker controlling the transient-swarm asks
for a per-requester capacity C(t) from the steady-state swarm, at a rate of p per
unit capacity. The value of the per-requester capacity must be chosen such that
a linear combination f of average per-requester delay D and transit tariff per
unit traffic is minimized. That is, we wish to minimize

f = D + p

∫ ∞

t=0

C(t)dt. (6)

Consider the case of piece-wise constant C(t) with two non-zero phases. The
problem reduces to the following optimization problem

minimize f(τ0, τ1) � D + p (C0τ0 + C1τ1)

such that C0, C1 ≤ C.
(7)

We now present two results that lead us to the intuitively appealing conclusion
that remote capacity usage is necessary only in the first phase, and the amount
of capacity used during that one phase to should be the maximum possible. We
present these results without the proof due to space limitations.

Lemma 1. The cost function f associated with the ISP is minimized for prob-
lem (7) when phase 1 is stopped at time T1 such that y1 = y∗, where

y∗ = min

{
1

ηp
,
1

ηp′

}
where p′−1 = η

(
1− 1

N

)
. (8)

1 Such a computation of total delay is valid for any work conserving policy.
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Lemma 2. The average per-requester delay D is minimized for problem (7)
when the phase-interval with the smaller remote service-rate is zero.

We next characterize the stopping time after which remote capacity usage is
detrimental. Proof is omitted due to space constraints.

Theorem 2. The cost function f associated with supporting a P2P swarm is
minimized for the problem (7), if the maximum remote service capacity C avail-
able is utilized till an optimum stopping time τ∗, such that y(τ∗) = y∗ defined
in (8). In other words, setting remote service-rates as C0 = C,C1 = 0, and
phase-change times as τ0 = τ∗ and τ1 = 0 minimizes f . The optimal stopping-
time τ∗ in terms of φ, φ′, such that φ+ φ′ = η and φφ′ = −ηC, is

τ∗ =
1

Δφ
ln

(
α
(ηy∗ − φ′)
(φ− ηy∗)

)
, where Δφ = φ− φ′. (9)

We can also characterize the optimal per-user delay

D =
φ′τ∗

η
+

1

η
ln

(
1− ηy∗

φ′

)
− 1

η
ln (ηy∗p′) , (10)

and the associated cost function

f = D + pCτ∗. (11)

Finally, we have the following corollary that shows that our restriction to piece-
wise constant functions is actually not binding.

Corollary 1. Let T be such that y(T ) = 1 − 1/N . Then, the minimizer func-
tion in C = {C(t), t ∈ [0, T ] : C(t) simple , 0 ≤ C(t) ≤ C, ∀t ∈ [0, T ]} for the
following optimization problem

minimize f = D + p

∫ T

0

C(t)dt such that C(t) ∈ C,

is the following function C(t) = Cχ[0,τ∗](t) where τ∗ is defined in (9).

Proof. It follows from induction using Lemma 1, Lemma 2, and Theorem 2.

Given a price p for service from remote swarm, one can find the optimal stop-
ping time τ∗. It can quickly be seen that this stopping time is a non-increasing
function of price p. In fact, it stays constant for p ≤ p′ and starts decreasing
when p > p′. We are also interested in finding how the total cost per-user for the
transient swarm increases with the price p for service from the remote swarm.
It follows from equation (8), (10), and (11), that

df

dp
=

{
Cτ∗(p′) p ≤ p′

Cy∗

ηy∗(1−y∗)+C + Cτ∗(p) p > p′ . (12)
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Therefore, it is clear that the total cost per-user in the transient swarm is concave
increasing in the remote service usage price p.

In conclusion, we have shown in this section that in order to minimize the
total cost, a transient swarm should utilize both local P2P dissemination as well
as all the capacity available from a remote steady state swarm up to a stopping
time, after which the transient swarm has enough seeds that the correct decision
is to not utilize the remote capacity. We found an explicit characterization of this
stopping time, whose value has the intuitive property of being non increasing in
transit tariff.

4 Stochastic Simulations of the Single Swarm

We perform simulations of the Markov chain described in Section 2.1 to illustrate
the nature of the analytical results derived above. For the optimal case, we
calculate the optimal stopping time based on the derivations relating to the fluid
model of the previous section, but apply the resulting policy to the stochastic
system described in Section 2.1. In our simulations, we took the population of
peers in ISP 1 to be N = 104. The number is realistic for many P2P scenarios.
Similar results hold for smaller values of N . However, the differential equations
approximate the stochastic system model better with increasing number of peers.
The capacity per-seed at the steady-state swarm is assumed to be C = 1, and the
upload rate for peers in the transient swarm is η = 0.01 units. We consider the
case where the transit tariff per-unit traffic follows p = 4p′, where p′ = N

η(N−1)

as defined in Lemma 1 and its numerical value is 100.01 in current setting.
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Fig. 3. Left figure shows cost evolution for optimal vs. arbitrary stopping time. The
area between curves is the total system cost. Right figure shows the optimal cost for
different server capacities.

Our first objective is to illustrate that our optimal stopping time policy yields
a lower cost than other policies. Hence, we create two arbitrary policies that are
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described below. We run the simulation until the transient swarm has N − 1
seeds. We can compute the time derivative df

dt (t) of the per-user cost function f
from the definition of per-user delay and cost function (11). Therefore, we have

df

dt
(t) = 1− y(t) + pC(t). (13)

We plot this time derivative df
dt (t) in Figure 3(a) for three different cases. In all

cases, the area enclosed between the curves and the axes is the total cost of the
system. The dashed curve denotes the first case, where requests are served in
two phases by the steady-state swarm. In the zeroth phase, the remote service
capacity is C0 = C/2 and the phase ends when a three-tenth of the population
has the desired content, i.e. y0 = 0.3. In the first phase, server-rate is C1 = C/12
and the phase ends when seven-tenth of the user population has the desired
content, i.e. y1 = 0.7. The dotted curve denotes the case when there is a single
phase where maximum available server-capacity C is used by the requesting
swarm. However, in this case, the stopping time is not optimal, and the phase
ends when seven-tenth of the user population has the desired content. The solid
curve denotes the time-derivative of cost for the optimal case. Note that since
the scale is log-log to illustrate the differences in the curves, the large difference
between the optimal area and suboptimal area is not prominently visible.

In Figure 3(b), we plot the minimum per-user cost f for ISP 1 as a function
of available per-requester server-capacity C, for the same parameters for user-
population, server-capacity, upload rate, and tariff per-unit traffic. Essentially,
we plot the equivalent of the fluid equation (1) in the stochastic setting when
y∗ has been chosen optimally as a function of constant C. The available per-
requester server-capacity C takes values from 0 to 1. Clearly, the minimum
per-user cost decreases and the rate of decay decreases with C as expected from
the proof of Theorem 2.

We conclude that the optimal policy in the fluid system is indeed optimal
in the original stochastic system, and that the parameters τ∗, y∗ that can be
calculated from the optimal deterministic policy are essentially optimal in the
stochastic case.

5 Multiple Swarms: Collaboration or Competition?

We now consider the case of Q transient P2P swarms, each controlled by a
distinct Tracker i ∈ {1, 2, . . . , Q}. There is also a single steady state swarm
indexed by 0 from which all the transient swarms attempt to obtain service.
Thus, we have swarm 0 in steady state with total available capacity NC, while
every other swarm i ∈ {1, 2, . . . , Q} starts with 0 initial service capacity and
number of leeches N . Suppose that the transit tariff to reach the steady state
swarm is p for all the transient swarms (this value could also be 0). In addition
to this tariff, each transient swarm i bids a value pi indicating its willingness
to pay the steady state swarm for service. The steady state swarm must use
some mechanism to decide how much of its capacity to allocate to each transient
swarm.
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5.1 Proportional-Fairness Mechanism

We propose to use the proportional-fairness mechanism for the steady state
swarm to allocate capacity amongst the transient swarms. Under this mechanism
the allocation to each transient swarm i is given by

Mechanism: Ci =
piC∑k
j=1 pj

. (14)

The mechanism is very simple to implement, and has been successfully used in
communication networks for apportioning bandwidth to competing flows [19].
Further, it has been shown to have a bounded inefficiency even with strategic
users that optimize against the mechanism [20]. It is therefore, a good candidate
for our system of competing transient swarms.

The Tracker associated with a transient swarm i can utilize the capacity
allocated to it for any duration that it chooses, and pays pi + p per unit traffic
during that time. We assume that once a certain amount of capacity has been
allocated to a transient swarm i, it cannot be withdrawn and reallocated to
some other swarm. Such a scheme is consistent with the idea developed in the
previous section that the capacity from the transient swarm is most useful during
the initial stage, and also simplifies our analysis.

5.2 Definition of the Game

We utilize the same fluid approximation developed in Section 2.1 to describe
the dynamics of each swarm. The cost function fi associated with swarm i for
the multiple ISP scenario can be expressed in terms of the fixed transit tariff p,
the bid pi, the per-requester delay Di, and allocated capacity Ci as

fi(pi, p−i) = Di + (p+ pi)Ciτi. (15)

Note that in general fi is also a function of the upload capacity ηi of peers
in swarm i. We can then define a strategic game G =< Q,P ,F >, where Q
is the set of Trackers (players), P is the set of bid profiles (action sets) and
F = {f1, f2, · · · , fQ}.

Our first objective is to find the socially optimal way of bidding when all
Trackers collaborate. The objective here is to minimize the sum of the costs
incurred by all swarms. Secondly, we also wish to compute what the cost is if
Trackers are selfish and act individually and rationally to arrive at a bid decision.
In the following, we follow the notation p−i =

∑
j �=i pj . We will only analyze the

symmetric case where ηi = η for all swarms i ∈ {1, 2, . . . , Q}, and consider the
scenario where the transit tariff p is lower bounded by p ≥ p′ = N/(η(N − 1)).
Therefore, by Theorem 2, the total available capacity is used only till each ISP
reaches the fraction yi =

1
η(p+pi)

.
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5.3 Collaborative Scenario

We consider cooperating Trackers, who wish to jointly minimize the aggregate
cost. Consider a set of bids P = {pi : i = 1, 2, . . . , Q}. Then the problem that
the Trackers wish to solve is

Opt: min
pi≥0

Q∑
i=1

fi(P ). (16)

Theorem 3. For collaborative scenario, optimal set of bids is P ∗ = {0, 0, . . . , 0}.

5.4 Multiplayer Game

We now consider the non-cooperative situation, where every Tracker acts accord-
ing to its own self interest. We assume each Tracker makes a rational decision,
assuming every other Tracker does the same. We also assume that each bid is
made without knowledge of any other Tracker’s bid. In this setting, we wish to
find the Nash equilibrium (if it exists) of the bid pi made by each Tracker i.
Hence, each Tracker wishes to solve the following problem.

Game: min
pi≥0

fi(p) ∀i ∈ {1, 2, . . . , Q}. (17)

The following theorem provides the necessary conditions for the existence of a
symmetric Nash equilibrium of bids for this non-cooperative strategic game. We
omit the proof in the interest of space.

Theorem 4. If the number of competing swarms Q is such that η < 2C/Q
then the strategic game G has a pure strategy Nash Equilibrium of set of bids
P = {β, β, . . . , β}.
Since the NE exists, we identify a pure strategy NE in terms of a common bid
β made by all the Trackers. Note, that h(β) = 0 and τi is a logarithmic function
of pi (see (9)). We identify upper and lower bounds on the pure, symmetric bid
in the following theorem stated without the proof.

Theorem 5. The optimal bid β for the strategic game G is bounded above and
below by the following values

Q− 1

ηQ+ 4C
≤ β ≤ Q− 1

ηQ+ 4C

⎛
⎝ 1 + pη(η+2Ci)

4Ci

1− (Q−1)η(η+2Ci)
4C(η+4Ci)

⎞
⎠ , (18)

under the condition η < 2C/Q.

It is clear that it is difficult to analytically compute Nash equilibrium β. There-
fore, we make an approximation to get some insight into how the optimal bid
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changes with the number of transient swarms competing for the available capac-
ity at the steady-state swarm. In the regime η � Ci, we have yi ≈ Ciτi. Under
this approximation, from Theorem 5 we obtain

β ≈ Q− 1

ηQ+ 4C
∀i ∈ {1, . . . , Q}. (19)

Notice that as the number of competing Trackers go up, so does the bid at Nash
equilibrium. Such an increased bid is the price paid for uncoordinated behavior
by the different Trackers. Our approximation is a lower bound on the Nash
equilibrium bid. Also, it is clear from (18) that the approximation error is small
when η � Ci and p(η + 2Ci) � 1.

5.5 The Price of Anarchy

In most work on selfish decision making, it is found that individual optimization
has a negative impact on the total value of a system. We observed that the lack
of coordination results in a bid that is linearly increasing in number of ISPs Q.
How different would the system cost be in such a scenario? Note that since are
dealing with costs, a larger PoA is worse. Due to symmetry in the problem, each
Tracker i bids the same value and receives a total service-rate NC/Q from the
steady-state swarm. For the optimal case, when the players collaborate, this bid
is 0 and the per-user cost for each transient swarm is fopt

i . When the players are
selfish, they bid value β additional to the base price p as tariff per-unit traffic.

Following terminology from [21], we define the “price of anarchy” as

PoA �
∑Q

j=1 f
game
i∑Q

j=1 f
opt
i

. (20)

However, unlike most work on the price of anarchy, we are less interested in
the regime where the number of players is large. In other words, Q → ∞ is
less interesting to us since the number of peer swarms simultaneously competing
for capacity is likely to be fairly small, although each swarm might have many
thousand peers. Thus, our primary focus will be on obtaining good bounds on
the PoA for relatively small values of Q, and in this regime we have the following
theorem. Proof is omitted due to space constraints.

Theorem 6. The price of anarchy (PoA) for strategic game G is bounded above
by the following

1 +
2 ln

(
1 + β

p

)

ηfi(p′) + 8Ci

(4Ci+η) ln
(

p
p′

)

where β is the Nash Equilibrium bid for the game.
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Therefore, if number of Trackers Q is small enough, such that η � Ci, then we
can approximate PoA to be

PoA ≈ 1 +
2 ln

(
1 + β

p

)

ηfi(p′) + 2 ln
(

p
p′

) . (21)

Notice that if we use the approximate value of β given in (19), the upper bound
above is a function of known parameters of the system. Such a form is appealing
since it a simple upper bound on the PoA. In the next section, we will numerically
solve the game, and compare the actual price of anarchy to the bound derived
above.

6 Numerical Studies of the Game

For numerical studies, we considered the symmetric case where each transient
swarm has the same user population N = 104, and upload rate of seeds η = .01.
The available per-user capacity at the steady-state swarm was taken to be 1.
We considered the base price p = p′ where p′ = 100.01 as in Section 4. We
varied the number of transient swarms from 2 to 50.We plot the bid at Nash
equilibrium along with the upper and lower bounds in the Figure 4. Since η < 2Ci

for the chosen values of Q, the bounds are reasonable. It must be noted that
the bounds get worse with increase in number of swarms and they do not hold
when number of transient swarms become large. Figure 5(a) shows the actual
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Fig. 4. Optimal bid in the symmetric case, and its upper and lower bounds

PoA computed numerically, and its approximation computed analytically. As
expected, the PoA grows with number of transient swarms. However, when Q
becomes large, we are no longer in the regime η < 2Ci. We see in Figure 5(b)
that PoA remains bounded even when number of swarms become large. Further,
our approximation of the PoA remains bounded as well. While we do not expect
the number of competing swarms to be this large in reality, it is interesting the
PoA is at most about 30% even for large Q.
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(b) PoA with increasing swarm size

Fig. 5. Illustration of the price of anarchy for different swarm sizes. As the swarm size
increases, it remains bounded.

7 Conclusion

We studied in this paper the basic dilemma faced by any content distributor that
wishes to utilize the inherent capacity scaling effects of P2P networks, but also
does not want to impose excessive transit tariffs on the ISPs hosting the peers.
We showed that since a P2P network has a capacity that scales as the number
of users served, the greatest gain for usage of the steady-state swarm is in the
initial phase, with the duration of usage that depends on the transit tariff. We
also considered the case of multiple ISPs competing for capacity, and showed
that while the resulting equilibrium is suboptimal, performance is adequate. We
believe that besides the specific results, the model proposed in this paper can be
used for more complicated P2P interactions that we will explore in the future..
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