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Abstract. We introduce (super) polynomial bottleneck games, where the
utility costs of the players are (super) polynomial functions of the con-
gestion of the resources that they use, and the social cost is determined
by the worst congestion of any resource. In particular, the delay func-
tion for any resource r is of the form CMr

r , where Cr is the conges-
tion measured as the number of players that use r, and the degree of
the delay function is bounded as 1 ≤ Mr ≤ logCr. The utility cost
of a player is the sum of the individual delays of the resources that
it uses. The social cost of the game is the worst bottleneck resource
congestion: maxr∈R Cr, where R is the set of resources. We show that
for super-polynomial bottleneck games with Mr = logCr, the price of

anarchy is o(
√|R|), specifically O(2

√
log |R|). We also consider general

polynomial bottleneck games where each resource can have a distinct
monomial latency function but the degree is bounded i.e Mr = O(1)
with constants α ≤ Mr ≤ β and derive the price of anarchy as

min
(
|R|,max

(
2β
C∗ , (2|R|) 1

α+1 · ( 2β
C∗ )

α
α+1 · (2β) β−α

α+1

))
, where C∗ is the

bottleneck congestion in the socially optimal state. We then demonstrate
matching lower bounds for both games showing that this price of anarchy
is tight.

1 Introduction

We consider non-cooperative congestion games with n players, where each player
has a pure strategy profile from which it selfishly selects a strategy that mini-
mizes the player’s utility cost function (such games are also known as atomic
or unsplittable-flow games). We focus on bottleneck congestion games where the
objective for the social outcome is to minimize C, the maximum congestion on
any resource. Typically, the congestion on a resource is a non-decreasing function
on the number of players that use the resource; here, we consider the congestion
to be simply the number of players that use the resource.

Bottleneck congestion games have been studied in the literature [2,4,3] in the
context of routing games, where each player’s utility cost is the worst resource
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congestion on its strategy. For any resource r, we denote by Cr the number of
users that use r in their strategies. In typical bottleneck congestion games, each
player i has utility cost function Ci = maxr∈Si Cr , where Si is the strategy of
the player. The social cost is worst congested resource: C = maxi Ci = maxr Cr.

In [2] the authors observe that bottleneck games are important in networks for
various practical reasons. In networks, each resource corresponds to a network
link, each player corresponds to a packet, and a strategy represents a path for
the packet. In wireless networks, the maximum congested link is related to the
lifetime of the network since the nodes adjacent to high congestion links trans-
mit large number of packets which results to higher energy utilization. High
congestion links also result in congestion hot-spots which may slow-down the
network throughput. Hot spots also increase the vulnerability of the network to
malicious attacks which aim to to increase the congestion of links in the hope to
bring down the network. Thus, minimizing the maximum congested edge results
to hot-spot avoidance and more load-balanced and secure networks.

In networks, bottleneck games are also important from a theoretical point
of view since the maximum resource congestion is immediately related to the
optimal packet scheduling. In a seminal result, Leighton et al. [16] showed that
there exist packet scheduling algorithms that can deliver the packets along their
chosen paths in time very close to C + D, where D is the maximum chosen
path length. When C � D, the congestion becomes the dominant factor in
the packet scheduling performance. Thus, smaller C immediately implies faster
packet delivery time.

A natural problem that arises in games concerns the effect of the players’
selfishness on the welfare of the whole system measured with the social cost
C. We examine the consequence of the selfish behavior in pure Nash equilibria
which are stable states of the game in which no player can unilaterally improve
her situation. We quantify the effect of selfishness with the price of anarchy
(PoA) [15,21], which expresses how much larger is the worst social cost in a Nash
equilibrium compared to the social cost in the optimal coordinated solution. The
price of anarchy provides a measure for estimating how closely do Nash equilibria
of bottleneck congestion games approximate the optimal C∗ of the respective
coordinated optimization problem.

Ideally, the price of anarchy should be small. However, the current literature
results have only provided weak bounds for bottleneck games. In [2] it is shown
that if the resource congestion delay function is bounded by some polynomial
with degree k (with respect to the packets that use the resource) then PoA =
O(|R|k), where R is the set of links (resources) in the graph. In [4] the authors
consider bottleneck routing games for the case k = 1 and they show that PoA =
O(L + log |V |), where L is the maximum path length (maximum number of
resources) in the players’ strategies and V is the set of nodes in the network.
This bound is asymptotically tight (within poly-log factors) since it is shown in
[4] that there are game instances with PoA = Ω(L). Since L = |R|, the price of
anarchy has to be large, PoA = Ω(|R|).



310 R. Kannan, C. Busch, and A.V. Vasilakos

1.1 Contributions

The lower bound in [4] suggests that in order to obtain better price of anarchy in
bottleneck congestion games (where the social cost is the bottleneck resource C),
we need to consider alternative player utility cost functions. Towards this goal, we
introduce (super) polynomial bottleneck games where the player cost functions
are (super) polynomial expressions of the congestions along the resources. In
particular, the player utility cost function for player i is: C′

i =
∑
r∈Si

CMr
r ,

where for each r, the degree Mr ranges between 1 ≤ Mr ≤ logCr. Note that
the new utility cost is a sum of polynomial or super-polynomial terms on the
congestion of the resources in the chosen strategy (instead of the max that we
described earlier). The social cost remains the maximum bottleneck congestion
C, the same as in typical congestion games.

The new player utility costs have significant benefits in improving both the
upper and lower bounds on the price of anarchy for the bottleneck social cost
C. Of specific interest are instantiations of the game where the degree Mr is
either a logarithmic function on the congestion, or simply a constant. For super-
polynomial games with Mr = logCr for each r ∈ R, we prove that the price of
anarchy is o(

√
|R|):

PoAsuper = O(2
√

log |R|) (1)

For general polynomial games with α ≤ Mr ≤ β and constants 1 ≤ α ≤ β, the
price of anarchy is:

PoApoly = min

(

|R|,max

(
2β

C∗ , (2|R|)
1

α+1 · ( 2β
C∗ )

α
α+1 · (2β)

β−α
α+1

))

(2)

Note that in polynomial games, latency costs are monomials with constant de-
grees between α and β and thus different resources can have different latency
costs even with same congestion. We show that the bounds in Equations 1 and
2 are asymptotically tight by providing specific instances of super-polynomial
and polynomial bottleneck games. The price of anarchy bounds above are signif-
icant improvements over the price of anarchy from the typical bottleneck games
described above.

Polynomial and super-polynomial congestion games are interesting variations
of bottleneck games not only because they provide good price of anarchy but also
because they represent interesting and important real-life problems. In networks,
the overall delay that a packet experiences is directly related with the link con-
gestions along the path and hence the polynomial utility cost function reflects
the total delivery delay. In wireless networks, polynomial and super-polynomial
player utilities correspond to the total energy that a packet consumes while it
traverses the network, and the social cost reflects to the worst energy utilization
in any node in the network. Similar benefits from polynomial congestion games
appear in the context of job-shop scheduling, where computational tasks require
resources to execute. In this context, the social bottleneck cost function C rep-
resents the task load-balancing efficiency of the resources, and the player utility
costs relate to the makespan of the task schedule. In all the above problems, the
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degrees Mr are chosen appropriately to model precisely the involved costs of
the resource utilization in each computational environment.

In our analysis, we obtain the price of anarchy upper bound by using two
techniques: transformation and expansion. Consider a game G with a Nash equi-
librium S and congestion C. We identify two kinds of players in S: type-A
players which use only one resource in their strategies, and type-B players which
use two or more resources. In our first technique, transformation, we convert
G to a simpler game G̃, having a Nash equilibrium S̃ with congestion C̃, such
that C̃ = O(C), and all players in S̃ with congestion above a threshold τ are of
type-A; that is, we transform type-B players to type-A players. Having type-A
players is easier to bound the price of anarchy. Then, we use a second technique,
expansion, which is used to give an upper bound on the price of anarchy of game
G̃, which implies an upper bound on the price of anarchy of the original game G.

In [12], we have derived upper bounds for the price of anarchy of games with
exponential utility cost functions using similar techniques (transformation and
expansion). While exponential cost games have a unique substructure which
makes the analysis of Price of Anarchy simpler, we believe these techniques
are general enough to adapt in a non-trivial manner for a large class of utility
cost functions. For the case of exponential cost games, we obtained logarithmic
price of anarchy upper bounds, which was related to the problem structure.
Here we obtain tight (optimal) price of anarchy bounds for polynomial and
super-polynomial bottleneck games, using a non-trivial application of the general
transformation and expansion techniques.

1.2 Related Work

Congestion games were introduced and studied in [20,22], mainly in the context
of networks. Typically the social cost is considered to be an aggregate expression
on the delay costs of the network edges and the flow that goes through them
[5,24,25,26,27]. Specifically, the social cost is SC =

∑
r Cr · l(Cr), where l(Cr)

is the delay cost function for resource r, while the player cost is the same as
our polynomial game model. Any price of anarchy bounds using social cost SC
can be translated to a price of anarchy bound on bottleneck congestion C by
amortizing appropriately with the number of resourcesR. For example, when the
latency function is a monomial of the same constant degree d on all resources,
the same bounds can be obtained using this method as well as ours (using the
dΘ(d) social cost bound in [1]). However, for atomic congestion games, price of
anarchy bounds for SC are not known for super-polynomial delay functions,
or for polynomial delay functions of different degrees for the resources, as we
consider in this paper. Thus, the techniques that we propose here are useful in
providing novel bounds in bottleneck congestion games for a broader range of
delay functions.

In [22], Rosenthal proves that congestion games have always pure Nash equi-
libria. Koutsoupias and Papadimitriou [15] introduced the notion of price of
anarchy in the specific parallel link networks model in which they provide the
price of anarchy bound 3/2. Roughgarden and Tardos [25] provided the first
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result for splittable flows in general networks in which they showed that the
price of anarchy is bounded by 4/3 for a player cost which reflects to the sum
of congestions of the resources of a path. Pure equilibria with atomic flow have
been studied in [4,5,17,27] (our work fits into this category), and with split-
table flow in [23,24,25,26]. Mixed equilibria with atomic flow have been studied
in [7,10,14,15,18,19,21], and with splittable flow in [6,9]. The vast majority of
the work on congestion games has been performed for parallel link networks,
with only a few exceptions on general network topologies [4,5,6,23]. Our work
immediately applies to network topologies.

Basic bottleneck routing games have been studied in [2,4] which consider the
maximum congestion metric in general networks, and the player cost is equal to
the worst congested edge in the chosen routing path. In [2] the authors show the
existence and non-uniqueness of equilibria in both the splittable and atomic flow
models. They show that finding the best Nash equilibrium that minimizes the
social cost is a NP-hard problem. Further, they show that the price of anarchy
may be unbounded for specific resource congestion functions. In [3] the C +D
social metric is considered. In [11], the authors prove the existence of strong Nash
equilibria, which concern coalitions of players, for games with the lexicographic
improvement property. Other variations of basic bottleneck games with player
coalitions are studied in [8].

Outline of Paper

In Section 2 we give basic definitions. In Section 3 we convert games with type-B
players to games with type-A players. In Section 4 we give a bound on the price
of anarchy. We finish with providing a lower bound in Section 5.

2 Definitions

A congestion game is a strategic gameG = (ΠG, R, S, (lr)r∈R, (pcπ)π∈ΠG) where:

– ΠG = {π1, . . . , πn} is a non-empty and finite set of players.
– R = {r1, . . . , rz} is a non-empty and finite set of resources.
– S = Sπ1 × Sπ2 × · · · × Sπn , where Sπi is a strategy set for player πi, such

that Sπi ⊆ powerset(R); namely, each strategy Sπi ∈ Sπi is pure, and it is a
collection of resources. A game state (or pure strategy profile) is any S ∈ S.
We consider finite games which have finite S (finite number of states).

– In any game state S, each resource r ∈ R has a latency cost denoted lr(S).
– In any game state S, each player π ∈ ΠG has a player cost pcπ(S) =∑

r∈Sπ
lr(S).

Consider a gameGwith a state S = (Sπ1 , . . . , Sπn). The (congestion) of a resource
r is defined as Cr(S) = |{πi : r ∈ Sπi}|, which is the number of players that use
r in state S. The (bottleneck) congestion of a set of resources Q ⊆ R is defined as
CQ(S) = maxr∈QCr(S), which is the maximum congestion over all resources in
Q. The (bottleneck) congestion of state S is denoted C(S) = CR(S), which is the
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maximum congestion over all resources in R. When the context is clear, we will
drop the dependence on S. We examine polynomial congestion games:

– Polynomial games: The latency cost function for any resource r is lr = CMr
r ,

for some integer constants Ml ≤ Mr ≤ Mh.
– Super-polynomial games: The delay cost function for any resource r is dr =
CMr
r , where Mr = logCr.

For any state S, we use the standard notation S = (Sπi , S−πi) to emphasize
the dependence on player πi. Player πi is locally optimal (or stable) in state S
if pcπi(S) ≤ pcπi((S

′
πi
, S−πi , )) for all strategies S

′
πi

∈ Sπi . A greedy move by a
player πi is any change of its strategy from S′

πi
to Sπi which improves the player’s

cost, that is, pcπi((Sπi , S−πi)) < pcπi((S
′
πi
, S−πi)). Best response dynamics are

sequences of greedy moves by players. A state S is in a Nash Equilibrium if every
player is locally optimal. Nash Equilibria quantify the notion of a stable selfish
outcome. In the games that we study there could exist multiple Nash Equilibria.

For any game G and state S, we will consider a social cost (or global cost)
which is simply the bottleneck congestion C(S). A state S∗ is called optimal if
it has minimum attainable social cost: for any other state S, C(S∗) ≤ C(S).
We will denote C∗ = C(S∗). We quantify the quality of the states which are
Nash Equilibria with the price of anarchy (PoA) (sometimes referred to as the
coordination ratio). Let P denote the set of distinct Nash Equilibria. Then the
price of anarchy of game G is:

PoA(G) = sup
S∈ P

C(S)

C∗ ,

We continue with some more special definitions that we use in the proofs. Con-
sider a game G with a socially optimal state S∗ = (S∗

π1
, . . . , S∗

πn
), and let

S = (Sπ1 , . . . , Sπn) denote the equilibrium state.
For any resource r ∈ R, we will let Πr and Π∗

r denote the set of players with
r in their equilibrium and socially optimal strategies respectively, i.e Πr = {πi ∈
ΠG|r ∈ Sπi} and Π∗

r = {πi ∈ ΠG|r ∈ S∗
πi
}.

Let G = (ΠG, R, S, l, (pcπ)π∈ΠG) and G̃ = (ΠG̃, R̃, S̃, l̃, (p̃cπ)π∈ΠG̃
) be two

games.

Definition 1. G η-dominates G̃ if the following conditions hold between
them for the highest cost Nash equilibrium and optimal states: |R̃| ≤ |R|, l = l̃,
C̃ ≥ C, C̃∗ = O(ηC∗), where η is any parameter independent of congestion C.
Here C, C∗, C̃ and C̃∗ represent the bottleneck congestions in the highest cost
Nash equilibrium and optimal states of G and G̃, respectively.

Corollary 1. PoA(G) ≤ η · PoA(G̃) for an arbitrary game G and dominated
game G̃.

3 Type-B to Type-A Game Transformation

Our approach for obtaining the PoA of an arbitrary game G is to first transform
it to a simplified game G̃ with restricted player strategies, obtain the PoA of the
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restricted game (which should be easier to evaluate than the generic game G)
and relate this to the PoA of the unrestricted version G. Transformed game G̃
will consist of players with drastically limited strategies in the equilibrium state.
Specifically, for a given game G in equilibrium state S, we consider two special
kinds of players with respect to state S:

– Type-A players: any player πi with |Sπi | = 1.
– Type-B players: any player πi with |Sπi | ≥ 2.

We define type-B games as those containing an arbitrary mix of type-A and
type-B players in state S. Thus the type-B label refers to any generic monotonic-
bounded congestion game. We define type-A games as those in which highly
congested resources (beyond a specific latency-cost dependent threshold that we
will define subsequently) are occupied only by type-A players in equilibrium state
S. Intuitively, type-A games should be easier to analyze since the equilibrium
strategy of players are highly restricted.

Let η > 0 be a network-related constant (i.e independent of bottleneck con-
gestion). Let τ be an arbitrary congestion threshold such that ∀r ∈ R, ∀Cr ≥
τ : lr(Cr+1)

lr(Cr)
≤ η. For super-polynomial games, where lr(Cr) = (Cr)

logCr , we can

choose τ as any small constant with η = e2. For general polynomial games where
lr(Cr) = (Cr)

Mr , we can choose τ = maxrMr with η = e.
Consider a game G(S,C, S∗, C∗) where S denotes the Nash equilibrium state

with the highest social cost (the one having the highest bottleneck congestion) C,
and S∗ is the socially optimal state with corresponding bottleneck congestion C∗.

Then we have,

Theorem 1. Every type-B game G(S,C, S∗, C∗) with polynomial or super-
polynomial latency costs on resources can be transformed into a type-A game
G̃(S̃, C̃, S̃∗, C̃∗) in which all resources r with congestion Cr ≥ τ in equilibrium
state S̃ are utilized exclusively by type-A players.

Theorem 2. Transformed game G̃(S̃, C̃, S̃∗, C̃∗) is 7-dominated by
G(S,C, S∗, C∗). Specifically, bottleneck congestion in optimal states S∗

and S̃∗ of G and G̃ satisfies C∗ ≤ C̃∗ ≤ 7C∗ while bottleneck congestion in
Nash equilibrium states S and S̃ are the same C = C̃. The Price of Anarchy of
G is bounded by PoA(G) ≤ max( τ

C∗ , 7 · PoA(G̃)).

Proof Sketch of Theorems 1 and 2: We describe a constructive proof of the
theorems by iteratively transforming type-B players in G to type-A players in G̃.

We initialize G̃, the input to our transformation algorithm as a restricted
version of game G with exactly two strategies per player: S̃π = Sπ and S̃∗

π = S∗
π.

We will iteratively transform G̃ into a type-A game by converting all type-B
players of cost ≥ l(τ) + 1 into type-A players, in phases in decreasing order of
player costs. We add and delete players/resources from G̃ iteratively and have
a working set of players. However G̃ will always remain in equilibrium state S̃
at every step of the transformation process. When we add a new player πk to
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Π̃ we will assign two strategy sets to πk: an ‘equilibrium’ strategy S̃πk
and an

optimal strategy S̃∗
πk
. Thus S̃ = S̃

⋃
S̃πk

and S̃∗ = S̃∗⋃ S̃∗
πk
.

First we convert G̃ into a ‘clean’ version in which every type-B player π ∈ Π̃
has distinct resources in its equilibrium and optimal strategies i.e S̃π

⋂
S̃∗
π =

∅. If not already true, this can be achieved by creating |S̃π
⋂
S̃∗
π| new type-

A players with identical and one type-B player with disjoint equilibrium and
optimal strategies for each original player π. The new type-B player has S̃π− S̃∗

π

and S̃∗
π − S̃π as its equilibrium and optimal strategy respectively while the new

type-A players each use one resource from |S̃π
⋂
S̃∗
π| as their identical equilibrium

and optimal strategies. Note that the new players are also in equilibrium in S̃.
Let πi be an arbitrary type-B-player using k resources r1, r2, . . . , rk in its

equilibrium strategy S̃πi that are distinct from the m resources r∗1 , . . . , r∗m in its
optimal strategy S̃∗

πi
. Let Crj , Cr∗j denote the congestion on these resources in

equilibrium state S̃. Without loss of generality, assume the resources in S̃πi and
S̃∗
πi

have been sorted in non-increasing order of congestion i.e Cr1 ≥ Cr2 . . . ≥
. . . Crm and Cr∗1 ≤ Cr∗2 . . . ≤ . . . Cr∗m . Then we have the following:

Lemma 1. S̃πi and S̃∗
πi

can be partitioned into t pairs (L1, L
∗
1), (L2, L

∗
2), . . . ,

(Lt, L
∗
t ) where ∑

r∈L∗
j

l(Cr + 1) ≥
∑

r∈Lj

l(Cr), 1 ≤ j ≤ t (3)

and further

1. The Lj’s form a disjoint resource partition of S̃πi i.e Lj
⋂
Lk = ∅ with

⋃t
j=1 Lj = S̃πi .

2. |L∗
j

⋂
L∗
j+1| ≤ 1, for 1 ≤ j ≤ t. If |L∗

j

⋂
L∗
j+1| = 1 then the last resource in

L∗
j is the first resource in L∗

j+1.
3. ∀j : 1 ≤ j ≤ t, either |Lj| = 1 or |L∗

j | = 1 or both. If |Lj| > 1 and |L∗
j | = 1

with L∗
j = {r∗p} we must have Cr∗p ≥ max{Cr|r ∈ Lj}.

4. r∗m appears at most once in a partition (specifically L∗
t ) while r∗1 appears

in at most two partitions. If r∗1 appears in two partitions then at least one
of the partitions contains only one resource (i.e r∗1). Every other resource
r∗p ∈ S̃∗

πi
, 2 ≤ p ≤ m− 1 appears in at most three partitions. If r∗p appears in

three partitions then two of the partitions contains only r∗p. If r
∗
p appears in

two partitions then it is the last resource in the first partition and the first
resource in the second partition.

We label the procedure implementing lemma 1 as Procedure PMS−Partition().
This procedure is used to create new players and forms the basic step in our
transformation algorithm. We ensure the equilibrium of these new players in G̃
using the key constructs of exact matching sets and potential matching sets.

A set of resources R̃ in G̃ forms an exact matching set for a newly created
player πk with newly assigned equilibrium strategy S̃πk

if
∑

r∈R̃(Cr + 1)M ≥
pcπk

(S̃πk
, S̃−πk

) =
∑

r∈S̃πk
CM
r . Clearly, R̃ can be assigned as the new optimal

strategy S̃∗
πk

in game G̃ without violating the equilibrium of πk.
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Potential matching sets are defined for newly created type-B players. A po-
tential matching set R̃ is an exact matching set that can ‘potentially’ be added
to the optimal set of resources S̃∗

πk
of a type-B player πk ∈ G̃ without increasing

the optimal bottleneck congestion in G̃ from original game G by an η factor i.e
C̃∗ = O(ηC∗).

Now consider a type-B player πi to be transformed. We partition the re-
sources in its equilibrium and optimal strategies S̃πi and S̃∗

πi
according to

PMS−Partition(πi) and remove it from G̃, i.e S̃ = S̃ − S̃πi and S̃∗ = S̃∗ − S̃∗
πi
.

Consider those partition-pairs (Lj , L
∗
j ) with |Lj | = 1. We can create a new

type-A player πk and add it to to G̃ with an equilibrium strategy S̃πk
that is the

singleton resource in Lj. Due to the condition in Eq. 3, the set of resources in

L∗
j forms an exact matching set for πk and can therefore be assigned to S̃∗

πk
. πk

is in equilibrium in G̃ and the equilibrium and optimal congestion on resources
in S̃πk

and S̃∗
πk

are now the same as before. This forms the ‘easy’ part of the
transformation process.

Consider however, those partitions (Lj , L
∗
j ) with 1 < |Lj | ≤ |R| and L∗

j =
{r∗l }. Similar to the above, we can create |Lj | new type-A players and assign
a distinct resource in Lj to each such players equilibrium strategy. However
if, as above, we assign r∗l , the single resource in L∗

j , to each players optimal

strategy, we might increase the socially optimal congestion C̃∗ of G̃ to as much
as C∗ + |R|, thereby violating the domination of G over G̃. Thus we need to
find an appropriate potential matching set from among existing resources and
assign them to these players, without increasing the optimal congestion beyond
O(ηC∗). Finding such a set is the ‘hard’ part of the transformation process.

We form game G̃ by transforming type-B players in distinct phases corre-
sponding to decreasing values of player cost functions lr(Cr) from maxrlr(C)
down to minrlr(τ). During phase i with congestion index Ci, we transform all
type-B players with costs in the range lrj(Ci) down to lrk(Ci−1)+1 into type-A
players, where lrj () and lrk() are respective maximizers in initial game G. To
find new potential matching sets for all type-B players without increasing the
optimal congestion in G̃ beyond a constant factor, we utilize the set of resources
with congestion exactly Ci to generate For details of the proof, please see [13].

4 Price of Anarchy

4.1 Price of Anarchy for Type-A Player Games

By Theorem 2 and Corollary 1, for every type-B game G, we can find a domi-
nated type-A game G̃ such that

PoA(Ĝ) ≤ 7 · PoA(G̃) (4)

Thus we only need to find an upper bound on the PoA of type-A games. Consider
a generic type-A gameG with optimal solution S∗ = (S∗

π1
, . . . , S∗

πn
), optimal con-

gestion C∗, and a Nash equilibrium state S = (Sπ1 , . . . , Sπn) with the highest
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congestion C among all Nash equilibria of G. Define a congestion threshold ψ

such that ∀r∀Cr : Cr ≥ ψ, we have Cr ≥ lr(Cr+1)
lr(Cr)

· C∗. For general polynomial

games with lr(Cr) = CMr
r , we can choose ψ = 2maxr(Mr, C

∗). For superpoly-
nomial games with lr(Cr) = C logCr

r , we can choose ψ = e2 · C∗. We specify
G as a type-A game in which all resources r with Cr > ψ are utilized only by
type-A players in in state S. As a consequence of Eq. 4, we can bound the PoA
of arbitrary type-B games by bounding the ratio C/C∗.

We first define a resource graph N for state S. There are V = V1
⋃
V2 nodes

in N . Each resource r ∈ R with Cr > ψ (Cr ≤ ψ, resp.) corresponds to the
equivalent node r ∈ V1 (r ∈ V2). Henceforth we will use the term resource and
node interchangeably. For every player π using a resource x ∈ V1 in equilibrium,
there is a directed edge (x, y) between node x and all nodes y ∈ V , where y 
= x
is in the optimal strategy set of π i.e Sπ = x and y ∈ S∗

π. We use the notation
Ch(x) to denote the set

⋃
π:Sπ=x

S∗
π. Note that there could be multiple incoming

links to a node x from the same node, however there are no self-loops and x can
be the child of at most C∗ nodes. Also note that nodes in V2 are terminal nodes
that have no outgoing links.

Recursively counting the number of descendants of the root node in T will
help us relate the number of resources |R| with the parameters C and C∗ and
obtain our PoA bound. However since N can have cycles, we instead modify
N to remove cycles and replace it with a Directed Acyclic Graph (DAG) T
(without increasing the size of N ).

Lemma 2. Resource graph N can be transformed into expansion DAG T with-
out affecting the equilibrium state S and optimal congestion C∗, where |T | ≤ |N |.

Since T is a DAG we know that it has sink nodes (with outdegree 0). Every
node in V1 is an internal node (with non-zero indegree and outdegree) since it
has congestion > C∗ and hence the sink nodes in T are nodes from V2. Consider
the DAG starting at the root node with congestion C. Let κ denote the PoA of
G.

Lemma 3. For DAG T with root node x and congestion Cx = C, it holds that
∑

r∈Descendants(x)
⋂
V2

lr(ψ) ≥ (κ− 1)lx(C)

Using the fact that |V2| ≤ |R|, and denoting lmax() and lmin() as the respective
maximizers/minimizers among the latency cost functions, we get

κlmin(C) ≤ 2|R|lmax(ψ) (5)

Note that the the PoA of superpolynomial and general polynomial games is at
least ψ/C∗.

For superpolynomial games using the fact that ∀r ∈ R : lr(Cr) = C logCr
r and

ψ = e2 · C∗ and simplifying, we get that log κ + (log κ)2 ≤ log |R|. Hence for
type-A superpolynomial games the Price of Anarchy is bounded by
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PoAsuper−poly = O(2
√

log |R|)

For general polynomial games with lr(Cr) = CMr
r , let β and α respectively,

denote the largest and smallest degrees in Mr. Substituting in Eq. 5, we get
κCα ≤ 2|R| · ψβ or κα+1 ≤ 2|R| · ( ψC∗ )

α · ψβ−α. Hence for type-A general poly-
nomial games the Price of Anarchy is bounded by

PoApoly = min

(

|R|,max

(
ψ

C∗ , (2|R|)
1

α+1 · ( ψ
C∗ )

α
α+1 · ψ

β−α
α+1

))

Substituting ψ = 2max(β,C∗), we get the result.

5 Lower Bounds on Price of Anarchy

We demonstrate a simple lower bound to show the tightness of the above upper
bound. Consider a type-A superpolynomial game G in which C players in Nash
equilibrium state utilize the same resource r, i.e Cr = C. No other resource
is being utilized in this state. The optimal strategy of each player has C logC

unique resources, i.e the congestion in optimal state S∗ is C∗ = 1. Clearly G is
in equilibrium and the PoA is κ = C. The total number of resources R is given
by |R| = C · C logC + 1 and hence we have

κ = 2
√

log(|R|−1)

Similarly consider a type-A general polynomial game G in which C players in
Nash equilibrium state are utilizing only one resource x, where lx(Cx) = (Cx)

α.
Let N be any integer, 2 ≤ N ≤ C. Each distinct subset of N out of these C
players are sharing �Cα

Nβ � unique resources in optimal state S∗. These resources
are used by N−1 other players in equilibrium as well as optimal states S and S∗.
Hence the equilibrium congestion of these resources is N − 1 while congestion
in optimal state S∗ is C∗ = 2N − 1. Note thate there are �CN � sets of these
resources. The latency cost on each of these resources r is lr(Cr) = (Cr)

β .
Clearly G is in equilibrium and the PoA is κ = C

2N−1 . The total number of

resources |R| = C
N · Cα

Nβ + 1 and hence we have

κ = min

(

|R|,max

(
C

2N − 1
, (|R| − 1)

1
α+1 ·N

β−α
α+1 · N

2N − 1

))

, 2 ≤ N ≤ C.

Note that this has the same form as the upper bound above.

6 Conclusions

We have considered bottleneck congestion games with polynomial and super-
polynomial resource delay cost functions. The price of anarchy result for super-
polynomial functions is o(

√
|R|) with respect to the number of resources. We
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also demonstrate two novel techniques, B to A player conversion and expansion
which help us obtain this result. These techniques which enable us to simplify
games for analysis are sufficiently general. In future work, we plan to use these
techniques to analyze the PoA of games with arbitrary player cost functions.
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