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Abstract. We consider routing games on grid network topologies. The
social cost is the worst congestion in any of the network edges (bottleneck
congestion). Each player’s objective is to find a path that minimizes the
bottleneck congestion in its path. We show that the price of anarchy in
bottleneck games in grids is proportional to the number of bends β that
the paths are allowed to take in the grids’ space. We present games where
the price of anarchy is ˜O(β). We also give a respective lower bound of
Ω(β) which shows that our upper bound is within only a poly-log factor
from the best achievable price of anarchy. A significant impact of our
analysis is that there exist bottleneck routing games with small number
of bends which give a poly-log approximation to the optimal coordinated
solution that may use an arbitrary number of bends. To our knowledge,
this is the first tight analysis of bottleneck games on grids.

Keywords: algorithmic game theory, bottleneck games, routing games,
price of anarchy, grid networks.

1 Introduction

We consider non-cooperative routing games with n players, where each player’s
pure strategy set consists of a set of paths in the network. A player selfishly se-
lects a strategy (a single path) that maximizes the player’s utility cost function.
Such games are also known as atomic or unsplittable-flow games. We focus on
bottleneck routing games where the objective for the social outcome is to mini-
mize the bottleneck congestion C, the maximum congestion on any edge. Each
player’s objective is also to select a path with the smallest bottleneck congestion
along the selected path’s edges. Typically, the congestion on a edge is a non-
decreasing function on the number of paths that use the edge; here, we consider
the congestion to be simply the number of players that use the edge.

Bottleneck routing games have been studied in the literature [1,3,2]. In [1]
the authors observe that bottleneck games are important in networks for various
practical reasons. In wireless networks, the maximum congested link is related
to the lifetime of the network since the nodes adjacent to high congestion links
transmit large number of packets which results to higher energy depletion. High
congestion links also result to congestion hot-spots which may slow-down the
network throughput. Hot spots also increase the vulnerability of the network to
malicious attacks which aim to increase the congestion of links in the hope to
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bring down the network. Bottleneck games are also important from a theoretical
point of view since the bottleneck congestion is immediately related to optimal
packet scheduling. In a seminal result, Leighton et al. [9] showed that there exist
packet scheduling algorithms that deliver the packets along their chosen paths
in time very close to C+D, where D is the maximum chosen path length. When
C � D, the congestion becomes the dominant factor in the packet scheduling
performance. Thus, smaller bottleneck congestion C immediately implies faster
packet delivery time.

A natural problem that arises in games concerns the effect of the players’
selfishness on the welfare of the whole system measured with the social cost
C. We examine the consequence of the selfish behavior in pure Nash equilibria
which are stable states of the game in which no player can unilaterally improve
her situation. We quantify the effect of selfishness with the price of anarchy
(PoA) [8,13], which expresses how much larger is the worst social cost in a Nash
equilibrium compared to the social cost in the optimal coordinated solution
in the strategy space. The price of anarchy provides a measure for estimating
how closely do Nash equilibria of bottleneck congestion games approximate the
optimal C∗ of the respective coordinated optimization problem in the player’s
strategy set.

Ideally, the price of anarchy should be small. However, the current literature
results have only provided weak bounds for bottleneck games. In [1] it is shown
that if the resource congestion delay function is bounded by some polynomial
with degree k then PoA = O(|E|k), where E is the set of edges in the graph.
In [3] it is shown that if k = 1 there are game instances with PoA = Ω(|E|).
A natural question that we explore here is the circumstances under which there
are bottleneck games with alternative and better price of anarchy bounds.

1.1 Contributions

We consider grid network topologies in which the nodes are placed in a d-
dimensional array and each node connects with edges to at most 2d neighbors.
The number of nodes is nd = N . Grid networks have been used as interconnec-
tion networks in parallel multiprocessor computer architectures [10]. In wireless
networks 2-dimensional grids provide a framework for formulating and analyz-
ing wireless communication problems. In other communication networks routing
and scheduling algorithms are typically first tested and analyzed on grids and
then extended to arbitrary network topologies [4].

We explore games where the price of anarchy is expressed in terms of the
numbers of bends that the paths use in the grid. A bend is a node in a path
which connects two path segments in different dimensions. We explore games
where the strategies of the players consists of paths whose bends are bounded
by β, where β can be any number of nodes up to N . We first examine basic
bottleneck games on grids with at most β bends for the paths. We show that
there are instances in the 2-dimensional grid with β = O(1) and price of anarchy
Ω(

√
N). However, this is not satisfactory. In order to obtain price of anarchy

bounded by β, we explore two alternative games.
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In the first game we utilize channels, where path segments on straight lines are
routed in different channels according to their lengths. An edge accommodates
α = log n channels (logarithms are base 2), such that channel j is used by path
segments of length in range [2j, 2j+1 − 1]. Channels do not interfere with each
other so that congestion can be created only by path segments in the same
channel. Channels can be implemented with different frequencies in the physical
communication medium, or with time division multiplexing, or with other means
of signal multiplexing. The use of channels enables us to control the price of
anarchy. We show that in channel bottleneck games if paths are allowed to use at
most β bends, the price of anarchy is PoA = O((β/d) logN). We also provide a
lower bound PoA = Ω(β). Thus, for constant d, the upper bound is tight within
a logn factor.

We then explore games which use only one channel. Now, in order to control
the price of anarchy we split the path segments into different grid lines according
to the lengths of the segments. Odd lines with index 2i + 1 are used to route
path segments of length in range [2i mod α, 2(i mod α)+1 − 1], where α = logn
(logarithms are base 2). Even index lines are used to route paths segments with
length at most 2α − 1. Even index lines are uses to route paths close to the
source and destination and when path segments switch to different lengths. This
gives α+ 1 different types of lines. Thus, path segments are separated in space,
and a single channel suffices. Note that we can still perform routing from every
node to any other node without significantly increasing the number of bends,
compared to a routing mode without space separated path segments. We show
that in the respective split bottleneck games if paths are allowed to use at most β
bends, the price of anarchy is PoA = O((β/d2) log2 N). We also provide a lower
bound PoA = Ω(β). Thus, for constant d, the upper bound is tight within a
log2 n factor.

1.2 Impact of Games with Small Number of Bends

We demonstrate that Nash equilibria of bottleneck games with small number
of bends can approximate efficiently the best coordinated solution that uses an
arbitrary number of bends. Assuming that every path in the network can be
used, there exist oblivious routing algorithms in grids which find paths with
O(d logN) bends and achieve O(d logN) approximation to the optimal solution

that uses an arbitrary number of bends [4]. Let ̂C denote the solution returned

by the oblivious algorithm and ̂C∗ denote the global optimal solution with an
arbitrary number of bends. Clearly, ̂C/ ̂C∗ = O(d logN).

Consider now channel bottleneck games where the strategy of each player
contains all possible paths in the grid with β = O(d logN) bends. Let C∗

denote the smallest social cost. Clearly, C∗ ≤ ̂C. Let C be any Nash equilibrium
of the game. Since C/C∗ ≤ PoA, and PoA = O((β/d) logN) = O(log2 N),

we obtain C/ ̂C∗ = O(d log3 N). Therefore, Nash equilibria of channel bottleneck
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games with small number of bends provide good approximations to the optimal
coordinated solution with arbitrary number of bends.

We can obtain a similar result for split bottleneck games. Note that any
solution of an oblivious routing algorithm with congestion C′ and x bends is
translated to a solution with congestion C′ · logn and O(x) bends in the split
grid, since some of the path segments have to be rerouted to nearby lines that
accommodate their length. Since PoA = O((β/d2) log2 N) = O((1/d) · log3 N),

we obtain: C/ ̂C∗ = O((1/d) log5 N).

1.3 Related Work

Congestion games were introduced and studied in [12,14]. In [14], Rosenthal
proves that congestion games have always pure Nash equilibria. Koutsoupias and
Papadimitriou [8] introduced the notion of price of anarchy in the specific parallel
link networks model in which they provide the bound PoA = 3/2. Roughgarden
and Tardos [17] provided the first result for splittable flows in general networks
in which they showed that PoA ≤ 4/3 for a player cost which reflects to the
sum of congestions of the resources of a path. Pure equilibria with atomic flow
have been studied in [3,5,11,19] (our work fits into this category), and with
splittable flow in [15,16,17,18]. Most of the work in the literature uses a player
cost metric related to the aggregate sum of congestions on all the edges of the
player’s path; and the social cost metric is also an aggregate expression of all
the edge congestions [5,16,17,18,19].

Bottleneck routing games have been studied in [1], where the authors consider
the maximum congestion metric in general networks with splittable and atomic
flow. They prove the existence and non-uniqueness of equilibria in both the split-
table and atomic flow models. They show that finding the best Nash equilibrium
that minimizes the social cost is a NP-hard problem. Further, they show that the
price of anarchy may be unbounded for specific resource congestion functions.
In [3], the authors consider bottleneck routing games in general networks where
they prove that � ≤ PoA ≤ c(�2 + log2|V |), where � is the size of the largest
edge-simple cycle in the graph and c is a constant. In [2] the authors consider
bottleneck games with the C +D metric. In [6], the authors prove the existence
of strong Nash equilibria (which concern coalitions of players) for games with the
lexicographic improvement property; such games include the bottleneck routing
games that we consider here. In [7], the authors provide games with the bottle-
neck social cost which achieve low price of anarchy when the players use a cost
function which is an aggregate exponential expression of the congestions of the
edges in their selected paths.

Outline of Paper: In Section 2 we give basic definitions. In Section 3 we
present a basic bottleneck routing game with high price of anarchy. In Sections
4 and 5 we present the channel and split bottleneck games, respectively, which
achieve price of anarchy bounded by the number of bends β. We finish with
providing lower bounds in Section 6.
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2 Definitions

Grids: The d-dimensional grid G = (V,E) consists N = |V | = nd nodes ar-
ranged in a grid of d dimensions with side length n in each dimension. There is
an edge connecting a node with each of its 2d neighbors (except for the nodes at
the boundaries of the grid). Each node has a coordinate (a1, a2, . . . , ad), where
ai ∈ [0, n − 1] denotes the position in the ith dimension. An example of a 2-
dimensional grid is shown in Figure 1. A line segment with x edges in the kth
dimension is a sequence of nodes (a1, . . . , ak, . . . , ad), . . . , (a1, . . . , ak+x, . . . , ad).

Routings: Let Π = {π1, . . . , πκ} be a set of players such that each πi cor-
responds to a path request from a source ui and destination vi. A routing
p = [p1, p2, · · · , pκ] is a collection of paths, where pi is a path for player πi

from ui to vi. For any routing p and any edge e ∈ E, the edge-congestion
Ce(p) is the number of paths in p that use edge e. For any path q, the path-
congestion Cq(p) is the maximum edge congestion over all edges in q, namely,
Cq(p) = maxe∈q Ce(p). Player’s πi congestion is denoted as Cπi(p) = Cpi(p).
The network (bottleneck) congestion C(p) is the maximum edge-congestion over
all edges in E, that is, C(p) = maxe∈E Ce(p).

We denote the length (number of edges) of any path p as |p|. For a grid G, the
path p consists of a sequence path segments which change dimensions. A bend
of a path is a node that connects two consecutive path segments in different
dimensions. By default, we take the source and destination nodes to be bends.

Routing Games: A routing game in graph G is a tuple R = (G,Π,P), where
Π = {π1, π2, . . . , πκ} is the set of players such that each player πi has a source
node ui and destination vi. The set P is the strategy state space of the game,
P = P1 × P2 × · · · × Pκ, where Pi is the strategy set of player πi which is a
collection of available paths in G for player i from ui to vi. Any path p ∈ Pi is
a pure strategy available to player πi. A pure strategy profile (or game state) is
any routing p = [p1, p2, · · · , pκ] ∈ P .

For game R and routing p, the social cost (or global cost) is a function of
routing p, and it is denoted SC(p). The player or local cost is also a function
on p denoted pci(p). We use the standard notation p−i to refer to the collection
of paths {p1, · · · , pi−1, pi+1, · · · , pκ}, and (pi;p−i) as an alternative notation for
p which emphasizes the dependence on pi. A greedy move is available to player
πi if the player can obtain lower cost by changing the current path from pi
to p′i. Specifically, the greedy move takes the original routing p = (pi; p−i) to
p′ = (p′i; p−i) (in which path pi is replaced by p′i) such that pci(p

′) < pci(p).
Player i is locally optimal (or stable) in routing p if pci(p) ≤ pci(p

′
i;p−i) for all

paths p′i ∈ Pi. In other words, no greedy move is available for a locally optimal
player. A routing p is in a Nash Equilibrium if every player is locally optimal.
Nash Equilibria quantify the notion of a stable selfish outcome. A routing p∗ ∈ P
is an optimal pure strategy profile if it has minimum attainable social cost: for
any other pure strategy profile p ∈ P , SC(p∗) ≤ SC(p).
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We quantify the quality of the Nash Equilibria with the price of anarchy
(PoA) (sometimes referred to as the coordination ratio) and the price of stability
(PoS). Let Q denote the set of distinct Nash Equilibria, and let SC∗ denote the
social cost of the optimal routing p∗ ∈ P . Then,

PoA = sup
p∈ Q

SC(p)

SC∗ , PoS = inf
p∈ Q

SC(p)

SC∗ .

3 Basic Game

Consider a routing game R = (G,Π,P) in a d-dimensional grid G = (V,E),
where each path in Pi is allowed to have at most β bends. For any routing
p = [p1, p2, · · · , pκ] ∈ P , the social cost function is the bottleneck congestion,
SC(p) = C(p), and the player cost function is the bottleneck congestion of its
path, pci(p) = Cπi(p) = Cpi(p).

We first show that such (basic) games have always Nash equilibria and the
price of stability is 1. However, there are game instances where the price of
anarchy is very large compared to the number of bends β. For this reason we
explore alternative games with low price of anarchy in Sections 4 and 5.

The stability of the above basic game follows from techniques in [3,6] re-
lated to potential functions based on lexicographic ordering. We give the de-
tails here for completeness. For routing p, the congestion vector M(p) =
[m0(p),m1(p), . . . ,mκ(p)] is defined such that each component mj(p) is the
number of edges with congestion j. Note that

∑

j mj(p) = |E|. The network con-
gestion C(p) is the maximum index j for whichmj > 0. We define a lexicographic
total order on routings according to their congestion vectors. Let p and p′ be two
routings, with M(p) = [m0,m1, . . . ,mκ(p)], and M(p′) = [m′

0,m
′
1, . . . ,m

′
κ(p)].

Two routings are equal, written p = p′, if and only if mj = m′
j for all j ≥ 0.

Routing p is smaller than p′, written p < p′, if and only if there is some j ∈ [0, κ]
such that mj < m′

j and ∀j′ > j,mj′ = m′
j′ .

It is easy to verify that for any greedy move of a player from a routing p to
routing p′ it holds that p′ < p, since a lower index vector position increases in
M(p′) and a higher index vector position decreases in M(p′) with respect to
M(p). Let p∗ ∈ P be the minimum routing (according to the total lexicographic
order) in the available game state set. Routing p∗ is a Nash equilibrium since no
player can perform a greedy move to improve its cost. Further, p∗ has optimal
social cost, since if there was another state with smaller social cost then p∗

wouldn’t be minimum. Therefore, we obtain:

Theorem 1. Any basic bottleneck game instance R has at least one Nash Equi-
librium and PoS(R) = 1.

Next, we show that there are instances of the basic bottleneck game with large
price of anarchy even when β is small.

Theorem 2. There is a basic bottleneck game instance R in the 2-dimensional
grid, with β = 0(1) bends, such that PoA(R) = Ω(

√
N).
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Fig. 1. A game with large price of anarchy and small number of bends

Proof. Consider an n×n grid. In the game there are κ = n/2 players, where each
player πi has source si in node (0, i − 1) of the column 0, and destination ti in
node (n−1, i+n/2−2) of column n−1 (see Figure 1). The strategy set of player
πi consists of two paths Pi = {p1i , p2i }. Both of the paths cross row r = n/2− 1
(the row is highlighted in Figure 1). Path p1i uses one “dedicated” edge in row
r, so that the dedicated edges of different players do have any common nodes
(see left of Figure 1). The remaining path segments of p1i are used to connect the
source and destination so that the first strategy paths of the players are disjoint.
Note that path p1i consists of at most five path segments (6 bends). Path p2i uses
all the edges of row r, and it consists of at most three path segments (4 bends),
one in column 0, one in row r, and one in column n− 1 (see right of Figure 1).

The routing with the first path choices p1 = [p11, p
1
2, . . . , p

1
κ] is optimal, since

the congestion is C(p1) = 1. The routing with the second path choices p2 =
[p21, p

2
2, . . . , p

2
κ] has congestion C(p2) = κ and every player has cost pci(p

2) = κ,
due to the path segments in row r. Routing p2 is a Nash equilibrium, since if
any player πi switches to path p1i , then its cost remains κ because it still uses
the dedicated edge in row r. Therefore: PoA(R) ≥ C(p2)/C(p1) = κ = n/2 =
Ω(

√
N).

4 Channel Game

Let G = (V,E) be a d-dimensional grid, with nd = N nodes. We consider
bottleneck routing games where each path is allowed to have at most β bends,
and achieve price of anarchy bounded by β. In order to get this price of anarchy
we use logn channels, as we describe below.

We can write any path p as a sequence of path segments p = (q1, q2, . . . , qk),
where each ql is in a line which is in a different dimension than ql+1, where
1 ≤ l < k. The number of nodes (bends) in the path p is bounded by k+1 ≤ β;
thus, the number of path segments is k ≤ β − 1.
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Let α = logn. Each edge e accommodates α = logn distinct channels
A0, A1, . . . , Aα−1. The purpose of the channels is to route path segments of
different lengths separately. A path segment q whose length is in range |q| ∈
[2j, 2j+1 − 1] uses channel Aj ; we also say that the channel of q is A(q) = Aj .
Note that a path may use multiple channels according to the lengths of its con-
stituent segments.

Consider a routing p. For any edge e denote by C
Aj
e (p) the congestion caused

by the path segments of channel Aj , which is equal to the number of path
segments in channel Aj that use edge e. The congestion of a path segment q

is Cq(p) = maxe∈q C
A(q)
e (p), which is the maximum edge congestion along the

path segment and its respective channel. Given a path p = (q1, q2, . . . , qk), we
denote the congestion of the path as the maximum congestion along any of
its path segments, namely, Cp(p) = maxqi∈p Cqi(p). Using this notion of path
congestion all the congestion definitions in Section 2 can be extended in a grid
with channels.

We are now ready to define the channel bottleneck game R = (G,Π,P). As
in the basic bottleneck game, there is limit β on the allowed number of bends in
a selected path. The social and player cost functions are also similar, SC(p) =
C(p), and pci(p) = Cπi(p) = Cpi(p), where all congestions are calculated using
the channel model of the grid. Similar to the basic congestion game we obtain:

Theorem 3. Any channel bottleneck game instance R has at least one Nash
Equilibrium and PoS(R) = 1.

4.1 Price of Anarchy Analysis for Channel Game

Consider a Nash equilibrium p ∈ P . Let p∗ = [p∗1, p∗2, . . . , p∗κ] ∈ P be an optimal
routing with lowest congestion C∗ = C(p∗). Consider a set of players Π ′ ⊆ Π
such that the smallest congestion of any player of Π ′ in routing p is at least C′.
Since p is an equilibrium, each player πi ∈ Π ′ has congestion at least C′ − 1 in
its optimal path p∗i , namely, Cp∗

i
(p) ≥ C′− 1. The C′− 1 congestion in p∗i is due

to some path segment q∗i ∈ p∗i with congestion at least C′− 1, namely, Cp∗
i
(p) ≥

Cq∗i (p) ≥ C′ − 1. Thus, there is an edge e ∈ q∗i such that C
A(q∗i )
e ≥ C′ − 1. We

call e the special edge of player πi and the respective channel A(q∗i ) the special
channel of player πi. Note that a player could have multiple special edges and
respective special channels, in which case we choose one of them arbitrarily.

We say that two edges e1 and e2 are far-apart with respect to channel Aj if
the edges are in different dimensions, or if the edges are in the same dimension
and in different lines, or if the edges are in the same line and the shortest path
length that connects any of their adjacent nodes is at least 2j−1−1. If two edges
are not far-apart with respect to channel Aj , then we say that they are close
with respect to channel Aj .

Let ̂A(Π ′) denote the channel which is special for the majority of the players

in Π ′. Let B(Π ′) be the subset of players in Π ′ with special channel ̂A(Π ′).
Clearly, since there are α channels, |B(Π ′)| ≥ |Π ′|/α. Let Γ (Π ′) denote the set
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of special edges for the players in B(Π ′). Let Δ(Π ′) denote a maximum set of
edges such that Δ(Π ′) ⊆ Γ (Π ′), and each pair of edges in Δ(Π ′) is far-apart

with respect to channel ̂A(Π ′). Let Φ(Π ′) denote the set of players which in
routing p use an edge in Δ(Π ′) such that the path segment that crosses the

edge belongs to channel ̂A(Π ′). Each player πi ∈ B(Π ′) has either (i) its special
edge e ∈ Δ(Π ′), or (ii) there is an edge e′ ∈ Δ(Π ′) such that e′ is close to e

with respect to channel ̂A. In either case, we say that player πi is assigned to
respective edge e or e′ of Δ(Π ′).

Lemma 1. For any set of players Π ′ ⊆ Π, each edge in Δ(Π ′) has assigned to
it at most 5C∗ players of Π ′ in routing p.

Proof. Suppose that the channel Δ(Π ′) is in dimension x. Assume that there is
an edge e ∈ Δ(Π ′) such that there are at least z ≥ 5C∗ + 1 players assigned
to it. Let X be the set of players in B(Π ′) which are assigned to e because e
is their special edge (case (i) above). Let Y be the number of players in B(Π ′)
which are assigned to e because e is near their special edge (case (ii) above). We
have that z = |X | + |Y |. If |X | > C∗, then the edge e is used in the optimal
path of at least C∗ +1 players, which is impossible since the optimal congestion
is C∗. Therefore, |X | ≤ C∗, and hence |Y | ≥ 4C∗ + 1.

For ease of presentation, assume without loss of generality that x is the hori-
zontal dimension. For any player πi ∈ Y we say that its special edge is in the first
(second) part of its optimal path segment if it is positioned in the left (right)
half of its optimal path segment (if the special edge is positioned exactly in the
middle of the path segment then it is simultaneously in the first and second
parts). Let Yl and Yr denote the players whose special edges appear on the left
and right of e, respectively. Without loss of generality, assume that |Yl| ≥ |Y |/2.
Without loss of generality, assume also that at least half of the special edges
in Yl are in the first half of their respective optimal segments. Denote by Y ′

l

these players. We have that |Y ′
l | ≥ |Y |/4. By the positions of the special edges

of Y ′
l all their optimal path segments intersect, which implies that there is an

edge on same line with e which in the optimal routing p∗ has congestion at least
|Y ′

l | ≥ |Y |/4 ≥ (4C∗ + 1)/4 > C∗. This is a contradiction.

From Lemma 1, each edge in Δ(Π ′) is assigned at most 5C∗ players of B(Π ′).
Since |B(Π ′)| ≥ |Π ′|/α, we have:

Corollary 1. For any set of players Π ′ ⊆ Π, |Δ(Π ′)| ≥ |Π ′|/(5αC∗).

Lemma 2. For any set of players Π ′ ⊆ Π with congestion at least C′, |Φ(Π ′)| ≥
(C′ − 1)|Π ′|/(20αβC∗).

Proof. Each edge in Δ(Π ′) is special for some player in B(Π ′). Without loss

of generality, let ̂A(Π ′) = Aj . Then, 2
j+1 − 1 is the maximum path segment of

any path that uses channel ̂A(Π ′). By the definition of the special edges Δ(Π ′),
each path segment of channel ̂A(Π ′) can have at most four special edges. Since
each player in Φ(Π ′) has at most β path segments each using at most four
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special edges in Δ(Π ′), and each special edge in Δ(Π ′) is used by at least C′−1

players in Φ(Π ′) (since the edge e has congestion C′−1 in channel ̂A(Π ′)), from
Corollary 1 we obtain: |Φ(Π ′)| ≥ (C′−1)|Δ(Π ′)|/(4β) ≥ (C ′−1)|Π ′|/(20αβC∗)

Theorem 4. C(p) ≤ 40αβC∗ + log(5αdndC∗).

Proof. Suppose that C(p) > 40αβC∗ + log(5αdndC∗). There is a player πi ∈ Π
with congestion Cπi(p) = C(p). We define recursively a sequence of player sets
Π0, Π1, . . . , Πk, where k = log(5αdndC∗) as follows. We define Π0 = {πi}.
Suppose we have defined the set Πt, where t ≥ 1; we define Πt+1 = Φ(Πt). From
the above definition of Πt, we have that for each πj ∈ Πt, Cπj (p) ≥ C(p)− t ≥
C(p) − k ≥ 40αβC∗ + 1. From Lemma 2, |Πt+1| ≥ 2|Πt|. Therefore, |Πk| ≥
2k ≥ 5αdndC∗. Consequently, from Corollary 1, |Δ(Πk)| ≥ |Πk|/(5αC∗) ≥ dnd.
However, we have a contradiction, since |Δ(Πk)| ≤ |E| < dnd.

From Theorem 4, since α = O(log n) and N = nd, we obtain the following
corollary:

Corollary 2. For any channel bottleneck game R in the d-dimensional grid
which allows paths with at most β bends, PoA(R) = O((β/d) logN).

5 Split Game

We describe a way to split the path segments of a path in different lines according
to their lengths. In this way we only need to use a single channel that all players
can share. For ease of presentation, we first describe the respective game in the
2-dimensional grid, and then explain below how it can be extended to higher
dimensions.

Let G = (V,E) be a 2-dimensional n×n grid. Let α = logn. For convenience
take n to be a multiple of 2 logn. The odd index rows (columns) 1, 3, . . . , n− 1
are used to route horizontal (vertical) path segments of lengths ranging from
2 to n − 1. In particular, row (2i + 1) mod α (column 2i mod α), where i ∈
[0, n/2 − 1], is used for horizontal (vertical) path segments whose length is in
range [2i mod α, 2(i mod α)+1 − 1]. The even rows (columns) 0, 2, . . . , n − 2 are
reserved to route horizontal (vertical) path segments whose length is in range
[1, 2α−1]. Note that path segments in range [2, 2α−1] have a chance to be routed
either in even or odd rows and columns. We say that an odd row (column) 2i+1
(2i) is of type-(i mod logn), while any even row (column) is of the local-type.
Note that there are α+1 types in total. Any edge e ∈ E has the same type of the
row or column that it belongs to. Note that with splitting the path segments into
different rows we achieved to have a single channel that all players can share.

We are now ready to define the split bottleneck game R = (G,Π,P). As in the
basic bottleneck game, there is limit β on the number of bends of a path. Each
path has to follow the rules for using the appropriate rows and columns for its
segments as described above. The social and player cost functions are similar,
SC(p) = C(p), and pci(p) = Cπi(p) = Cpi(p). Similar to the basic congestion
game we obtain:



304 C. Busch, R. Kannan, and A. Samman

Theorem 5. Any split bottleneck game instance R has at least one Nash Equi-
librium and PoS(R) = 1.

5.1 Price of Anarchy Analysis for Split Game

Consider a Nash equilibrium p ∈ P . Consider a set of players Π ′ ⊆ Π . We can
define the special edge and special type for a player in the same way as we did
for channel bottleneck games. The only difference is that instead of the notion
of the channel we use the notion of the type. Let τ(Π ′) be the type which is
special for the majority of the players in Π ′. Using τ(Π ′) we can define the sets:
B(Π ′), Γ (Π ′), Δ(Π ′), and Φ(Π ′), as we did in Section 4, where τ(Π ′) plays the
role of ̂A(Π ′). We have that |B(Π ′)| ≥ |Π ′|/(α+1), since there are α+1 types.

Lemma 3. For any set of players Π ′ ⊆ Π, each edge e ∈ Δ(Π ′) has assigned
to it at most c1αC

∗ players of Π ′ in routing p, for some constant c1.

From Lemma 3, each edge in Δ(Π ′) is assigned at most c1αC
∗ players of B(Π).

Since |B(Π ′)| ≥ |Π ′|/(α + 1), we have |Δ(Π ′)| ≥ |Π ′|/((α + 1) · (c1αC∗)).
Therefore,

Corollary 3. For any set of players Π ′ ⊆ Π, |Δ(Π ′)| ≥ |Π ′|/(c2α2C∗), for
some constant c2.

Lemma 4. For any set of players Π ′ ⊆ Π with congestion at least C′, |Φ(Π ′)| ≥
(C′ − 1)|Π ′|/(c3α2βC∗), for some constant c3.

Theorem 6. C(p) ≤ 2c3α
2βC∗ + log(2c2α

2n2C∗).

From Theorem 6, since α = logn and N = n2, we obtain the following corollary:

Corollary 4. For any split bottleneck game R in the 2-dimensional grid which
allows paths with at most β bends, PoA(R) = O(β log2 N).

5.2 Split Game in the d-Dimensional Grid

We can extend the split games to a grid with d dimensions. The first dimension
takes the role of the horizontal dimension, and the second dimension takes the
role of the vertical dimension. Any other dimension (third and above) uses the
first dimension to split the path segments. For example, in the 3-dimensional
grid, a path segment q in the third dimension is a sequence of nodes with coordi-
nates q = (x, y, z), . . . , (x, y, z+k). This path segment is placed in an appropriate
odd first coordinate x = 2i+1 if k ∈ [2i mod α, 2(i mod α)+1−1], and if k ≤ 2α−1
then it could use an even first coordinate x = 2i. In this way we can charac-
terize q as type-i, or local type, respectively. The total number of types for the
d-dimensional grid remains α+ 1.

The main difference in the price of anarchy analysis is that Theorem 6 now
returns C(p) ≤ 2c3α

2βC∗ + log(c2α
2dndC∗). Since α = O(log n) and N = nd,

Corollary 4 now becomes:

Corollary 5. For any split bottleneck game R in the d-dimensional grid which
allows paths with at most β bends, PoA(R) = O((β/d2) log2 N).
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6 Lower Bounds

Here, we give lower bounds in terms of bends for the price of anarchy for the
channel and split games.

Fig. 2. Zig-zag path and cycles

Theorem 7. In the d-dimensional grid with N nodes, given any β ≤ c′N , for a
specific constant c′, there is a channel bottleneck game instance R with at most
β bends, such that PoA(R) = Ω(β).

Proof. We present the result for the 2-dimensional n× n grid G, and it can be
extended to the d-dimensional grid. We define a game along a cycle c of the
grid. The main building block of the cycle is the zig-zag path which is formed in
two consecutive columns, by alternating edges between the columns and rows, as
shown highlighted in the left of Figure 2. A x-zig-zag path contains x horizontal
edges and x − 1 vertical edges, giving 2x − 2 bends (without counting the end
nodes). Given an x-zig-zag path we can build a cycle by closing the end points
with 4 additional bends, giving a cycle with total 2x+2 bends. Since x < n− 1
(last row is reserved to close the cycle), the maximum number of bends that a
single zig-zag path can provide is bounded by 2(n− 1) + 2 = 2n.

In order to obtain a cycle with larger number of bends, we combine multiple
zig-zag paths, as shown in the middle of Figure 2. The largest cycle is formed by
using n/2 instances of (n− 1)-zig-zag paths by combining their original version
and their horizontal mirrors, and connecting them with bridge edges in rows 0
and n − 2 and closing the loop with a path in row n − 1 and bridge edges in
the bottoms of columns 0 and n− 1. This construction gives a cycle with total
� = (2(n − 1) + 2) · n/2 + 4 = n2 + n + 4 bends. Using the above construction
and adjusting appropriately the sizes of the zig-zag paths it is possible to obtain
a cycle with any number of bends β up to �. Clearly, the total number of edges
in the cycle is |c| = Θ(β).

We define now a channel bottleneck game R = (G,Π,P). Let Z denote the
set of edges in the zig-zag paths, excluding the edges adjacent to the end nodes of
each zig-zag path. The game has κ = |Z| playersΠ = {π1, . . . , πκ}. Player πi has
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two strategy sets: Pi = {p1i , p2i }, where p1i consists only of edge ei = (ui, vi) ∈ Z
in a zig-zag path, and path p2i consists of the alternate path in the cycle from vi
to ui that traverses all the edges of c except ei. The edges ei ∈ Z are chosen so
that different players use different edges. Note that the first path has 2 bends,
while the second path has β bends.

The optimal routing p∗ ∈ P is the one where each player πi uses strategy p1i ,
namely, p∗ = [p11, p

1
2, . . . , p

1
κ]. The congestion of p∗ is C(p∗) = 1, since edge is

used by at most one player. Consider now routing p = [p21, p
2
2, . . . , p

2
κ], consisting

of the second strategy of each player. Routing p has congestion C(p) = κ − 1,
since all players except πi use edge ei ∈ Z and all the path segments that
use ei belong to the same channel A0 for unit length segments. The routing
p is a Nash equilibrium, since if any user πi attempts to switch to alternate
strategy p1i , the congestion of the becomes κ + 1 > C(p). Therefore we have
that: PoA ≥ C(p)/C(p∗) = κ− 1 = |Z| − 1 = Ω(β).

Using similar zig-zag paths for the split model by adjusting appropriately the
bend distances (see right of Figure 2) we can obtain the following lower bound:

Theorem 8. In the d-dimensional grid with N nodes, given any β ≤ c′′N , for
a specific constant c′′, there is a split bottleneck game instance R with at most β
bends, such that PoA(R) = Ω(β).

7 Conclusions

We presented new bottleneck games on multidimensional grids whose price of
anarchy is analyzed in terms of the number of bends that the paths are allowed
to follow. We found that the price of anarchy is proportional to the number of
bends. We also provided game instances that show that the price of anarchy
results are tight within poly-log factors. A natural question that remains open is
whether we can obtain tighter bounds by removing the poly-log factors. Another
interesting problem is to study other network topologies and examine how the
notion of bends is generalized in them.
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