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Abstract. Many resource sharing scenarios can be modeled as conges-
tion games. A nice property of congestion games is that simple dynam-
ics are guaranteed to converge to Nash equilibria. Loose bounds on the
convergence time are known, but exact results are difficult to obtain in
general. We investigate congestion games where the resources are homo-
geneous but can be player-specific. In these games, players always prefer
less used resources. We derive exact conditions for the longest and short-
est convergence times. We also extend the results to games on graphs,
where individuals only cause congestions to their neighbors. As an ex-
ample, we apply our results to study cognitive radio networks, where
selfish users share wireless spectrum opportunities that are constantly
changing. We demonstrate how fast the users need to be able to switch
channels in order to track the time-variant channel availabilities.

Keywords: congestion game, resource allocation, cognitive radio, games
on graphs, convergence time.

1 Introduction

Congestion games can be used to model a myriad of systems in biology, engi-
neering, and the social sciences. In congestion games, players select resources to
maximize their payoffs, while considering the congestion due to resource shar-
ing. A key feature of congestion games is the finite improvement property: asyn-
chronous player updating (where players switch resources to increase payoffs)
always converges to a Nash equilibrium [1]. The finite improvement property is
important due to the wide applicability of congestion games [2]. In many sit-
uations, such as drivers choosing routes or wireless users picking channels, it
is useful to know that distributed and selfish behaviors always lead to a stable
system state.

In this paper, we shall focus on the following question: how long does con-
vergence take in a congestion game? Understanding this issue is critical for
real-time resource allocation. Unfortunately, determining the convergence time
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of congestion games can be a computationally hard problem [3], [4]. The worst
case convergence time can be exponential in the number of players n [5], although
a polynomial convergence is possible for certain games [6], [7].

In this paper, we will analyze the convergence speed of a simple kind of con-
gestion game, where every resource has the same intrinsic value. The players
may have complicated and different payoff functions, but this does not affect
the convergence dynamics. All that matters is that players prefer less congested
resources. Despite the simplicity, this type of game can model a wide range of
scenarios where selfish individuals share homogenous resources. In Section 5, we
will illustrate why our games are particularly useful for analyzing cognitive radio
networks.

To study the convergence of congestion games, the usual approach is to gain
loose bounds by constructing a potential function. The special structure of our
games allows us to take a more geometric approach, and derive many new (and
sometimes exact) results about convergence (see Section 3). In Section 4, we
will analyze more general congestion games, where the players are spatially dis-
tributed and can access different sets of resources.

Our main results include the following:

– An exact characterization of the fastest convergence time from any given
initial state (Section 3.1);

– A simple updating mechanism, which guarantees the fastest convergence
time (Section 3.1);

– Exact results and a linear bound on the slowest possible convergence time
(Section 3.3);

– Characterizations of the convergence speed to Nash equilibrium on spatially
extended congestion games (Section 4).

As a concrete application, in Section 5 we discuss how the analytical framework
can be applied to spectrum sharing in cognitive radio networks. As the avail-
able resources (channels) come and go rapidly in cognitive radio networks (e.g.,
[8,9]), it is critical to understand how selfish users behave and whether they can
adapt fast enough compared with the environment. Proofs of our results are
included in the online technical report [10].

2 The Model

In an n-player congestion game, each player’s strategy involves a set of resources.
The payoff that a player p gets from using a resource i is described by a strictly
decreasing function fp

i (xi), where xi is the number of players using i. In this pa-
per, we are only concerned with singleton congestion games, where each player
uses exactly one resource at any given time [6]. We further assume that resources
are symmetric, i.e., fp

i = fp
j = fp for any resources i, j and any player p, so

all resources are equivalent from a player’s perspective. Note, however, that the
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payoffs are player-specific. This means players could have different tastes of the
same resource, due to technological, psychological, or economic reasons.

A central idea in congestion game dynamics is the better response switch,
i.e., a player increases its payoff by switching to a better (less congested) resource.
A common way to study congestion games is to imagine that players’ strategies
evolve through time via asynchronous better response switches (i.e., one player
switches to a better decision at each discrete time step).1 When no player can
increase their payoff by switching, the system reaches a Nash equilibrium.

To summarize, our systems are defined by a set of n players, a set of r re-
sources, and a strictly decreasing payoff function fp for each player p. Every
player uses one resource from the set {1, 2, ..., r} at any time step. The system
state vector is x = (x1, x2, ..., xr), where xi is the number of players using re-
source i. If a player using resource i switches to resource j, then xi decreases by
1 and xj increases by 1. We refer to this action as an i → j switch. We suppose
that one and only one player switches to a better response every time step. A
key fact about our games is Theorem 1.

Theorem 1 (Better Response Switch)
A switch i → j is a better response switch if and only if xj + 1 < xi.

Proof. Consider a player p using resource i with a payoff fp(xi). Switching to j
is a better response if and only if fp(xj + 1) > fp(xi). Now, since fp is strictly
decreasing, we have fp(xj + 1) > fp(xi) if and only if xj + 1 < xi.

Theorem 1 has powerful implications: the better response switches (through
which our system evolves) are independent of the payoff functions and the iden-
tity of the players. All that matters (with respect to the dynamics) is that one
player decreases its congestion level by switching. A state x is a Nash equilibrium
if and only if no better response switches can be performed.

Theorem 2 (Nash Equilibrium). A state vector x is a Nash equilibrium if
and only if (n mod r) of x’s entries are equal to

⌈
n
r

⌉
, whilst the remaining r −

(n mod r) entries of x are equal to
⌊
n
r

⌋
.

3 Convergence Time to a Nash Equilibrium

Starting from an arbitrary state x, the players can reach a Nash equilibrium
through several routes (sees figures 1, 2 and 3). This means the convergence
time depends upon the ways players choose to switch. The convergence time is an
important measure of how quickly the players organize themselves. Since players’
identities and payoff functions are irrelevant to the convergence dynamics, we
will only work with the number of players n, the number of resources r, and
system state x from now on.

1 We are subscribing to the elementary step hypothesis [5], that one and only one
player improves their strategy at each time step. This is commonly used to model
situations where simultaneous updating is unlikely.
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Fig. 1. The state space of a game with n = 5 players and r = 3 resources. The points
represent state vectors and the arrows represent the state transitions which can be
achieved through better response switches. For example, there is an arrow from (5, 0, 0)
to (4, 1, 0) because the better response switch 1 → 2 converts (5, 0, 0) into (4, 1, 0). The
Nash equilibria in this game are (1, 2, 2), (2, 1, 2), and (2, 2, 1).

3.1 The Fastest Convergence

We want to determine the best way a group of players can switch their choices
of resources to reach a Nash equilibrium. We will first study how many switches
(of any kind) are required to convert one state into another.

Theorem 3 (The Switching Distance). For any two states x and y, the
minimal number of switches (of any kind), d(x,y), required to convert x into y
is

d(x,y) =

r∑

i=1

max {0, yi − xi} =

r∑

i=1

max {0, xi − yi} =

∑r
i=1 |xi − yi|

2
.

The fastest convergence time, b(x), is the least number of better response
switches that are required to convert state x into a Nash equilibrium.

Theorem 4 (Fastest Convergence Time). For any state x, the best (fastest)
convergence time to a Nash equilibrium is

b(x) =

(
r∑

i=1

max
{
0, xi −

⌊n
r

⌋})
−min

{∣∣∣{i ∈ {1, 2, ..., r} : xi ≥
⌈n
r

⌉}∣∣∣ , n mod r
}
.
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Fig. 2. The state space of a game with n = 7 players and r = 4 resources. The points
represent state vectors and the arrows represent the state transitions which can be
achieved through better response switches.

Fig. 3. The state space of a game with n = 5 players and r = 5 resources. The points
represent state vectors and the arrows represent the state transitions which can be
achieved through better response switches. Every path of sufficient length in this graph
terminates at the central vertex -which represents the Nash equilibrium (1, 1, 1, 1, 1).
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Theorem 4 essentially states that b(x) is the minimal number of switches (of
any kind) required to convert x into a Nash equilibrium. To explain how a Nash
equilibrium can be reached in this minimal number of switches, we define the
strong switch. Suppose x is not a Nash equilibrium. We say an i → j switch
is a strong switch of x if xi is one of x’s maximal entries and xj is one
of x’s minimal entries. For example, the 2 → 4 switch is a strong switch of
x = (5, 5, 3, 1), while the 2 → 3 switch is not. Theorem 4 is proved by showing
that strong switching is optimal, in the sense that it leads to a Nash equilibrium
within the minimum possible number of switches.

Corollary 1. Starting from an arbitrary state x, any sequence of b(x) strong
switches leads to a Nash equilibrium.

Theorem 4 implies that the maximum value of b(x) occurs when all the players
use the same resource (e.g., x = (n, 0, 0, ..., 0)). Hence b((n, 0, 0, ..., 0)) = n−⌈

n
r

⌉

is the largest number of better response switches ever required to reach a Nash
equilibrium.

3.2 Average Fastest Convergence from Random Initial Conditions

Often we do not have a choice of the initial system state. Thus it is useful
to understand how fast we can reach a Nash equilibrium from random initial
conditions. This gives a global average measure of the best case performance of
our systems. Suppose the players select their initial resources from {1, 2, ..., r}
uniformly at random. In this case, we let βr(n) denote the expected number of
strong switches required to reach Nash equilibrium (for a game with r resources
and n players). In other words, βr(n) is the expected value of b(x), when x is
generated by allocating resources randomly and uniformly.

Theorem 5 (Average Fastest Convergence Time)
Suppose n is divisibly by r, in this case2 we have,

βr(n) =

(
1− 1

r

)n−n
r
(
1

r

)n
r (

n− n

r

) n!

(n− n
r )!

n
r !
,

lim
n→∞βr(n) =

√
n(r − 1)

2π
.

3.3 The Slowest Convergence

In reality, players may not switch in the optimal way. Often it is more likely that
random players perform random better response switches. In this case, there are
many ways the system can evolve. Here we discuss the slowest convergence
time wr(n) for a system with r resources and n players. We define wr(n) to be
largest number of better response switches that drives some initial state into a
Nash equilibrium.

2 There is a strong evidence that this asymptotic form is also accurate when n is not
divisible by r (see technical report [10]).
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Theorem 6 (Slowest Convergence Time). The worst (slowest) convergence
time, wr(n), has the following properties;

1. n(r−1)
2 −

(
2.r3−3.r2+r

6

)
≤ wr(n) ≤ n(r−1)

2 .

2. limn→∞ wr(n) =
n(r−1)

2 .
3. w2(n) = �n

2 �.
4. w3(n) = n− 1.
5. w4(n) = δn,1+δn,2+

3.n
2 −(n mod 2)52 −(n+1 mod 2)

(
2 +

(�n
2 � mod 2

))

where δi,j is the Kronecker delta.

6. If n ≤ r then wr(n) =
∑n−1

k=0

⌊√
1+8k−1

2

⌋
.

Our state space can be regarded as a directed graph D, with directed edges rep-
resenting the state transitions that can be achieved through better response

Fig. 4. Convergence times with r = 4 resources. The top line in both figures depicts
the slowest run time w4(n). In the upper figure, the bottom line depicts the fastest run
time b((n, 0, 0, 0)), whilst the middle line depicts the expected run time, a((n, 0, 0, 0)),
of the random better response system. In the lower figure, the bottom line depicts the
average fastest run time, β4(n), whilst the middle line depicts expected run time, α4(n),
of the random better response system (starting from a random resource allocation).
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switches (see figures 1, 2 and 3). Here wr(n) is equal to the length of the
longest path in D. We proved Theorem 6 by considering the reduced state space,
D∗, which is subgraph of D induced upon the states with their entries in de-
scending order. Here wr(n) is equal to the longest path from (n, 0, 0, ...0) to(⌈

n
r

⌉
, ...,

⌈
n
r

⌉
,
⌊
n
r

⌋
, ...,

⌊
n
r

⌋)
in D∗. Also D∗ is equivalent to the r-part partition

lattice [11]. The full proof of Theorem 6 can be found in the technical report [10].

3.4 Average Convergence, with Random Better Response Switches

In many scenarios, the players will update in some sort of random order. Un-
derstanding of random cases gives an insight into more realistic systems, and
tests the relevance of our performance bounds. We consider a simple random
updating model, where at each time step a single random “unsatisfied” player
(i.e, one that can perform a better switch) performs a random better switch.
Let a(x) denote the expected value of the convergence time of x under
this “random better response system”. We simulate and then compare
with our other convergence time measures in Figure 4. Simulations suggest that
the random convergence time a(x) is often close to the fastest convergence time
b(x), and is much smaller than the worst case convergence time wr(n) (when
the number of players n is reasonable large). This implies that b(x) is a good
estimation of the real convergence time and wr(n) is too pessimistic.

4 Spatial Variations on Our Models

So far we have assumed that each player interacts with all other players in the
system. In many situations, the players are distributed over space, and can only
cause congestion to their neighbors. This is the case in wireless networks, where
only users close-by may cause significant mutual interferences. In this section, we
look at the convergence of the spatial congestion games proposed in our previous
work [9], where a graph structure G is used to represent the spatial relationship
between players. This spatial game model is a generalization of the one defined
in Section 2 with the added dimension of space.

Figure 5 shows an example of graph G. Each vertex in G represents a player.
A pair of players are connected by an edge in G when they are close enough
to potentially cause congestion for one another. Each player p has a strictly
decreasing payoff function, fp(Np

i + 1), where Np
i is the number of player p’s

neighbors that use the same resource i as player p. Just like before, the details
of the payoff functions are irrelevant with respect to the convergence dynamics.
All that matters is that players always prefer resources that are used by less of
their neighbors.

In this general model, a state is an assignment of resources on the graph, one
resource to each vertex (player). A conflict happens when a vertex uses the same
resource as one of its neighbors. We still assume the resources are homogenous,
so every vertex simply wishes to minimize the number of conflicts they incur.
As before, the system evolves via asynchronous better response switches. Every
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Fig. 5. An example of a state (resource allocation) of a spatial congestion game. Ev-
ery vertex can access two resources: “white” and “black”. The only unsatisfied player
(vertex) is the circled one in the middle. This player currently suffers 3 conflicts. After
this player does a better response switch (changing from black to white), the system
will be in a Nash equilibrium.

time step, one vertex switches to a resource shared by less of its neighbors. A
Nash equilibrium is a system state where no vertex can make a better response
switch. We further generalize the model by assuming that different players may
have different sets of resources available to them due to spatial variations. For-
mally, each player p has a specific resource set R(p). Despite the generality of
the model, convergence to a Nash equilibrium through better response switches
is still guaranteed. Next we provide characterize the convergence speed and equi-
librium characteristics. Theorem 7 is an extension of a result from [9].

Theorem 7. Consider a general spatial congestion game with heterogeneous re-
source availabilities defined on a graph G. Any sequence of ||G|| asynchronous
better response switches leads to a Nash equilibrium, where ||G|| ≤ n(n−1)

2 is the
number of edges in the graph G.

Proof. The worst case initial state is where every vertex uses the same resource.
In this case there are ||G|| conflicts. The number of conflicts in a given state
forms a potential function, which decreases with better response switches. It
follows that the system will converge to Nash equilibrium in at most ||G|| time
steps.

Our next result bounds the worst case performance of a player at Nash equilib-
rium.

Theorem 8. At a Nash equilibrium of a general spatial congestion game with

heterogeneous resource availabilities, a player p will not suffer more than
⌊

d(u)
|R(p)|

⌋

conflicts, where d(p) is p’s degree (number of neighbors) and |R(p)| is the number
of resources available to p.

Proof. Let us prove by contradiction. Suppose player p suffers K >
⌊

d(p)
|R(p)|

⌋

conflicts. Since the system is in a Nash equilibrium, player p cannot benefit by
switching to a different resource. This means for any resource i ∈ R(p), player
p has at least K neighbors using resource i. It follows that p has degree greater
than or equal to |R(p)|K > d(p), which contradicts our assumption that player
p has a degree d(p).
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Theorem 8 implies that when every player can access more resources than its
degree, the system will always converge to a Nash equilibrium which involves no
conflicts whatsoever.

5 Application: Cognitive Radio Networking

A good application for the above analytical framework is spectrum sharing in
cognitive radio networks. Most of the usable wireless spectrum is owned by li-
cense holders who possess exclusive transmission rights. However, measurements
show that many wireless channels are heavily under-utilized most of the time.
Cognitive radio technology allows unlicensed users to opportunistically access
these channels when the license holders are absent. One of the central questions
of such spectrum sharing is: how should users access the channels in a distributed
fashion?

Congestion games are a natural way to model how users switch channels to
minimize their interference. The models discussed in this paper are very use-
ful here due to several reasons. (1) In most wireless communication standards,
spectrum is divided into equal bandwidth channels. Interleaving techniques can
further homogenize the qualities of the channels. This means that channels are
homogeneous to the same user. Different users, however, can achieve different
data rates due to different choices of coding and modulation schemes. (2) A
wireless user only generates significant interferences to close-by users, so spatial
information is important. (3) License holders are spatially located and may have
different activities; unlicensed users at different locations may be able to access
different channels. (4) License holders often have stochastic traffic, meaning the
channel availability is time-varying.

5.1 The Significance of Previous Results

Fast convergence is essential in cognitive radio networks due to the time vari-
ability of channels. Corollary 1 shows that the fastest convergence is achieved
with strong switches, in which case no user needs to switch channel more than
once. This is desirable as switching channel causes a costly disruption to quality
of service. Theorem 6 states the upper-bound of the worst case convergence time
wr(n) is linear in r and n. This suggests that congestion games remains a viable
method for spectrum sharing in large networks. Theorem 6 also suggests that a
user does not have to scan every channel; it is enough to locate one better chan-
nel before switching. This is useful as channel scanning is often time consuming
in wireless communications.

The spatial congestion game makes a more realistic model for cognitive radio
networks. This fits well into the commonly used protocol interference model,
where the interference relationships among users is modeled by a graph. Theo-
rems 7 and 8 guarantee that users in the network quickly converge to an efficient
Nash equilibria. Theorem 8 is especially encouraging, because it implies that
the Nash equilibrium will be interference free if users have enough channels to
choose from.
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5.2 Modeling the Dynamic Radio Environment

As licence holders enter and leave the system, the set of available channels
changes. As this happens the Nash equilibria of the system changes and the
users must adapt to this. Figure 6 illustrates how the ability of users to adapt
quickly influences their performance. Here we study how fast the (unlicensed)
users should adapt in order to catch up with channel dynamics.

Fig. 6. An illustration of the dynamic spectrum allocation problem. As time goes by
channels open and close. This changes the position of the Nash equilibrium, so the
population of users must adapt their state accordingly. If the users converge quickly
(dotted line) they will be able to stay close to the Nash equilibrium. If the users cannot
adapt fast enough (dashed line) they will spend most of their time away from Nash
equilibrium (note that in reality the Nash equilibrium will be moving around in high
dimensional space).

We assume that the license holders enter and leave channels randomly, so
the availability of each channel can be described by a two-state Markov chain.
On average there are c channels open to the users in the network. In any given
time step, a new channel opens with a probability p1, an old channel closes
with a probability p0, and nothing happens with a probability 1 − p0 − p1. We
assume the time scale is so small that multiple channels will not open or close
simultaneously.3

Necessary Switching Rate. The users must be able to perform at least A =

p1

⌊
n

c+1

⌋
switches per time step in order to always stay at a Nash equilibrium.

The reasoning is as follows. When a new channel opens, it requires at least⌊
n

c+1

⌋
switches to fill the new channel with the proper number of users to reach

a Nash equilibrium. When an old channel closes, the disruption depends upon

3 In this section we are considering a “time step” to be defined with respect to the
channel dynamics, and we are considering how fast the users must be able to update
with respect to this time scale.
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how many users occupied it and how they evacuate. If the users do not have
time to perform A switches per time step, then they will drift away from the
new Nash equilibria.

Sufficient Switching Rate. If users can doB = max{p1wc+1(n), p0wc−1(n)}≤
n
2 max{p1c, p0(c− 2)} switches per time step, they will almost certainly be able
to stay at the Nash equilibrium. To see this, note that every sequence of bet-
ter response switches wc(n) will converge to Nash equilibrium. Then users can
“track” the equilibria if they can do B switches every time step.

6 Conclusion

The resource-homogeneous nature of our models has allowed us to investigate
the convergence dynamics at a deeper level. This is satisfying because, although
simple, our systems can be used to model a wide range of phenomena. Exact
results about convergence rates are rare, and we hope that the results presented
here will aid the study of more general systems. Perhaps our most critical mod-
eling assumption is the elementary step hypothesis [5], that one player updates
their strategy every time step. This could be unrealistic in many scenarios with
large numbers of players. In the future we will study the dynamics of other
simple congestion games with different updating mechanisms. There are many
other directions we wish to take in future research. One interesting direction, for
cognitive radio, will be to incorporate switching costs into our models. Proofs
of our results are included in the online technical report [10].

Acknowledgments. The authors wish to thank Jing Ji for her helpful input
into this research.
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