
Hierarchical Auctions

for Network Resource Allocation

Wenyuan Tang and Rahul Jain�

Department of Electrical Engineering
University of Southern California
{wenyuan,rahul.jain}@usc.edu

Abstract. Motivated by allocation of cloud computing services, band-
width and wireless spectrum in secondary network markets, we introduce
a hierarchical auction model for network resource allocation. The Tier
1 provider owns all of the resource, who holds an auction in which the
Tier 2 providers participate. Each of the Tier 2 providers then holds an
auction to allocate the acquired resource among the Tier 3 users. The
Tier 2 providers play the role of middlemen, since their utility for the re-
source depends entirely on the payment that they receive by selling it. We
first consider the case of indivisible resource. We study a class of mecha-
nisms where each sub-mechanism is either a first-price or a second-price
auction, and show that incentive compatibility and efficiency cannot be
simultaneously achieved. We then consider the resource to be divisible
and propose the hierarchical network second-price mechanism in which
there exists an efficient Nash equilibrium with endogenous strong budget
balance.

Keywords: Network economics, mechanism design, auctions, hierarchi-
cal models.

1 Introduction

As networks have become increasingly complex, so has the ownership structure.
This means that the traditional models and resource allocation mechanisms that
are used for resource exchange between the primary owners and the end-users are
no longer always relevant. Increasingly, there are middlemen, operators who buy
network resources from the primary owners and then sell them to the end-users.
This potentially causes inefficiencies in network resource allocation.

Consider the case of bandwidth allocation. The network bandwidth is primar-
ily owned by a Tier 1 ISP (Internet Service Provider) or carrier, who then sells
it to various Tier 2 ISPs. The Tier 2 ISPs then sell it further either to corporate
customers or to the Tier 3 ISPs, who provide service directly to consumers. The
presence of the Tier 2 ISPs can potentially skew the network resource allocation,
and cause it to be inefficient from a social welfare point of view. Another case
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in point, is the emerging market of cloud computing services. Providers such as
IBM, Google, Amazon and others are providing cloud computing services which
end-users (e.g., enterprises having small computational or data center needs)
can buy. Of course, the distribution channel for these services is likely to involve
middlemen. This raises the key question what hierarchical mechanisms can be
used in the presence of middlemen that are incentive compatible and/or efficient.

Auctions as mechanisms for network resource allocation have received lots
of attention recently. Following-up on the network utility model proposed by
Kelly [12], Johari and Tsitsiklis showed that the Kelly mechanism can have up
to 25% efficiency loss [10]. This led to a flurry of activity in designing efficient
network resource allocation mechanisms, including the work of Maheshwaran and
Basar [15], Johari and Tsitsiklis [11], Yang and Hajek [20], Jain and Walrand
[5], Jia and Caines [8] among others [2,16]. Most of the work focused on one-
sided auctions for divisible resources, and is related to the approach of Lazar and
Semret [13]. Double-sided network auctions for divisible resources were developed
in [5]. The only work to focus on indivisible network resources is Jain and Varaiya
[6] which proposed a Nash implementation combinatorial double auction. This
is also the only work known so far that presents incomplete information analysis
of combinatorial market mechanisms [7].

All those mechanisms either involve network resource allocation by an auc-
tioneer among multiple buyers, or network resource exchange among multiple
buyers and sellers. Most of the proposed mechanisms are Nash implementations,
i.e., truth telling is a Nash equilibrium but not necessarily a dominant strategy
equilibrium, and have either unique Nash equilibria which are efficient, or at least
one that is. In reality, however, markets for network resources often have mid-
dlemen operators, and efficiency can be rather hard, if not impossible to achieve
with their presence. Unfortunately, models with middlemen have not been stud-
ied at all, primarily due to the difficulty of designing appropriate mechanisms.
Even in the economic and game theory literature, the closest related auction
models are those that involve a resale after an auction. That is, there is only a
single tier auction, and the winners can then resell the resources acquired in the
auction [3].

There is indeed some game-theoretic work on network pricing in a more gen-
eral topology. Johari, Mannor and Tsitsiklis [9] studied a network game where
the nodes of the network wish to form a graph to route traffic between them-
selves, and they characterized connected link stable equilibria. Shakkottai and
Srikant [18] examined how transit and customer prices and quality of service are
set in a network consisting of multiple ISPs, where a 3-tier hierarchical model
is proposed. However, such work only focused on the pricing equilibrium, and
issues like mechanism design and auctions were never studied.

In this paper, we consider a multi-tier setting. We consider a homogeneous
network resource. This could be bandwidth, wireless spectrum or cloud comput-
ing service, all owned by a single entity, the Tier 1 provider. He conducts an
auction to allocate the resource among the Tier 2 operators. The Tier 2 opera-
tors then further allocate the network resource they have acquired in the auction
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among the Tier 3 entities, who may be the end-users. Each Tier 3 user has a
valuation for the resource, which is strictly increasing and concave with respect
to the capacity. On the other hand, the Tier 2 entities are more like middlemen.
They do not have any intrinsic valuation for the network resource but a quasi-
valuation which depends on the revenue that they will acquire by selling it off in
an auction. Our goal is to design a hierarchical auction mechanism that specifies
one sub-mechanism for each tier.

We develop a general hierarchical mechanism design framework and consider
the setting where all auctions are conducted simultaneously. Admittedly, this
does not fully meet the reality (where auctions in different tiers may take place
one after another), but provides insights into the problem from a theoretical point
of view. We first consider the resource to be indivisible. We investigate a class of
mechanisms where each sub-mechanism is either a first-price or a second-price
auction. We show that the all-tier second-price auction mechanism is incentive
compatible but not efficient, i.e., social-welfare maximizing. This is a surprising
observation and the only known instance of its type involving the VCG/second-
price mechanism [19]. We then show that the hierarchical mechanism with a first-
price or a second-price sub-mechanism at Tier 1, and first-price sub-mechanisms
at all other tiers is indeed efficient but not incentive compatible.

When the resource is divisible, it is impossible for bidders to report their
arbitrary real-valued valuation functions. They are thus asked to report a two-
dimensional bid signal, i.e., a per-unit bid price and the maximum quantity that
they want to buy/sell. We note that while the Tier 1 sub-mechanism is a single-
sided auction, the sub-mechanisms at all lower tiers are double-sided auctions. In
this framework, we propose a hierarchical mechanism with a VCG-type auction
at each tier. We show that in this hierarchical mechanism, there exists an efficient
Nash equilibrium that is strongly budget-balanced at all tiers except the top tier,
where a single-sided auction is conducted.

2 Model and Problem Statement

2.1 The Hierarchical Model

Consider a Tier 1 provider who owns a homogeneous network resource, say
bandwidth. Such an entity could be either a carrier (e.g., AT&T), the FCC, or a
cloud service provider such as IBM. The Tier 1 provider auctions C units of the
resource among Tier 2 operators via a single-sided auction. We will refer to this
as the Tier 1 auction. Each of the Tier 2 operators then auctions off the resource
acquired in the Tier 1 auction to the Tier 3 operators. These will be referred to
as the Tier 2 auctions, and in general at Tier k as the Tier k auctions. We will
assume that there are K tiers. The only Tier 1 provider will be considered as the
social planner, and the Tier K entities are the end-users or the consumers, while
operators at all other tiers will be considered as middlemen. Tier k (1 < k ≤ K)
operators can participate in and acquire the resource only from their Tier k− 1
parent. That is, each middleman has exclusive access to his children, and there is
only one seller in each auction. This simplifies the network topology. Extension
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(e.g., allowing competition among sellers) is possible but would be much more
complicated.

An example of the network topology is shown in Fig. 1. We now introduce
the notation to ease further discussion. Let the nodes in the tree network be
numbered i = 0, 1, . . . , N with M terminal nodes, where node 0 at the root of
the tree is the social planner. Let T (i) be a function that specifies the tier to
which node i belongs. The tier of node 0 is considered as Tier 1. By parent(i),
we shall denote the parent of node i in the tree network, and by children(i),
we shall denote the set of the children of node i. Each node represents a player.

To avoid cumbersomeness, we shall use the redundant notation P
(k)
i for node i

that is at Tier k. Let the capacity acquired by P
(k)
i denoted by x

(k)
i (in the Tier

k − 1 auction), and the capacity that node i offers denoted by y
(k)
i (in the Tier

k auction). Note that
∑

j∈children(i) x
(k+1)
j ≤ y

(k)
i ≤ x

(k)
i , for k = 1, ...,K − 1.

P
(1)
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P
(2)
1 P

(2)
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6

Fig. 1. An example of a 3-tier network

2.2 The Mechanism Design Framework

We now describe the mechanism design framework. We assume that each player

P
(k)
i has a quasi-linear utility function u

(k)
i (x,wi) = v

(k)
i (x)−wi, where v

(k)
i (x)

is the valuation of player P
(k)
i when he is allocated a capacity x, and wi is the

payment made to his parent. Typically, for the middlemen P
(k)
i (k = 2, . . . ,K −

1), v
(k)
i (x) = wi − c

(k)
i (x), where wi is the revenue from reselling and c

(k)
i (x) is

the cost function, since they do not derive any utility from the allocation but
may incur a transaction cost.

We define the social welfare to be the total utility derived by the end-users
minus the total cost incurred by the middlemen, i.e.,

S(x) =
∑

i:T (i)=K

v
(K)
i (x

(K)
i )−

∑

2≤k≤K−1

∑

j:T (j)=k

c
(k)
j (x

(k)
j )
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where x = (x1, . . . , xN ). The social planner’s objective is to realize an (alloca-
tively) efficient allocation x∗∗ that maximizes the social welfare, and solves

HN-OPT : max S(x) (1)

s.t.
∑

i∈children(0)
x
(2)
i ≤ C,

∑

i∈children(j)
x
(k+1)
i ≤ x

(k)
j , ∀(j, k) : 2 ≤ k ≤ K − 1,

x
(k)
i ≥ 0, ∀(i, k) : 2 ≤ k ≤ K.

The first constraint follows because in the Tier 1 auction, the auctioneer (player
0) allocates the total capacity C among the Tier 2 players. The second constraint
follows from the fact that the total allocation among the buyers in the Tier k

auction cannot be greater than the allocation received by P
(k)
j from the Tier

k−1 auction. The third constraint is required to ensure non-negative allocations.
Furthermore, we could consider the resource to be indivisible and let the xi’s to
be integral, or consider it to be divisible and allow the xi’s to be real.

The social planner cannot achieve the objective (i.e., social-welfare maximiz-
ing) by himself as he does not know the valuation and cost functions of the
end-users and the middlemen respectively. Thus, a decentralized implementa-
tion is necessary. However, the strategic players are selfish and may misreport
their information. Furthermore, in the hierarchical model, the mechanism is dis-
tributed with multiple auctions at each tier. This makes the achievement of the
social welfare maximization even more difficult.

Our goal thus is an incentive mechanism Γ that is composed of various sub-

mechanisms (Γ
(k)
i , i = 0, 1, . . . , N − M,k = T (i)). Each sub-mechanism (i.e.,

auction) Γ
(k)
i is conducted at each node i of the tree, except theM leaf (terminal)

nodes. Note that the auction Γ
(k)
i involves player P

(k)
i as a seller, and the players

children(i) as the buyers. Note that node 0 acts only as an seller and the

terminal nodes only act as buyers, whereas the middlemen P
(k)
i (2 ≤ k ≤ K−1)

act as buyers in the Tier k − 1 auction, and as sellers in the Tier k auction.

Generally, each Γ
(k)
i can be different, though we consider the setting for which

Γ
(k)
i = Γ (k), i.e., a common sub-mechanism is used at each Tier k. Still, this is

a simplification but subject to extension.
Since the middlemen have no intrinsic valuation for the resource itself, we

define the notion of quasi-valuation functions for the middlemen. Let X denote
the allocation space, which is Z+ when the resource is indivisible and R+ when
the resource is divisible.

Definition 1. A quasi-valuation function of player P
(k)
i is a function v̄

(k)
i :

X → R+ that specifies the revenue he receives in the auction Γ
(k)
i from his

children for each possible allocation, when all the players children(i) report their
valuation functions (for end-users) or quasi-valuation functions (for middlemen)
truthfully.
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Note the backward-recursiveness in the definition of quasi-valuation functions.
They can be easily computed by the players in complete information settings. We
now see the role of such functions in defining hierarchical incentive compatible
and Nash implementation mechanisms.

Definition 2. The (direct) hierarchical mechanism Γ = (Γ (1), . . . , Γ (K−1)) is
incentive compatible (or strategy-proof) if there is a dominant strategy equilib-
rium wherein all the end-users report their valuation functions and all the mid-
dlemen report their quasi-valuation functions, truthfully.

Such equilibrium strategies will be referred to as “truth telling” as a counterpart
to standard notions of ”truth-telling” in non-hierarchical mechanisms [17]. We
now define the notion of efficiency in hierarchical mechanisms.

Definition 3. The (direct) hierarchical mechanism Γ = (Γ (1), . . . , Γ (K−1)) is
efficient if there is an equilibrium that maximizes the social welfare in the opti-
mization problem HN-OPT (1).

We study simultaneous hierarchical mechanisms, in which all sub-mechanism
auctions take place simultaneously (which are modeled as a normal form game).
Thus, usual notions of Nash equilibrium shall be studied [1,4].

3 Hierarchical Auctions for Indivisible Resources

When the resource is indivisible, we present a class of hierarchical mechanisms
Γ = (Γ (1), . . . , Γ (K−1)) wherein a common sub-mechanism is used at each tier,
and each such sub-mechanism is either a first-price auction (denoted by F) or
a second-price auction (denoted by S), i.e., Γ (k) ∈ {F ,S}. We investigate the
efficiency and incentive compatibility of such hierarchical mechanism designs.

We first consider the case where there is only a single unit to be allocated,
i.e., C = 1. Here, we assume that the middlemen have no transaction costs, i.e.,

c
(k)
i (x) = 0. We note that the introduction of transaction costs would be trivial
in the case of indivisible resources, and it can be easily extended if desired.

Let b
(k)
i denote the buy-bid of player i who is at Tier k, and x

(k)
i the unit he

acquires (in the Tier k − 1 auction as defined). Recall that there are N −M +
1 auctions that are conducted simultaneously, though some auction outcomes
cannot be fulfilled since there is only a single indivisible unit. This, however, is
not unreasonable since there is really a single winner among the end-users. The
middlemen that connect this end-user to the root will also be purported to be
winners.

Theorem 1. Assume each player except the end-users has at least two children.
Suppose a single indivisible unit is to be allocated through a hierarchical auction
mechanism Γ̂ such that Γ̂ (1) ∈ {F ,S}, Γ̂ (2) = · · · = Γ̂ (K−1) = F . Then, there
exists an ε-Nash equilibrium which is efficient.
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Proof. We prove by construction. Consider a TierK−1 auction Γ̂
(K−1)
i . Find the

player that has the highest valuation in that auction, i.e., j∗ ∈ argmaxj∈children(i)

v
(K)
j . Define the bids of the player as follows

b
(K)
j∗ = v

(K)
j∗ ,

b
(K)
j = v

(K)
j∗ − ε, ∀j ∈ children(i), j �= j∗,

i.e., player j∗ bids truthfully, while all others in that auction bid just a bit below.

Consider a Tier k auction Γ
(k)
i (1 < k < K − 1). As before, find a player

j∗ ∈ argmaxj∈children(i) v̄
(k+1)
j , and define the bids of the players in this auction

as
b
(k+1)
j∗ = v̄

(k+1)
j∗ ,

b
(k+1)
j = v̄

(k+1)
j∗ − ε, ∀j ∈ children(i), j �= j∗.

Now, consider the Tier 1 auction Γ̂ (1).Find a player j∗ ∈ argmaxj∈children(0) v̄
(2)
j .

If Γ̂ (1) = F , define the bids of players in this auction as

b
(2)
j∗ = v̄

(2)
j∗ ,

b
(2)
j = v̄

(2)
j∗ − ε, ∀j ∈ children(0), j �= j∗.

Otherwise, if Γ̂ (1) = S, define the bids of players in this auction as

b
(2)
j = v̄

(2)
j , ∀j ∈ children(0).

It is obvious that such bids induce the efficient allocation. We argue that these
bids constitute an ε-Nash equilibrium. Note that every player gets a non-negative
payoff in such a bid profile.

Consider a player P
(K)
i . If he is a winner, he has no incentive to increase his

bid since b
(K)
i = v

(K)
i , and he has no incentive to decrease his bid since there

exists a player P
(K)
i′ with parent(i) = parent(i′) whose bid is b

(K)
i − ε. If he is

a loser, we have b
(K)
i > v

(K)
i − ε. Clearly, he has no incentive to either increase

or decrease his bid.
Consider a player P

(k)
i (2 < k < K). If he is a winner, he has no incentive

to increase his bid since b
(k)
i = v̄

(k)
i , and he has no incentive to decrease his bid

since there exists a player P
(k)
i′ with parent(i) = parent(i′) whose bid is b

(k)
i −ε.

If he is a loser, we have b
(k)
i > v̄

(k)
i − ε. Clearly, he has no incentive to either

increase or decrease his bid.
It is also easy to verify that such bids are the best responses of the Tier 2

players for Γ̂ (1) = F and Γ̂ (1) = S respectively. This proves the claim.
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The following example shows that the above mechanism Γ̂ achieves efficiency
but is not incentive compatible.

Proposition 1. The hierarchical mechanism Γ̂ is efficient but not incentive
compatible.

Proof. We prove by providing a counter example. Assume the network topology

is as in Fig. 1, i.e., there are two Tier 2 players P
(2)
1 (with his Tier 3 children

P
(3)
3 , P

(3)
4 ) and P

(2)
2 (with his Tier 3 children P

(3)
5 , P

(3)
6 ). Let the valuation

functions of the Tier 3 players be

v
(3)
3 = 2, v

(3)
4 = 3, v

(3)
5 = 1, v

(3)
6 = 4.

Since Γ̂ (2) = F , the quasi-valuation functions of the Tier 2 players can be easily
computed to be

v̄
(2)
1 = 3, v̄

(2)
2 = 4.

However, truth telling is not an equilibrium in this auction. Rather, it is easy to
verify that an ε-Nash equilibrium is

(b
(2)
1 , b

(2)
2 ) = (4 − ε, 4),

(b
(3)
3 , b

(3)
4 , b

(3)
5 , b

(3)
6 ) = (3− ε, 3, 4− ε, 4).

The corresponding equilibrium allocation is

(x
(2)
1 , x

(2)
2 ) = (0, 1),

(x
(3)
3 , x

(3)
4 , x

(3)
5 , x

(3)
6 ) = (0, 0, 0, 1),

which is exactly the efficient allocation.
Thus, this mechanism is efficient but not incentive compatible.

We now introduce a natural hierarchical extension of the second-price or VCG
auction mechanism.

Theorem 2. Suppose multiple units of an indivisible resource are to be allocated
through a hierarchical auction mechanism Γ̃ such that Γ̃ (1) = · · · = Γ̃ (K−1) = S
(which we shall call the second-price hierarchical auction). Then, the mechanism
is incentive-compatible.

Proof. We argue by backward induction that truth telling is a dominant strat-
egy equilibrium. Consider the Tier K − 1 auction, which is a second-price sub-

mechanism. The end-user P
(K)
i (T (i) = K) will bid truthfully, no matter how

the other players bid and what capacity his parent is allocated, since that is his
dominant strategy in a second-price auction. This is the fundamental property
of the VCG mechanism.
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Given that all the P
(K)
i ’s report truthfully, the quasi-valuation functions of

the players P
(K−1)
i ’s are true. Furthermore, the Tier K − 2 auction is again a

VCG mechanism in which truth-telling is a dominant strategy equilibrium.
Now, we can argue by backward induction. Assuming the Tier k+1 players in

the Tier k auctions have true quasi-valuation functions, they will bid truthfully.
So, the quasi-valuation functions of the Tier k players will be true as well. Since
this is true for k = K−1, it is true for all k = K−1, . . . , 1. Hence, all the players
bid truthfully, and the hierarchical mechanism is incentive-compatible.

The second-price hierarchical auction mechanism, as can be expected, has truth
telling by each player as a dominant strategy equilibrium. The surprise is that
unlike non-hierarchical settings, efficiency may not be achieved.

Proposition 2. The second-price hierarchical mechanism Γ̃ is not necessarily
efficient.

Proof. We prove by providing a counter example. Let C = 5 be allocated by
the second-price hierarchical mechanism in a 3-tier network as in Fig. 1. Let the
valuation functions of the Tier 3 players be

(v
(3)
3 (x), x = 1, 2, 3, 4, 5) = (10, 18, 24, 28, 30),

(v
(3)
4 (x), x = 1, 2, 3, 4, 5) = (20, 25, 29, 32, 34),

(v
(3)
5 (x), x = 1, 2, 3, 4, 5) = (15, 24, 32, 39, 45),

(v
(3)
6 (x), x = 1, 2, 3, 4, 5) = (16, 20, 24, 27, 29).

According to (1), the efficient allocation is

(x
(2)∗∗
1 , x

(2)∗∗
2 ) = (2, 3),

(x
(3)∗∗
3 , x

(3)∗∗
4 , x

(3)∗∗
5 , x

(3)∗∗
6 ) = (1, 1, 2, 1).

Since Γ̃ (2) = S, the quasi-valuation functions of the Tier 2 players can be easily
computed to be

(v̄
(2)
1 (x), x = 1, 2, 3, 4, 5) = (10, 13, 15, 16, 15),

(v̄
(2)
2 (x), x = 1, 2, 3, 4, 5) = (15, 13, 16, 18, 19).

In the mechanism Γ̃ , truth telling is a Nash equilibrium as we have already
proved. Thus, the corresponding equilibrium allocation is

(x
(2)
1 , x

(2)
2 ) = (4, 1),

(x
(3)
3 , x

(3)
4 , x

(3)
5 , x

(3)
6 ) = (3, 1, 0, 1),

which however, is different from the efficient allocation.
Thus, in the case of multiple units of an indivisible resource, this hierarchical

mechanism is incentive-compatible but not efficient.
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An even greater surprise is the following impossibility result if we restrict our
attention to first-price and second-price sub-mechanisms.

Theorem 3 (Hierarchical Impossibility). Suppose we allocate a single unit
of the indivisible resource through a hierarchical auction mechanism Γ such that
Γ (k) ∈ {F ,S} (for all k = 1, . . . ,K − 1 and K ≥ 3). Then, there exists no such
hierarchical mechanism which is both incentive-compatible and efficient.

Proof. As we have already seen in Proposition 1 that incentive compatibility
is not guaranteed if there exists a k such that Γ (k) = F . We have also seen in
Proposition 2 that efficiency is not guaranteed if there exists a k such that Γ (k) =
S. Thus, if the choices of the Γ (k)’s are restricted to the two alternatives (F or
S), incentive compatibility and efficiency cannot be simultaneously achieved.

Our conjecture is that this “limited” impossibility theorem foretells a more gen-
eral impossibility result for hierarchical mechanism design.

4 Hierarchical Auctions for Divisible Resources

We now consider the resource to be divisible, and propose a hierarchical auction
mechanism. We will now consider the setting where the middlemen have trans-
action costs as well. While the Tier 1 auction will remain single-sided, Tier 2
through Tier K − 1 auctions will be double-sided, i.e., in such auctions buyers
will make buy-bids, and sellers will make sell-bids.

For simplicity of exposition, we will only consider a 3-tier network as in Fig.
1. Also, we drop the superscripts and adopt a more concise notation here, i.e.,
denote the ith Tier 2 player by Pi and the jth child of Pi by Pij (Tier 3 player).
The notations of valuation functions, bids, etc. are changed correspondingly.

We will assume that the valuation functions of the end-users, vij(xij) are
strictly increasing and concave, and smooth, with vij(0) = 0. The cost functions
of the middlemen, ci(xi) are assumed to be strictly increasing and convex, and
smooth, with ci(0) = 0.

The end-user’s payoff is uij = vij(xij)−wij , where wij is the payment made
by player Pij to player Pi. A middleman Pi has a utility ui = wi − wi − ci(xi),
where wi is Pi’s revenue from reselling and wi is the payment made by Pi to
player 0.

In this setting the social welfare optimization problem is as following

DIV-OPT : max
∑

i,j

vij(xij) −
∑

i

ci(xi) (2)

s.t.
∑

i

xi ≤ C, [λ0]

∑

j

xij ≤ xi, ∀i, [λi]

xi ≥ 0, ∀i,
xij ≥ 0, ∀(i, j).
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Here, λ0 and λi’s are the Lagrange multipliers of the corresponding constraints
above. The above is a convex optimization problem, and a solution exists, which
is characterized by the KKT conditions [14]

(c′i(xi) + λ0 − λi)xi = 0, ∀i,
c′i(xi) + λ0 − λi ≥ 0, ∀i,

(v′ij(xij)− λi)xij = 0, ∀(i, j), (3)

v′ij(xij)− λi ≤ 0, ∀(i, j),

λ0(
∑

i

xi − C) = 0,

λi(
∑

j

xij − xi) = 0, ∀i.

Our objective is to design a hierarchical mechanism to allocate the divisible
resource that achieves the social welfare optimum despite the strategic behavior
of the players. An important issue in the context of divisible resources is that
it is impossible for a bidder to communicate a complete arbitrary real-valued
valuation function. Thus, the bidders must communicate an approximation to it
from a finite-dimensional bid space.

Hierarchical Network Second-Price Mechanism
We now propose the hierarchical network second-price (HNSP) mechanism Γ̄
that can be used to allocate a divisible resource in a multi-tier network. We take
a 3-tier network as an example. The mechanism Γ̄ = (Γ̄ (1), Γ̄ (2)) is composed of
two sub-mechanisms Γ̄ (1) and Γ̄ (2). The sub-mechanism Γ̄ (1) employed at Tier
1 is a single-sided VCG-type auction mechanism in which Tier 2 players (the
middlemen) report bids bi = (βi, di) where βi is interpreted to be the per-unit
bid price, and di as the maximum quantity wanted. The sub-mechanism Γ̄ (2)

employed at Tier 2 is a double-sided VCG-type auction mechanism where Tier
2 players report sell-bids ai = (αi, qi) where αi is the per-unit sell-bid price and
qi is the maximum quantity offered for sale, while the Tier 3 players (end-users)
report buy-bids bij = (βij , dij) where βij is the per-unit buy-bid price and dij is
the maximum quantity wanted.

Once the bids are received in all the auctions, the auction outcomes are de-
termined as follows. In the Tier 1 auction Γ̄ (1), the allocation x̂ is a solution of
the optimization problem

HNSP-1 : max
∑

i βixi (4)

s.t.
∑

i

xi ≤ C, [λ′
0]

xi ≤ di, ∀i, [μi]

xi ≥ 0, ∀i.
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Let x̂−i denote the allocation as a solution of the above with di = 0, i.e., when
the player Pi (a middleman) is not present. Then, the payment made by Pi is

wi =
∑

j �=i

βj(x̂
−i
j − x̂j), (5)

which is the “externality” that Pi imposes on all the other players (in the Tier
1 auction) by his participation. Let λ′

0 and μi’s be the Lagrange multipliers of
the corresponding constraints. Then, the solution of HNSP-1 is characterized
by the KKT conditions

(βi − λ′
0 − μi)xi = 0, ∀i,

βi − λ′
0 − μi ≤ 0, ∀i, (6)

λ′
0(
∑

i

xi − C) = 0,

μi(xi − di) = 0, ∀i.

In the Tier 2 auction Γ̄ (2), the middleman is the seller and his children (the
end-users) are the buyers. The sub-mechanism Γ̄ (2) is a VCG-type double-sided
auction, i.e., both the seller and the buyers place bids, and the allocation (x̃, ỹ)
is a solution of the optimization problem

HNSP-2 : max
∑

j

βijxij − αiyi (7)

s.t.
∑

j

xij ≤ yi, [λ′
i]

xij ≤ dij , ∀j, [μij ]

yi ≤ qi, [νi]

xij ≥ 0, ∀j,
yi ≥ 0.

Let (x̃−j , ỹ−j) denote the allocation as a solution of the above with dij = 0.
Then, the payment made by player Pij is

wij =
∑

k �=j

βik(x̃
−j
ik − x̃ik)− αi(ỹ

−j
i − ỹi), (8)

and the payment received by player Pi is

wi =
∑

j

βij x̃ij . (9)

These transfers are the externalities that the players impose on the others
through their participation. Let λ′

i’s, μij ’s and νi’s be the Lagrange multipli-
ers corresponding to the constraints in the HNSP-2 above. Then, the solution
is characterized by the following KKT conditions
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(βij − λ′
i − μij)xij = 0, ∀j,

βij − λ′
i − μij ≤ 0, ∀j,

(αi − λ′
i + νi)yi = 0,

αi − λ′
i + νi ≥ 0, (10)

λ′
i(
∑

j

xij − yi) = 0,

μij(xij − dij) = 0, ∀j
νi(yi − qi) = 0.

This completes the definition of the HNSP mechanism.
We now show the existence of an efficient Nash equilibrium in the simulta-

neous hierarchical network second-price mechanism by construction. Moreover,
we show that the Tier 2 sub-mechanism Γ̄ (2) achieves endogenous strong budget
balance at this equilibrium, i.e., the payment received by each middleman equals
the total payments made by his children.

Theorem 4. In the HNSP mechanism Γ̄ , there exists an efficient Nash equi-
librium with endogenous strong budget balance.

Proof. Let x∗∗ be an efficient allocation corresponding to the problem DIV-
OPT in (2). Then, there exist Lagrange multipliers λ0 and λi’s that satisfy
the KKT conditions (3). Consider the bid profile di = qi = x∗∗

i , dij = x∗∗
ij ,

βi =
∑

j v
′
ij(x

∗∗
ij )− c′i(x

∗∗
i ), αi = c′i(x

∗∗
i ) + λ0, and βij = v′ij(x

∗∗
ij ).

First, we prove that the bid profile induces the efficient allocation. Let λ′
0 = λ0,

λ′
i = λi, μi =

∑
j βij − λi and μij = νi = 0. Then the KKT conditions (6) and

(10) are equivalent to the KKT conditions (3). This implies x∗∗ is also a solution
of the problemHNSP-1 in (4) and the problem HNSP-2 in (7) with these bids.

Now, we prove that the strategy profile is a Nash equilibrium. Consider an
end-user Pij with bid (βij , dij). His payoff at the efficient allocation is uij =
vij(x

∗∗
ij ) − wij = vij(x

∗∗
ij )− αix

∗∗
ij . Then, given the bids of others, if he changes

his bid to decrease his allocation x∗∗
ij by a δ > 0 (when x∗∗

ij > 0), then note that
the allocations of buyers Pik (k �= j) do not change but seller Pi sells less. His
new payoff is u′

ij = vij(x
′∗
ij )−αix

′∗
ij = vij(x

∗∗
ij − δ)−αi(x

∗∗
ij − δ). Thus, his payoff

changes by

u′
ij − uij

= αiδ + vij(x
∗∗
ij − δ)− vij(x

∗∗
ij )

= (c′i(x
∗∗
i ) + λ0)δ + vij(x

∗∗
ij − δ)− vij(x

∗∗
ij )

= λiδ + vij(x
∗∗
ij − δ)− vij(x

∗∗
ij )

= v′ij(x
∗∗
ij )δ + vij(x

∗∗
ij − δ)− vij(x

∗∗
ij )

< 0.

Thus, his payoff will decrease. Now suppose he changes his bid to increase his
allocation x∗∗

ij by a δ > 0, then note that the allocation of player Pi does not
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change but that of some players Pik (k �= j) decrease. His new payoff is u′
ij =

vij(x
∗∗
ij + δ)−

∑
k �=j βik(x

∗∗
ik − x

′∗
ik)− αix

∗∗
ij . Thus,

u′
ij − uij

= −
∑

k �=j

βik(x
∗∗
ik − x

′∗
ik) + vij(x

∗∗
ij + δ)− vij(x

∗∗
ij )

≤ −
∑

k �=j

λ′
i(x

∗∗
ik − x

′∗
ik) + vij(x

∗∗
ij + δ)− vij(x

∗∗
ij )

= −λ′
iδ + vij(x

∗∗
ij + δ)− vij(x

∗∗
ij )

= −λiδ + vij(x
∗∗
ij + δ)− vij(x

∗∗
ij )

≤ −v′ij(x
∗∗
ij )δ + vij(x

∗∗
ij + δ)− vij(x

∗∗
ij )

< 0.

Thus, his payoff will decrease again. Therefore, the best response of an end-user
Pij is to bid (βij , dij), and he has no incentive to deviate.

Consider a middleman Pi with bid (βi, di) in Tier 1 auction and bid (αi, qi) in
Tier 2 auction. His payoff at the efficient allocation is ui =

∑
j βijx

∗∗
ij − ci(x

∗∗
i ).

Then, given the bids of others, if he changes his bid to increase his allocation x∗∗
i

by a δ > 0, his payoff will be u′
i =

∑
j βijx

∗∗
ij − ci(x

∗∗
i + δ)−w′

i < ui. That is, his
revenue remains the same, while his cost and his payment to player 0 increase.
Thus, he has no incentive to increase his allocation.

Now, suppose he changes his bid to decrease his allocation x∗∗
i by a δ > 0

(when x∗∗
i > 0). His payment to player 0 does not change but the payment he

receives changes. His new payoff is u′
i =

∑
j βijx

′∗
ij − ci(x

∗∗
i − δ). Thus,

u′
i − ui

=
∑

j

βijx
′∗
ij −

∑

j

βijx
∗∗
ij − ci(x

∗∗
i − δ) + ci(x

∗∗
i )

=
∑

j

βijx
′∗
ij −

∑

j

λ′
ix

∗∗
ij − ci(x

∗∗
i − δ) + ci(x

∗∗
i )

≤
∑

j

λ′
ix

′∗
ij −

∑

j

λ′
ix

∗∗
ij − ci(x

∗∗
i − δ) + ci(x

∗∗
i )

= λ′
i

∑

j

(x
′∗
ij − x∗∗

ij )− ci(x
∗∗
i − δ) + ci(x

∗∗
i )

= −λ′
iδ − ci(x

∗∗
i − δ) + ci(x

∗∗
i )

= −λiδ − ci(x
∗∗
i − δ) + ci(x

∗∗
i )

= −(c′i(xi) + λ0)δ − ci(x
∗∗
i − δ) + ci(x

∗∗
i )

≤ −c′i(xi)δ − ci(x
∗∗
i − δ) + ci(x

∗∗
i )

< 0.
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Thus, his payoff will decrease. Since his payoff will decrease by deviation in
either direction, bidding (βi, di) and (αi, qi) is his best response. This implies
that the constructed bid profile is a Nash equilibrium in the HNSP mechanism
and yields an efficient outcome.

We now prove that there is endogenous strong budget balance at this Nash
equilibrium. Note that wij = αix

∗∗
ij = λ′

ix
∗∗
ij = βijx

∗∗
ij . So

∑
j wij =

∑
j βijx

∗∗
ij =

wi (for all i), which is what we wanted to prove.

Remark 1. We can easily check that each end-user and each middleman has a
non-negative payoff at the Nash equilibrium constructed above.

Remark 2. We also note that the HNSP mechanism can be easily extended to
the general multi-tier model wherein the Tier 1 sub-mechanism Γ̄ (1) is a VCG-
type single-sided mechanism, while sub-mechanisms at all lower tiers, Γ̄ (2), . . . ,
Γ̄ (K−1) are VCG-type double-sided mechanisms. Likewise, we can then establish
the existence of an efficient Nash equilibrium with endogenous strong budget
balance.

5 Conclusion

In this paper, we introduced a hierarchical auction model for network settings
with multi-tier structures. We developed a general hierarchical mechanism design
framework. Such a model is innovative and this paper is the first work on multi-
tier auctions to our knowledge.

When the resource is indivisible, we investigated a class of mechanisms where
each sub-mechanism is either a first- or a second-price auction. We showed that
the hierarchical mechanism with a first- or a second-price sub-mechanism at
Tier 1, and first-price sub-mechanisms at all other tiers is efficient but not
incentive-compatible and surprisingly, the all-tier second-price auction mech-
anism is incentive-compatible but not efficient. This seems to fortell a more
general impossibility of achieving incentive compatibility and efficiency at the
same time in a hierarchical setting.

When the resource is divisible, we proposed the hierarchical network second-
price mechanism, where the Tier 1 sub-mechanism is a single-sided VCG-type
auction and the sub-mechanism at all lower tiers is a VCG-type double-sided
auction. We showed that in this hierarchical mechanism, there exists an efficient
Nash equilibrium with endogenous strong budget balance.

As part of future work, we intend to study more general classes of mechanisms
than those where the sub-mechanisms are either first- or second-price auctions.
We will also consider the Stackelberg auction setting, wherein the auctions at
various tiers are conducted one after another. We will also consider more general
network topologies wherein there may be more than one resource (e.g., band-
width on multiple links, or bandwidth, storage and computation), and also allow
for sub-mechanism auctions with multiple sellers.
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