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Abstract. We consider a network security classification game in which
a strategic defender decides whether an attacker is a strategic spy or
a naive spammer based on an observed sequence of attacks on file- or
mail-servers. The spammer’s goal is attacking the mail-server, while the
spy’s goal is attacking the file-server as much as possible before detection.
The defender observes for a length of time that trades-off the potential
damage inflicted during the observation period with the ability to reliably
classify the attacker. Through empirical analyses, we find that when the
defender commits to a fixed observation window, often the spy’s best
response is either full-exploitation mode or full-confusion mode. This
discontinuity prevents the existence of a pure Nash equilibrium in many
cases. However, when the defender can condition the observation time
based on the observed sequence, a Nash equilibrium often exists.
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1 Introduction

In many network security situations, an operator of a network (the defender) may
need to discern between different types of attackers. An attempt at espionage
needs to be treated differently than an attack by a spammer for instance. Because
of this, defenders will want to employ intrusion detection systems and related
software to look for attack signatures and/or apply statistical tests. Knowing
that a defender is trying to classify attacks, an attacker is likely to change the
way they attack in order to make it more difficult to be classified correctly. These
games can be quite complicated because they have both asymmetric information
and they happen over time. In this work, we consider a very simple model of
such a classification game, and with it we extract some key insights.

1.1 Basic Model

The model is illustrated in Fig. 1. The defender faces an attacker of two possible
types: a spy or spammer with probabilities p and 1−p respectively. The defender
has two servers that can be attacked, a File-Server (FS) and a Mail-Server (MS).
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Fig. 1. An illustration of the classification game

We suppose that spammers attack the MS most often because they want to
send spam and to get the addresses of potential victims. However, a spammer
occasionally hits the FS as he explores the defender’s network looking for other
potential targets. We suppose time is discrete, and in each period k, a spammer
hits the FS with probability θ0 and otherwise he hits the MS. The attacks are
restricted to be i.i.d. Bernoulli in each period. Moreover, we suppose the defender
observes the sequence of attacks zk ∈ {MS,FS}. Spammers are assumed to be
non-strategic, so θ0 is taken as a fixed parameter.

A spy chooses the frequency with which to hit the FS, which is the target with
the information he wants. However, he can strategically choose to hit the MS
during some time periods to make it more difficult for the defender to distinguish
him from a spammer. We assume that the spy’s single choice variable is θ1, the
probability of hitting the FS in any period. We restrict θ1 to be larger than θ0.
By picking θ1, the spy commits to attacking the FS according to a Bernoulli
process with parameter θ1. The spy’s tradeoff is that if he picks θ1 too high,
then it is easy for the defender to distinguish him from a spammer, while if he
lowers θ1, he reduces the frequency with which he attacks his desired target.

The defender decides in each period whether to classify the attacker as a
spammer or a spy, or to continue observing. While observing, the defender incurs
a cost c0 and c1 for each MS hit by a spammer and FS hit by a spy, respectively,
the latter a reward c1 to the spy. The defender incurs a cost F if he mis-classifies
a spammer as a spy. If he mis-classifies a spy as a spammer, we suppose that the
spy can then continue to attack with impunity and thus earns a reward equal to
the discounted net present value of an endless stream of FS attacks that happen
with probability θ1 in each period. This mis-classification reward to the spy, like
the spy’s rewards for all preceding FS attacks, appears as a cost to the defender.

1.2 Summary of Analysis and Results

We consider two versions of our classification game, differing in the class of
strategies available to the defender. In the first version, the “commit to N”
game (Sect. 3), the defender must commit to positive integer N , the number of
observations he will take before making a classification. We show that at the end
of N periods the defender should employ the well-known Likelihood Ratio Test
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(LRT) [1], in which an optimal classification reduces to comparing the number
of observed FS attacks to a certain threshold. The second version we call the
“dynamic N” game (Sect. 4), as the defender can now decide in each period
whether to continue to observe depending on what has been observed so far.
Equivalently, the defender chooses a policy that maps observation sequences
to control decisions (continue, classify-spy, classify-spammer). We show
that the defender’s best response to a spy’s choice of θ1 takes the form of the
well-known Sequential Probability Ratio Test (SPRT) [2].

In both versions of our game, we focus on finding pure strategy Nash equilibria
[3], all players playing pure strategies that are best responses to one another.
Existence of such an equilibrium implies that it might be possible for the game
to settle to a stable situation in which players behave predictably. In the specific
context of our game, if we fix a defender strategy optimized for a particular
hypothesis on θ1 (i.e., if in the commit to N game we fix a particular observation
window & LRT threshold or in the dynamic N game we fix a particular pair of
SPRT thresholds), then it is possible that the spy’s best response is to play with
a θ1 that does not match what the defender is expecting: a Nash equilibrium
of the game would be a point where the spy’s θ1 and the defender’s hypothesis
θ̂1 do match. Through a set of numerical experiments, in each case computing
firstly the defender’s best response to a hypothesis θ̂1 and secondly the spy’s
best response θ1 to that defender’s strategy, we find that the commit to N game
often has no pure Nash equilibrium whereas the dynamic N game often does.

1.3 Related Work

There is a growing body of work on attacker-defender security games, and much
of it surveyed in [4]. Lye and Wing [5] propose a stochastic game model to
study the behaviors of an administrator and an attacker in a Local Area Net-
work (LAN). In a series of papers [6,7,8], Alpcan and Başar introduce a game-
theoretic framework to model the interaction between the intrusion detection
system (IDS) and attackers. Our game-theoretic framework focuses on attacker
classification rather than intrusion detection. Our game also connects to the con-
clusions in [9], which showed that immediate expulsion is not the best response
for all types of attackers. Statistical tests have been widely utilized in intrusion
detection problems e.g., Jung and others [10] offer an on-line detection algorithm
that identifies malicious port-scans using the seminal sequential hypothesis test-
ing approach by Wald [2]. In the second version of our classification game, a
similar but more general version of the Wald problem is studied and Wald’s so-
lution serves as the defender’s best response function. Nelson and others [11] also
study challenges to statistical classification when the defender faces a strategic
attacker, but their focus is on vulnerabilities during the training of a classifier.

2 Detailed Model

This section formally describes the model introduced in Sect. 1, which involves
prior probability p ∈ (0, 0.5], the spammer’s per-period probability θ0 ∈ (0, 0.5]
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of a hit on the FS, and the spy’s choice variable θ1 ∈ (θ0, 1]. Fig. 1 illustrates
the situation. Also recall the positive-valued costs incurred by the defender: c0
for each MS attack by a spammer, c1 for each FS attack by a spy and F for
mis-classifying a spammer as a spy. The positive-valued cost of mis-classifying a
spy as a spammer will be expressed below in terms of other parameters.

2.1 Cost Functions of Defender and Spy

The cost functions of both players take the form of an expected total discounted
cost with discount factor δ ∈ (0, 1). In the commit to N game, integer N is
determined before play begins, and thus is not a function of the defender’s ob-
servations. Because we assume the consequence of mis-classifying a spy is that
the spy continues to attack the FS with a Bernoulli process of parameter θ1,
this mis-classification cost is

∑∞
k=N δkc1θ1 = δNc1θ1/(1 − δ). Now define the

following two (conditional) probabilities of making an error:

α = P [U = 1 | X = 0] and β = P [U = 0 | X = 1] , (1)

where U denotes the classification decision of the defender after N observations
and X ∈ {0, 1} denotes the true type of the attacker being spammer or spy,
respectively. It is standard [1] to call α the false-alarm rate (Type-I error proba-
bility) and β the mis-detection rate (Type-II error probability). Altogether, the
defender’s expected total discounted cost is given by

JD = p

{

βδN
c1θ1
1− δ

+

N−1∑

k=0

δkc1θ1

}

+ (1 − p)

{

αδNF +

N−1∑

k=0

δkc0(1− θ0)

}

,

(2)

which includes costs incurred due to (i) mis-detection of a spy, (ii) FS attacks
by a spy, (iii) false-alarm of a spammer and (iv) MS attacks by a spammer.
Similarly, the spy’s expected total discounted cost is given by

JA = −βδN
c1θ1
1− δ

−
N−1∑

k=0

δkc1θ1, (3)

which includes the reward of FS attacks (i) after the defender’s mis-detection
and (ii) before the defender’s classification action.

When the defender’s strategy is generalized to allow the observation sequence
(z0, z1, . . . , zk) ∈ {MS,FS}k+1 to influence when (and not just how) the clas-
sification is made, integer N becomes a random variable with distribution de-
pending on both players’ strategies. The two players’ objectives are essentially
the same as expressed by (2) and (3), but with the underlying expectations suit-
ably generalized. Specifically, consider any positive integer n such that P [N = n]
is nonzero and condition on the event that (X,N) = (x, n). We first general-
ize the error probabilities in (1) to be ᾱ(n) = P [U = 1 | X = 0, N = n] and
β̄(n) = P [U = 0 | X = 1, N = n], respectively. We next generalize, for each
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k = 0, 1, . . . , n − 1, the period-k probability of a FS attack by θ̄x(k|n) =
P [Zk = FS | X = x,N = n], which we note is not a constant by virtue of con-
ditioning on the event N = n. We define

GD
1 (n) = β̄(n)δn

c1θ1
1− δ

+
n−1∑

k=0

δkc1θ̄1(k|n),

GD
0 (n) = ᾱ(n)δnF +

n−1∑

k=0

δkc0
[
1− θ̄0(k|n)

]
,

GA(n) = −β̄(n)δn
c1θ1
1− δ

−
n−1∑

k=0

δkc1θ̄1(k|n)

to be the defender’s cost conditioned on the event (X,N) = (1, n), the defender’s
cost conditioned on the event (X,N) = (0, n) and the spy’s cost conditioned on
N = n, respectively. Altogether, the two players’ cost functions are then defined
by a final expectation over the stopping time N i.e.,

JD = p

∞∑

n=1

GD
1 (n)P [N = n | X = 1]+(1−p)

∞∑

n=1

GD
0 (n)P [N = n | X = 0] (4)

and

JA =

∞∑

n=1

GA(n)P [N = n | X = 1] . (5)

2.2 Assumed Behavior of Spammer and Spy

Our model makes the assumption that either type of attacker is restricted to
hitting his desired target according to a Bernoulli process. This is reasonable for
a spammer, who is taken to be non-strategic and happens upon a FS rather than
a MS simply by mistake. The restriction of the spy’s strategy space to picking
the rate of a Bernoulli process is indeed a simplifying assumption, but it has
some justifications (and implications) that we now discuss.

First consider an alternative formulation in which the spy’s strategy space
were the set of all binary sequences (with 1 and 0 corresponding to FS and MS
hits respectively). In equilibrium, if a spy were playing a mixed strategy, every
sequence he assigns positive probability would have to have the same expected
payoff. In our formulation with the strategy restricted to be Bernoulli, any finite
sequence will have positive probability, but all sequences will not lead to the
same payoffs. Therefore the restriction of the spy’s choice to a single variable θ1
– the parameter of the Bernoulli process – is structurally different than allowing
the attacker to choose his sequence directly.

One interpretation is that the spy has a commitment device, like a computer
program, that will pick the actual attack sequence once the spy has chosen a
θ1. The restriction of the attacker’s strategy space to a single dimension greatly
simplifies the game. Moreover the spy can make his attack much less predictable,
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and thus possibly more effective on average, with a commitment device like this.
Another issue is how this commitment can be credible. One possible argument
is that if the spy overrode his device when it picked an unfavorable sequence, he
might increase his payoff on single attack but then become more predictable in
future attacks. Making this argument formal is outside the scope of this paper.

As for using a Bernoulli process, suppose instead the commitment device
were made to produce a different random process. In particular, suppose the spy
considers any distribution for the commitment device so long as it achieves an
expected number of FS hits of Nθ1 over some period N . In any equilibrium (if
it exists), the defender would eventually come to know the choice of distribution
and play a best response to it. The defender could use this distribution in a like-
lihood ratio test of the spy vs. spammer hypotheses. The expected log-likelihood
ratio, under the hypothesis that the attacker is a spy, is just the K-L divergence
between the spy and spammer distributions. It turns out that this quantity is
minimized, subject to his FS hit rate constraint, by choosing a Bernoulli process.
To make this precise, let BN (θ) denote the binomial distribution on length-N
binary-valued sequences with success probability θ ∈ (0, 1).

Proposition 1. Distribution BN (θ1) minimizes K-L divergence D (P ||BN (θ0))
over P subject to the constraint that the expected number of successes is Nθ1.

The proof is in Appendix A.1. Proposition 1 addresses why a spy might want to
use a Bernoulli process during the classification period, but it does not address
the issue of why the spy would not change the process after the defender has
made a classification decision. This is a more difficult question. For instance, if
a spy could know he has just been misclassified, then he would want to change
θ1 to 1 and exploit the defender’s mistake. But in game play, the spy would not
know this had happened. If he were selecting a best response to a particular
choice of N in the commit to N game, he could set his commitment device to
increase θ1 to 1 after time N . While we only allow a defender to classify once in
our model, in a real situation a defender would likely reconsider the classification
upon detecting such an abrupt change. A much more complex model would be
needed to analyze this game. Therefore, we have elected to first understand a
simpler model, limiting the spy’s best response to a set of stationary policies.

3 Commit to N Game

In the commit to N game, the defender makes his classification decision after a
fixed number N of observations, while the spy picks the probability θ1 of hitting
the FS in each attack. The problem (from the defender’s point-of-view) turns
out to be a standard binary hypothesis test for which we show that, for any N ,
the applicable Likelihood-Ratio Test (LRT) reduces to a comparison between the
number of observed FS attacks and a certain threshold m. In turn, the defender’s
best response to a hypothesized strategy θ̂1 is a pair of integers (N,m). Recall
that under simultaneous-play assumptions the spy has no obligation (and, in
fact, generally has incentives not) to behave as hypothesized by the defender.
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A pure Nash equilibrium is a point for which the defender hypothesizes a value
for θ̂1, and designs his observation window N and LRT threshold m accordingly,
such that the spy’s best response to that integer pair (N,m) yields θ1 = θ̂1.

3.1 Defender’s Best Response

For any choice of N , the defender must decide between spammer or spy based
on the observed sequence zN = (z0, z1, . . . , zN−1) of server attacks. Given the
spy’s choice of probability θ1 (and also values for model parameters p, θ0, c0,
c1, F and δ in (2)), this decision becomes equivalent to a binary hypothesis test
between two binomial distributions BN (θ): a spammer H0 : θ = θ0 versus a spy
H1 : θ = θ1. The likelihood ratio is given by

L
(
zN
)
=

P
[
zN | X = 1

]

P [zN | X = 0]
=

(
θ1
θ0

)z̄ (
1− θ1
1− θ0

)N−z̄

(6)

where z̄ denotes the number of FS attacks in the given sequence zN . By the
Neyman-Pearson lemma, a decision rule of the form “reject H0 if L(zN) > M”
subject to a Type-I error probability α is a level-α Uniformly-Most-Powerful
(UMP) test [1], achieving for some M the minimum Type-II error probability β
(and, in turn, a minimum in (2)) associated with the level α. It is easy to verify
that, in the case of (6) with θ1 > θ0, the condition that L(zN) > M for any M
is equivalent to the test z̄ ≥ m for some integer m. The following proposition
provides, for any given N , the minimizing integer threshold m∗ in closed form.

Proposition 2. Fix strategy θ1 ∈ (θ0, 1] for the spy. For any observation win-
dow N , the defender’s optimal decision (with respect to minimizing (2)) is to
classify the attacker as a spy if the observed sequence zN contains a number of
FS attacks

z̄ ≥ m∗(N) =

⎡

⎢
⎢
⎢

log
(

(1−p)F (1−δ)
pc1θ1

)
−N log

(
1−θ1
1−θ0

)

log
(

θ1
θ0

)
− log

(
1−θ1
1−θ0

)

⎤

⎥
⎥
⎥
;

otherwise, he classifies the attacker as a spammer.

The proof is in Appendix A.2. Recall that the defender’s best response involves
not just the choice of threshold m but also the choice of observation window
N . Proposition 2 only tells us how to do the former given the latter, so the
best response to a particular spy strategy θ1 still involves a direct search on
N . Moreover, in actual game play, the defender will not know the true value
of θ1. One could view this (for fixed N) as the defender carrying out a one-
sided test H0 : θ ≤ θ0 vs H1 : θ > θ0. However, by properly choosing an
alternative hypothesis H ′

1 : θ = θ̂1, the defender may effectively transform the
one-sided test into a simple-vs-simple one. By the Karlin-Rubin theorem [1], the
decision rule of Proposition 2 (for any given N) still achieves the smallest mis-
detection rate β among all tests with the desired false-alarm rate α. Thus, for the
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purposes of looking for Nash equilibria, we can view the defender’s best response
strategy as being characterized by the hypothesis θ̂1 for which the integer pair
(N(θ̂1),m(θ̂1)) is an optimal choice.

3.2 Spy’s Best Response

Consider the spy’s best response θ1 ∈ (θ0, 1] to a given defender’s strategy,
or integer pair (N,m). Substitution of the achieved mis-detection probability

β(N,m) =
∑m−1

i=0

(
N
i

)
θi1(1 − θ1)

N−i into (3) yields a spy’s cost function that is
an Nth-order polynomial in parameter θ1. The minimizing argument will thus
be either one of N−1 roots of the derivative polynomial or the boundary value of
θ1 = 1, a total of up to N possibilities for JA that can be compared numerically.

3.3 Numerical Experiments

The numerical procedure for each scenario is as follows. We search through a grid
of possible θ̂1 on the interval (θ0, 1]. For each θ̂1, we search for the defender’s best
observation window N , always supposing that the LRT threshold m is chosen
according to Proposition 2. This leads to a best response pair (N,m) against
which we evaluate the spy’s best response θ1 via minimization of the Nth-order
polynomial as described above.1 Finally, we plot the best response θ1 against θ̂1,
any point(s) where the two coincide being a Nash equilibrium.

Results for three representative scenarios are shown in Fig. 2, all assuming
that (i) probability p ≤ 0.1, or that spammers are much more common than
spies, (ii) probability θ0 = 0.1, or that spammers mistakenly hit a FS only 10%
of the time, (iii) costs c0 = 0.01 and c1 = 1, viewing a spied-FS much more
costly than a spammed-MS, and (iv) discount factor δ = 0.99 while cost F ≤ 10,
viewing a mis-detection at least as costly as a false-alarm. Each upper plot shows
how the defender’s strategy changes with his hypothesis θ̂1, while each bottom
plot shows the spy’s best response θ1 to that defender’s strategy. In the first two
scenarios, the spy’s curve crosses the θ1 = θ̂1 line at a discontinuity, and thus
no Nash equilibrium exists; the third is a (not easily found) counter-example to
any claim that a Nash equilibrium never exists in the commit to N game.

Examining Fig. 2 in more detail also exposes a confusion/exploitation tradeoff
and interesting dynamics between defender and spy with respect to this tradeoff.
Consider all three scenarios when θ̂1 is near θ0, or when the defender hypothesizes
a spy favoring confusion over exploitation: the defender plays (N,m) = (1, 2),
corresponding to immediately choosing classify-spammer. That is, when the
defender finds classification difficult and not worth the time expenditure re-
quired, he resorts to a trivial strategy that will ignore observations and rather
base classification simply upon the relative costs between the two types of errors.
The spy’s best response, given that the defender is not even bothering to classify,

1 If there are cases where there are multiple optimal pairs (N,m) for a given θ̂1, it
could be that some of these pairs support a Nash equilibrium and some do not. In
our numerical experiments, however, we encountered no such cases.
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(a) p = 0.01 and F = 10 (b) p = 0.1 and F = 10 (c) p = 0.001 and F = 0.08

Fig. 2. Numerical results for three scenarios of the commit to N game with parameters
θ0 = 0.1, c0 = .01, c1 = 1 and δ = 0.99, while parameters p and F vary as indicated.
No Nash equilibrium exists in (a) or (b), but in (c) is a (rare) case with an equilibrium.

is to attack the FS at full rate. Next consider the scenarios as θ̂1 increases up
to where the defender first chooses to employ a non-trivial classification strat-
egy. In the first scenario (with p = 0.01), the defender first chooses N = 17 at

θ̂1 ≈ 0.375 and the spy’s best response switches discontinuously to θ1 ≈ 0.269 in
order to allow some chance of being misclassified. In the second scenario (with
p = 0.1) when the defender expects more spies, he first employs nontrivial clas-

sification at a lower θ̂1 and, in turn, chooses a larger N to allow for adequate
classification given that presumed stealthier spy; the spy chooses to exploit this
long observation window and still attack at full rate, viewing the long stretch of
FS attacks worth the sure detection–it is not until θ̂1 ≈ 0.431 that N is chosen
small enough for the spy to make that first abrupt switch. In both scenarios, as
θ̂1 increases beyond the occurrence of the spy’s first abrupt switch, the defender
continues to choose a smaller N because under his hypothesis it is decreasingly
difficult to discriminate between the two attackers; with this decreasing power
of the defender’s test, the spy is indeed choosing to increase his attack rate, but
he continues to confuse by staying well below the increasing rates hypothesized
by the defender. In the third scenario, when false alarms are very cheap, the first
and only nontrivial classification strategy remains very simple as θ̂1 increases:
immediately classify spammer or spy in accordance with whether one attack is
against the MS or FS, respectively. The spy, in turn, holds steady at θ1 ≈ 0.5,
giving rise to the equilibrium at θ∗1 ≈ 0.5 with N(θ∗1) = m(θ∗1) = 1.
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A final point concerns the restriction that the spy picks θ1 greater than θ0.
In the scenarios we discussed, this constraint was never active—the spy would
not have picked θ1 ≤ θ0 even if it were allowed. There are scenarios, particularly
with larger θ0, where the constraint could become active. Allowing θ1 ∈ [0, 1]
only modestly complicates the game: the defender’s best response to θ1 < θ0
still uses Proposition 2 but with the classify-spy decision made if z̄ < m∗(N);

in turn, the spy’s best response to θ̂1 < θ0 involves substitution of β(N,m) =
∑N

i=m

(
N
i

)
θi1(1− θ1)

N−i into (3), which remains an Nth-order polynomial in θ1.
Here (and in the next section), we considered only θ1 > θ0 for ease of exposition.

4 Dynamic N Game

In this section, we remove the restriction that the defender commits to a fixed
observation window. As in the famous Wald problem [2], the number of observa-
tions N before classification depends not just on the two players’ strategies but
also on the particular observation sequence zN = (z0, z1, . . . , zN−1). While our
problem (from the defender’s point-of-view) turns out to be a minor variation of
the famous Wald problem, we show that the defender’s best response, given θ1
chosen by the spy, is in the form of a Sequential Probability Ratio Test (SPRT).
The spy’s choice variable is θ1 just as it is for the commit to N game.

4.1 Defender’s Best Response

Let us first show that, given the spy’s choice of probability θ1 (and also values
for model parameters p, θ0, c0, c1, F and δ in (4)), the defender can access a
best response strategy in the family of Wald’s SPRT solutions [2]. An SPRT
strategy in each period k can be parametrized by two probability thresholds we
will denote by ηk ∈ [0, 1] and ξk ∈ [ηk, 1] i.e., initialize probability b−1 = p and,
in each period k = 0, 1, 2 . . . , first apply the probabilistic state recursion

P
[
X = 1 | zk+1

]
≡ bk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− θ1)bk−1

(1− θ0)(1 − bk−1) + (1− θ1)bk−1
, if zk = MS

θ1bk−1

θ0(1− bk−1) + θ1bk−1
, if zk = FS

(7)
and then choose to classify-spammer if bk ≤ ηk, to classify-spy if bk ≥ ξk,
and to continue otherwise. Much is known for Wald’s problem: for instance,
under the criterion to minimize the expected infinite-horizon total cost, the op-
timal SPRT thresholds are stationary (i.e., neither η nor ξ varies its value with
period k) [12].

The defender’s problem in our model is similar to Wald’s problem in most
ways that general results in the field of stochastic dynamic programming have
been organized i.e., both are infinite-horizon optimal stopping problems involving
a partially-observable two-state system with bounded cost per stage [12]. One
difference is that Wald’s problem uses an expected total cost criterion without
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discounting. The other difference is that our single-stage cost of taking another
observation also depends on the (unobservable) type of attacker. Even so, the
defender’s best response strategy remains in the set of stationary SPRTs.

Proposition 3. Fix strategy θ1 ∈ (θ0, 1] for the spy. A best response strategy for
the defender (with respect to minimizing (4)) exists in the set of all stationary
SPRT policies i.e., the set of all lower and upper thresholds η ∈ [0, 1] and ξ ∈
[η, 1] applied in every period k to the probabilistic state bk as described in (7).

The proof is in Appendix A.3. While Proposition 3 gives us the form of the de-
fender’s response function, computing the actual SPRT thresholds via dynamic
programming can only be done approximately because of the need to discretize
the probabilistic state space [0, 1]. A uniform discretization is always an alter-
native, but in certain problem instances a non-uniform discretization, favoring
finer intervals in some sub-regions (e.g., around the concentration of the prob-
abilistic state distribution, around the boundaries of the optimal thresholds),
can significantly improve solution accuracy. Recognizing the defender’s best re-
sponse model as a special case of the well-studied Partially Observable Markov
Decision Process (POMDP), we leverage a publicly available POMDP solver’s
implementation of such a non-uniform discretization.2 Moreover, in actual game
play, the defender will not know the true spy strategy but rather optimize SPRT
thresholds and evolve the probabilistic state bk via (7) based on a hypothesis θ̂1.

4.2 Spy’s Best Response

Consider the spy’s best response to a given defender’s strategy, or a given hy-
pothesis θ̂1 and the associated lower and upper thresholds η(θ̂1) and ξ(θ̂1) in the
SPRT. A direct optimization of JA in (5) over θ1 is more complicated than was
the case in the commit to N game. This is essentially because of the expectation
with respect to N , whose distribution cannot be derived in closed form. Another
complication is when the spy chooses θ1 �= θ̂1, the defender is not only employing
sub-optimal SPRT thresholds but is also erroneously evolving his probabilistic
state. The latter cannot be captured in the tractable dynamic programming
reduction of Wald’s problem.

Our approximation of the spy’s best response is found by numerical searching
over θ1 ∈ (θ0, 1]. For each value of θ1, the spy’s cost is found by constructing a
finite-state Markov chain representation that exploits two key properties of the
defender’s SPRT strategy. Firstly, the probabilistic state recursion in (7) can
(until classification) be equated with a random walk along the real line involving
the defender’s log-likelihood ratio (LLR)

Rk = log
(
L(zk+1)

)
=

⎧
⎪⎨

⎪⎩

Rk−1 + log
(

1−θ̂1
1−θ0

)
, if zk = MS

Rk−1 + log
(

θ̂1
θ0

)
, if zk = FS

,

2 Cassandra’s implementation (see http://www.pomdp.org) of the “witness” algo-
rithm [13] suited our setup particularly well.
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starting from the origin R−1 = 0. In turn, the SPRT thresholds (and prior
probability p) determine the segments of the real-line corresponding to the
three control actions available to the defender i.e., choose to classify-spammer

if Rk ≤ log

(
(1−p)η(θ̂1)

p[1−η(θ̂1)]

)

, to classify-spy if Rk ≤ log

(
(1−p)ξ(θ̂1)

p[1−ξ(θ̂1)]

)

, and to

continue otherwise. Secondly, the spy’s strategy θ1 alters the statistics of this
random walk (but not the increments Rk −Rk−1 themselves, which derive from

θ̂1), where lower (higher) values increase the chances that the LLR first exits
the continue region at the lower (upper) end of the real-line. The Markov chain
defines Q+ 3 states, Q of them indexing the levels of a uniform quantization of
the LLR continue region, one indexing an initial state and two indexing termi-
nal states (one per classify decision). The transition probabilities reflect not only
the true θ1 and the increments Rk −Rk−1 of the defender’s LLR walk based on
hypothesis θ̂1, but also the noise introduced by the quantization. The transition
costs reflect the spy’s rewards from file-server attacks and evading detection.
A cost function is then defined on the state space by writing one-step calcula-
tions for each state. By solving this system of linear equations, we find the cost
associated with the origin.

4.3 Numerical Experiments

The numerical procedure is analogous to that described for the commit to N
game. For each hypothesis θ̂1, we firstly employ the POMDP solver to obtain a
particular SPRT threshold pair (η, ξ) for the defender and, secondly, employ the
method described above to obtain a particular attack rate θ1 for the spy. Any
point(s) on the spy’s response curve satisfying θ1 = θ̂1 is (within the approxi-
mations discussed above) a Nash equilibrium. The results to be discussed used
Q = 100 in the spy’s response approximation and a precision of 0.001 to identify
equilibria.

Fig. 3 shows results for three scenarios, the first two also considered for the
commit to N game in Fig. 2. The key difference here is the smoother confusion
versus exploitation tradeoff exhibited in the spy’s best response curves. For ex-
ample, let us compare the first scenario more closely. For hypotheses θ̂1 closest
to θ0, the defender’s response in both games are such that a spammer clas-
sification is made immediately regardless of the first observation; in turn, the
spy’s response is to hit the FS at every opportunity. However, in the dynamic
N game, the defender’s response first moves away from this trivial classification
at a smaller θ̂1 than in the commit to N game; at this point the spy’s response
also shifts away from his full rate but, different from the commit to N game, to
rates θ1 > θ̂1 that still exploit the confusion-oriented defense but not with full
strength. For hypotheses θ̂1 well away from θ0, where an exploitative spy is an-
ticipated, in both games the defender allows for time to reliably classify; in turn,
the spy’s response is to confuse (i.e., choose θ1 < θ̂1) and better evade detection.
Only the dynamic N game features a smooth transition between these two ends
of play, at equilibrium θ∗1 ≈ 0.244 neutralizing the spy’s incentive to either con-
fuse an exploitation-oriented defense or to exploit a confusion-oriented defense.
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(a) p = 0.01 and F = 10 (b) p = 0.1 and F = 10 (c) p = 0.01 and F = 0.1

Fig. 3. Numerical results for the dynamic N game in three scenarios, using the same
parameters as in Fig. 2 (for the commit to N game) except for p and F in (c). A Nash
equilibrium exists in (a) and (b), but in (c) is a (rare) case with no such equilibrium.

Comparison between the two games is similar in the second scenario (with larger
p), finding in the dynamic N game a lower equilibrium point than that found in
the first scenario. The third scenario is a (not easily found) counter-example to
any claim that a Nash equilibrium always exists in the dynamic N game.

5 Conclusion

This work developed a classification game in the network security context. The
defender tries to reliably classify the attackers (spammer or spy) while control-
ling the damage during evidence gathering. A strategic spy faces the trade-off
between (i) exploiting the defender’s observation time by attacking aggressively
and (ii) confusing the defender by mixing attacks and enjoying the benefits of
mis-detection. The frequent non-existence of pure Nash equilibrium in our com-
mit to N game suggests that an over-simplified strategy adopted by the defender
will prohibit the emergence of a stable situation where both players behave pre-
dictably. This problem is mitigated by allowing the defender to make decisions in
every period as in our dynamic N game, which dis-incentivizes the spy’s response
from shifting drastically between exploitation mode and confusion mode.

Our game provides a new perspective to study the classification problem in
network security, capturing many subtle yet important interplays between de-
fender and attackers. The results to date are largely empirical, and we plan
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to explore a number of theoretical questions in future work. For the commit
to N game, we desire a proof for the frequent non-existence of a pure Nash
equilibrium, providing more insight to the limitations of this restriction on the
defender’s strategy; for the dynamic N game, it would be useful to isolate precise
conditions on the game parameters for a pure Nash equilibrium to exist. Many
model extensions are also possible, such as richer action spaces (e.g., sandboxing
by the defender and disconnecting by the spy) or continuous-time variants.

Acknowledgment. The authors thank Gregory Frazier, Patrick Loiseau and
Jean Walrand for conversations about this work, and Lemonia Dritsoula for help
with the experiments.
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Appendices

A.1 Proof of Proposition 1: The problem for sequences of length N is

min
P (·)

∑

s∈S
P (s) log

(
P (s)

(
N
s̄

)
θs̄0(1− θ0)N−s̄

)

s.t.
∑

s∈S
P (s) = 1,

∑

s∈S
P (s)s̄ = Nθ1, and P (s) ≥ 0 ∀s ∈ S. (8)

Here, s̄ denotes the number of successes in any sequence s and S the set of all
length-N sequences. This is a convex optimization problem (by convexity of K-
L divergence) and the equality constraints are affine, in which case the KKT
conditions are both necessary and sufficient for a global optimum [14]. Thus,
distribution P is optimal if and only if

logP (s) = s̄ log(θ0) + (N − s̄) log(1− θ0) + μ+ λs̄− γs − 1, γs ≥ 0, γsP (s) = 0

and constraints (8) are met. The possible solution P = BN (θ1) with appropri-
ately chosen KKT multipliers satisfies these conditions.

A.2 Proof of Proposition 2: With probability θ1 and N fixed, each choice
of integer m in a rule of the form z̄ ≥ m leads to a particular pair of error
probabilities αm and βm. (For instance, m = 0 corresponds to “always classify as
spy” and thus α = 1 and β = 0.) To achieve values of α that do not correspond
to integer m, one can introduce randomized decision rules, effectively mixing
between the thresholds of m and m+ 1 for which αm+1 < α < αm. Thus, for a
given N , the curve of achievable pairs of (α, β) (i.e., the “error curve”) form a
piecewise-linear curve. By writing the slope of each line segment explicitly, one
can show that this error curve is also convex. Because the defender’s objective JD

in (2) is linear in both α and β, the fundamental theorem of linear programming
[14] implies that an optimal point always occurs at one of the vertices of the
error curve. (In the degenerate case, when the slope of an error curve segment
exactly matches the equal cost contours of JD, a randomized decision rule can
also be optimal, but gains nothing over the deterministic rule at either vertex).

The setting is illustrated in Fig. 4(a). Now consider the slope of a line per-
pendicular to the gradient of JD (i.e., solve for dβ

dα in the equation ∇αJ
D = 0).

This slope can be no steeper (and no shallower) in magnitude than the slope of
the error curve’s segment to the left (and to the right, respectively) of m∗, so

∣
∣
∣
∣
βm∗ − βm∗−1

αm∗ − αm∗−1

∣
∣
∣
∣ ≤

(1− p)F (1− δ)

pθ1c1
≤
∣
∣
∣
∣
βm∗+1 − βm∗

αm∗+1 − αm∗

∣
∣
∣
∣ . (9)

The log of the term on the right, after replacing m∗ by m, is m log (θ1/θ0)+(N−
m) log ((1− θ1)/(1− θ0)). Equating this expression to the log of the middle term
in (9), one can solve for an m that may not be integer. But with θ1 > θ0 this
expression is monotone increasing in m, so taking m∗ = 
m� insures that the
right-side inequality of (9) is satisfied. Similar reasoning shows that this choice
m∗ = 
m� also satisfies the left-side inequality of (9).
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A.3 Proof of Proposition 3: From Sect. 5.4 in Vol. 1 of [12], the imperfect
state information problem involving a two-state system can be reduced to a per-
fect state information problem involving the probabilistic state recursion in (7).
Like the partially-observable problem, the reformulated problem is an infinite-
horizon discounted problem with bounded cost per stage, so from Sect. 1.2 in
Vol. 2 of [12] the Bellman equation for all b ∈ [0, 1] specializes to

J∗(b) = min

{

b
θ1c1
1− δ

, (1− b)F, gC(b) + δE [J∗(fC(b, Z))]

}

in which gC(b) = (1− b)(1− θ0)c0+ bθ1c1, the function fC denotes the recursion
of (7) and the expectation is with respect to the (mixed Bernoulli) distribution
P [Z = z] = (1 − b)P [Zk = z | X = 0] + bP [Zk = z | X = 1]. This is the same
Bellman equation obtained for the standard infinite-horizon Wald problem (see
Sect. 3.4 in Vol. 2) except that gC(b) is affine in b (rather than just a constant)
and δ is not unity. It is easy to see that J∗(0) = J∗(1) = 0, and that J∗(b) is

bounded above by min
{
b c1θ11−δ , (1− b)F

}
on [0, 1]. All arguments that lead to

concavity of J∗(b) on [0, 1] also still hold i.e., starting with J0(b) = 0, function
J∗ is viewed as the point-wise limit of a sequence of functions {Jk} resulting
from repeated iterations of the Bellman equation in which (i) the monotonicity
property of dynamic programming ensures that Jk(b) ≥ Jk−1(b) on [0, 1] and
(ii) Sect. 5.5 in Vol. 1 ensures that if Jk−1(b) is concave on [0, 1] then so is
E
[
Jk−1(fC(b, Z)

]
given fC and P [Z = z] above, and thus so is Jk(b). In turn,

the reasoning to optimality of a stationary SPRT also still holds; see Fig. 4(b).
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Fig. 4. Illustrations of (a) the error curve discussed in Appendix A.2 and (b) the
optimal cost-to-go function discussed in Appendix A.3
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