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Abstract. In this paper, we consider security aspects of network routing
in a game-theoretic framework where an attacker is empowered with an
ability for intrusion into edges of the network; on the other hand, the
goal of designer is to choose routing paths.

We interpret the secure routing problem as a two player zero sum
game. The attacker can choose one or more edges for intrusion, while
the designer has to choose paths between source-destination pairs for a
given set of pairs. We give polynomial-time algorithms for finding mixed
Nash equilibria if 1) the attacker is limited to a one-edge attack (for
arbitrary number of source-destination pairs), 2) the designer has two
source-destination pairs while the attacker is either limited to c edges,
for given c, or the attacker incurs a cost for each edge attacked. Previous
work gave an algorithm for one source-destination pair and multiple edge
attacks.

Keywords: zero-sum games, Nash equilibrum, network flows, concur-
rent flows.

1 Introduction

1.1 Motivation

Current routing protocols utilize single paths and are typically prone to failures
or malicious attacks. The fast growth of the Internet underscores the need for
Network Security. With the current emphasis on distributed computing the net-
work is further exposed to numerous dangerous situations, e.g., security attacks,
eavesdropping and so on. An early illustration of this is [24] which considers
various attacks and defenses.

In this paper we consider the security issues modeled as a game between the
network designer and the malicious attacker. Attackers may be any malicious
users attempting to intercept or eavesdrop packets on the network or impact
physical constraints e.g., disconnection, congestion , etc. The network designer
has to route data flow between multiple source-sink pairs and is allowed to utilize
multiple paths for routing. The attacker selects edges for attack. The attacks
can be on either single or multiple edges simultaneously. Similarly, the designer
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can choose single or multiple paths simultaneously. In either case, the choice of
path(s) is considered to be stochastic, i.e. one or more paths are chosen from a
given set with a specific probability distribution.

An earlier illustration of this approach in the context of network routing is
illustrated by the result on Game Theoretic Stochastic Routing (GTSR), which
describes a particular approach to multi-path routing that provides a rigorous
way to determine which routes should be used and with what frequency[6][4].
GTSR finds all paths between a source-destination pair and computes next hop
probabilities, i.e., the probabilities that a packet takes a particular next-hop.
This contrasts with single-path algorithms that simply determine the next-hop.
Based on stochastic routing, this paper consider two alternatives : offline games
where the attacker starts by selecting one link or a particular node and online
games where the attacker scans on physical interface at all nodes [4]. They
present results only for single source-sink pairs.

A different consideration of security for network systems via a game theoretic
framework can be found in [26]. In this paper they model a security attack as
a 2-player stochastic game. They utilize non-linear programming to determine
the Nash equilibrium. However, they consider a set of attacks on a node of the
computer network instead of an attack on the entire network.

In an earlier paper, Washburn and Wood [25] considers a similar model but
in the context of providing security for defense/policing application. They con-
sider game-theoretic models where an evader selects and attempts to traverse
a path through a network from node s to node t without being detected by an
interdictor. They have shown that optimal strategies can be obtained by solving
a maximum flow problem on the network. Another result that measures the re-
liability of a general transport network but via only single edge attacks can be
found in [3], where a two player game is formulated. The goal of the designer
is to find a least cost path and the attacker utilizes a single edge attack. Linear
programming formulations are provided when the link costs are fixed.

Multi-path routing is useful for enhanced reliability in the Internet. Tradi-
tionally, a single link failure, by a malicious user or a physical reason, can take
a small but significant amount time to detect and correct. Further, another dis-
advantage is that malicious behaviors can be realized easily due to a prediction
of paths. On the other hand, multi-path routing provides a set of possible paths
that causes hard-prediction of forwarding packets. Moreover, it ensures that
data throughput increases[7], traffic congestion decreases[9], network utilization
is improved[20][12] and network security increases.[6][21][14][4]. In wireless, ad-
hoc and sensor networks, routing with vulnerable links(interpreted as malicious
attackers) is a challenging problem. Multi-path routing can ease unreliability
and vulnerability[8][22][17]. Related game theoretic research on computer secu-
rity includes the work of [10][18][19][8].

As in [25], the results in [5] consider the case of routing a single source-
destination path under single edge attacks. Both papers formulate an LP solu-
tion and show that the value of the game is 1/f , where f is a value of max flow.
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The case where multiple source-destination paths are to be found is not consid-
ered in these papers.

In this paper we consider the case where the designer has to select k paths,
each from given source si to given destination ti. The attacker can select a set of
c edges, with c also given. We give a polynomial-time algorithm for finding mixed
Nash equilibria in directed graphs when c = 1 by using concurrent flows linear
programs. We also give a polynomial-time algorithm for finding mixed Nash
equilibria when the input graph is undirected and k = 2, for arbitrary c not
exceeding the minimum edge-cut of the graph, using Hu’s [11] two commodity
flows. We leave open the case k ≥ 3 and c ≥ 2. Our approach does not extend
to this case due to the fact that maxflow/mincut type conditions do not hold.

We also consider the case where the attacker can select an arbitrary set of
edges incurring a cost of attack, which is dependant on the edge, and show how
to compute the equilibrum in polynomial time for two commodities in undirected
graphs, again using [11].

We remark that all the games considered, here and in previous work, are
linear programs, but with exponential-size matrices. The challenge is finding
polynomial-time algorithms for solving such linear programs; thus the matrices
must be considered implicitly.

The paper outline is as follows. In Section 2, we describe the previously known
game [25][5] where a designer uses one path; on the other hand, an attacker
attempts to destroy one edge. While the pay-offs for these case are known, we
illustrate the methodology linking these games to network flows. In Section 3,
we consider the game where a designer is required to find k paths for given
source-destination pairs, while the attacker still attempts to destroy one edge. In
Section 4 we describe results for two source-destination pairs, while the attacker
can choose c edges. In Section 5 we present polynomial-time algorithms for the
case where the attacker incurs a cost for each edge attacked (dependant on the
edge) while the designer chooses two paths, from given s1 to t1 and s2 to t2.

1.2 Notations

Given the directed or undirected graph, G = (V,E), where V is a set of vertices
and E is a set of edges we consider the network N(G,S−T ) where S−T is a set
of k source-destination pairs (si, ti), i = 1 . . . k, si, ti ∈ V . Let us define P and P i

as the set of all possible source-destination paths and the set of possible si − ti
paths, respectively. We sometimes call an si − ti paths a path for commodity
i. We let SA be the strategy set of the attacker and SD be the strategy set of
the designer. Each strategy s ∈ SA of the attacker is a subset of edges of size
c, i.e. s = {e1 . . . ec}, ei ∈ E, which he chooses to attack. And each strategy
of the designer p ∈ SD is a set of paths, one for each source-sink pair, i.e p =
{P1, . . . , Pk}, Pi ∈ P i. We use the following payoffmatrix, for s ∈ SA and p ∈ SD:
the attacker gains |{i ∈ {1, 2, . . . , k} | Pi ∩ s �= ∅}|. That is, the attacker’s pay-
off is the number of intercepted paths (and intercepting a path more than once
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does not help him). We make this a zero-sum gain so the designer’s payoff is
the negation of the attacker’s payoff; a designer therefore would minimize the
number of intercepted paths. A mixed strategy of the attacker is denoted by
the vector x, where x = (x1, x2, ..., xr) where r = |SA| and y denotes the mixed
strategy of the designer, where y = (y1, y2, ..., yt) t = |SD|.

In another version of the game, we use the following payoff matrix, for s ∈ SA

and p ∈ SD: the attacker gains |{i ∈ {1, 2, . . . , k} | Pi ∩ s �= ∅}| −
∑

e∈s c(e).
That is, the attacker’s payoff is the number of intercepted paths, less the to-
tal cost of the edges attacked. We consider this to be a zero-sum game so the
designer’s payoff is the negation of the attacker’s payoff; the designer, there-
fore, would minimize the payoff of the attacker. A mixed strategy of the at-
tacker is denoted by the vector x, where x = (x1, x2, ..., xr) where r = |SA|
and y denotes the mixed strategy of the designer, where y = (y1, y2, ..., yt) and
t = |SD|.

Note that the Nash equilibrium is the solution of a linear program, which in
our case has exponentially many variable and constraints. We are able to find an
equilibrium point in polynomial time only for the case of one or two commodities.
We directly describe the two-commodity case; the simpler one-commodity case
can be solved by maximum flow and the methods of the two-commodity case,
and can also be reduced to the two-commodity case by setting s2 = t2.

The attacker will pick, without loss of generality, all the edges of cost 0.
Therefore, for the purpose of computing the equilibrium, we are only concerned
with those commodity i for which there exist an si − ti path all whose edges
have strictly positive costs. We discard from now on the commodities for which
no such path exist as whatever path a designer chooses for such a pair si − ti, it
will be intercepted. For the remaining commodities, without loss of generality,
the designer will never choose a path with an edge with zero cost, and therefore
from now on we assume c(e) > 0 for all e ∈ E.

2 The (One Commodity, One Edge)-Problem

We consider the simplest version of the problem where S − T comprises one
source-sink pair (s, t). The attacker is allowed to attack one edge and the designer
has to choose one path. The strategy sets are SA = E and SD = P where P is
the set of paths from s to t. We consider a zero-sum game where the attacker
gains 1 unit if his chosen edge successfully intersects the designer path and the
designer loses 1 unit. In the case when his chosen edge does not intersect the
designer path, the designer and attacker loose or gain nothing.

We consider the pay-off matrix A of size (m × q), q = |P|, where player 1
(attacker) has m strategies (number of edges) and player 2 (designer) has q
strategies (number of s− t paths). Then, we can assign a payoff to each element
of A = aij as follows: when the attacker chooses a strategy i and the designer
chooses a strategy j : if ei ∈ Pj then aji = 1. Otherwise, aji = 0.
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2.1 Reduction to the Max-flow Min-cut Problem

Let us define the LPs for player 1 and player 2 as LP1 and LP2, respectively, as
follows :

LP1: Maximize w subject to
∑m

i=1 xiaji ≥ w ∀1 ≤ j ≤ q
∑m

i=1 xi = 1

xi ≥ 0 ∀i ∈ E

LP2: Minimize λ subject to
∑q

j=1 ajiyj ≤ λ ∀1 ≤ i ≤ m
∑q

j=1 yj = 1

yj ≥ 0 ∀1 ≤ j ≤ q

where xi and yj represent probabilities to choose an edge and a path, respectively.
aij represents the payoff obtained when the designer uses strategy i and the
attacker uses strategy j. In this game, a Nash equilibrium set of strategies is a
probability distribution on the set of edges corresponding to the attacker choice
of edges and a probability distribution on the possible flow paths chosen by the
designer.

Theorem 1. [23] (Menger’s theorem (directed vertex-disjoint version)). Let
D = (V,A) be a digraph and let S, T ⊆ V . Then the maximum number of vertex-
disjoint S − T paths is equal to the minimum size of an S − T disconnecting
vertex set.

Theorem 2. [23] Amaximumcollectionof arc-disjoint s−tpaths andaminimum-
size s− t cut can be found in time O(m2).

2.2 Algorithm

1. Attacker : find min-cut, C, which separates V into two disjoint subset of
vertices. The attacker chooses a strategy that selects each edge in C with
probability 1/|C|.

2. Designer : construct a undirected graph from a given network instance.
choose r-disjoint paths which are equally assigned 1/r, where |C| = r. By
Theorem 1, we know that the maximum number of arc-disjoint s-t paths is
equal to the minimum size of an s-t edge-cut. The theorem holds in the case
of undirected graphs as follows. The undirected vertex-disjoint version fol-
lows immediately from Theorem 1 by replacing each undirected edge by two
oppositely oriented arcs. Next, the undirected edge-disjoint version follows
from the undirected vertex-disjoint version. We can find arc-disjoint s − t
paths in time polynomial by Theorem 2.

We can show the correctness by showing the solutions are feasible for the LP1
and LP2 and have the same payoff. Recall that a profile S of mixed strategies is
a mixed strategy Nash equilibrium if and only if every player’s mixed strategy
is a best response to the other player’s mixed strategies.

Theorem 3. [5][25] A strategy (α∗, β∗) given by the algorithm above is a mixed
Nash equilibrium for the attacker and designer.
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3 The (k Commodities, One Edge)-Problem

In this section we consider the problem where the designer chooses paths for
multiple source-sink pairs, while the attacker is allowed one edge for intrusion.
We present the result for directed graphs, although the results hold for undirected
graphs as well.

Let A be the payoff matrix. With qi denoting the number of si − ti paths, A
has q rows, where q = Πk

i=1qi, and m columns, where m = |E| (recall that in this
section, an attacker’s strategy is a single edge). Let P i

j be the jth path from si to
ti, for 1 ≤ i ≤ k and 1 ≤ j ≤ qi. Let r be some correspondence from {1, 2, . . . , q}
to {1, 2, . . . , q1} × {1, 2, . . . , q2} × · · · × {1, 2, . . . , qk}, with ri(j) giving the ith

component of r (1 ≤ i ≤ k). We index the columns of A by e, for e ∈ E. Then,
based on previous discussion, we have for e ∈ E and j ∈ {1, 2, . . . , q} : Aje =
|{i ∈ {1, 2, . . . , k} | e ∈ P i

ri(j)
}|.

Based on standard game theory, to find a Nash equilibrium the attacker must
solve the following linear program with variables w and xe, for e ∈ E:

LP3: Maximize w subject to
∑

e∈E Ajexe ≥ w ∀1 ≤ j ≤ q (1)
∑m

i=1 xe = 1 (2)

xe ≥ 0 ∀e ∈ E. (3)

We denote the program above LP3. The designer must solve the linear program
below, with variable λ and yj :

LP4: Minimize λ subject to
∑q

j=1 Ajeyj ≤ λ ∀e ∈ E (4)
∑q

j=1 yj = 1 (5)

yj ≥ 0 ∀j ∈ {1, 2, . . . , q} (6)

We denote the program above LP4. LP3 and LP4 are duals. With the goal of
solving the exponentially large programs LP3 and LP4, we introduce the follow-
ing linear program, with variables α and fP , for P ∈ P .

LP5: Minimize α subject to
∑

P∈P | e∈P fP ≤ α ∀e ∈ E (7)
∑qi

j=1 fP i
j
= 1 ∀i ∈ {1, 2, . . . , k}(8)

fP ≥ 0 ∀P ∈ P (9)

Recall that P is the set of all source-destination paths, while for i ∈ {1, 2, . . . , k},
the set of si − ti paths is {P i

1, P
i
2 , . . . , P

i
qi}. We denote the program above LP5.

LP5 is also exponentially large, but it is known that it can be solved in polyno-
mial time as it is a concurrent flow problem [23]. Precisely, LP5 is solved by the
standard decomposition into path-flows of the solution of the following linear
program, with variables f i

e for e ∈ E and i ∈ {1, 2, . . . , k}:
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LP7: Minimize γ subject to
∑

e∈δ−(u)

f i
e =

∑

e∈δ+(u)

f i
e ∀i ∧ ∀u ∈ V \ {si, ti}

∑

e∈δ+(si)

f i
e −

∑

e∈δ−(si)

f i
e = 1 ∀i

∑k
i=1 f

i
e ≤ γ ∀e ∈ E

f i
e ≥ 0 ∀e ∈ E ∧ i

Here δ−(u) denotes the set of edges entering u, and δ+(u) denotes the set of
edges leaving u. We denote the program above LP7.

The dual of LP5, denoted as LP6, given below, can also be solved in polynomial-
time by solving the dual of the concurrent flow program above. LP6 has variables
di, for i ∈ {1, 2, . . . , k}, and le for e ∈ E; it has exponentially many constraints:

LP6: Maximize

k∑

i=1

di subject to di ≤
∑

e∈P i
j

le ∀i ∧ ∀j} (10)

∑
e∈E le = 1 (11)

le ≥ 0 ∀e ∈ E (12)

As an aside, LP6 is a fractional version of Sparsest Cut [15,13,16,2,1]. After
optimally solving LP5 and LP6, we assign to the variables of LP3 and LP4
values as follows. For LP3, we set w =

∑k
i=1 d

∗
i and xe = l∗e , where d∗i , for

i ∈ {1, 2, . . . , k}, and l∗e for e ∈ E are an optimal solution to LP6. For LP4, we
set λ = α∗ and yj = Πk

i=1f
∗
P i

ri(j)

, where α∗ and f∗
P are an optimal solution to LP5.

As the number of nonzero yj can be exponentially large, it has to be remembered
implicitly, and indeed the designer can generate one random strategy by drawing
independently at random for each i ∈ {1, 2, . . . , k} one P i

j with probability f∗
P i

j
.

There is an alternate way for the designer, used in [6] (but not for this game):
at each node of the network, the packets going from si to ti are not forwarded

deterministically but exit node u on edge e with probability
fi
e∑

e∈δ+(u) f
i
e
, where

f i
e are from an acyclic optimum to LP7; in this case the game is played separately
for each packet.

We have not proved yet that our w and xe are feasible for LP3, and λ and
yj are feasible for LP4; however once we do so they are both optimal, since the
objective functions of the two dual linear programs LP3 and LP4 match: w = λ
(as α∗ =

∑k
i=1 d

∗
i ).

Claim. As defined above, w and xe are feasible for LP3.

Proof. We have to verify the constraints of LP3. Indeed, constraints 3 follow
immediately from constraints 12, and 2 follows from 11. As for constraints 1, let
e ∈ E and j ∈ {1, 2, . . . , q}. We have
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∑

e∈E

Ajexe =
∑

e∈E

xe|{i ∈ {1, 2, . . . , k} | e ∈ P i
ri(j)

}| =
k∑

i=1

∑

e∈P i
ri(j)

xe

=

k∑

i=1

∑

e∈P i
ri(j)

l∗e ≥
k∑

i=1

d∗i = w,

where the inequality follows from constraint 10 of LP6.

Claim. As defined above, λ and yj are feasible for LP4.

Due to the page limitation, we omit the long technical proof. A similar proof
appears later for Lemma 1.

4 The (2 Commodities, c Edges)-Problem

In this section we assume the input graph is undirected and c does not exceed the
minimum edge-cut of the graph. Let A be the payoff matrix. With qi denoting
the number of si−ti paths, A has q rows, where q = q1 ·q2, and m̂ columns, where
m̂ =

(
m
c

)
. Let P i

j be the jth path from si to ti, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ qi.
Let r be some correspondence from {1, 2, . . . , q} to {1, 2, . . . , q1}×{1, 2, . . . , q2},
with ri(j) giving the ith component of r (1 ≤ i ≤ 2).

Let us use T to denote the set of all sets S ⊂ E with |S| = c. We index the
columns of A by S ∈ T . Then, based on previous discussion, we have for S ∈ T
and j ∈ {1, 2, . . . , q} : AjS = |{i ∈ {1, 2} | P i

ri(j)
∩ S �= ∅}|.

Based on standard game theory, to find a Nash equilibrium the attacker must
solve the following linear program with variables w and xS , for S ∈ T :

LP8: Maximize w subject to
∑

S∈T AjSxS ≥ w ∀1 ≤ j ≤ q (13)
∑m̂

i=1 xS = 1 (14)

xS ≥ 0 ∀S ∈ T . (15)

We denote the program above LP8. The designer must solve the linear program
below, with variable λ and yj , for 1 ≤ j ≤ q:

LP9: Minimize λ subject to
∑q

j=1 AjSyj ≤ λ ∀S ∈ T (16)
∑q

j=1 yj = 1 (17)

yj ≥ 0 ∀j ∈ {1, 2, . . . , q}(18)

We denote the program above LP9. LP8 and LP9 are duals. With the goal
of solving the exponentially large programs LP8 and LP9, we introduce the
following linear program, with variables α and fP , for P ∈ P .

LP10: Minimize α subject to
∑

P∈P | e∈P fP ≤ α ∀e ∈ E (19)
∑qi

j=1 fP i
j
= 1 ∀i ∈ {1, 2} (20)

fP ≥ 0 ∀P ∈ P (21)
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Recall that P is the set of all source-destination paths, while for i ∈ {1, 2}, the
set of si− ti paths is {P i

1, P
i
2 , . . . , P

i
qi}. We denote the program above LP10 and

note that the only difference between LP5 and LP10 is that LP10 has k = 2
and an undirected graph instead of arbitrary k and directed graph. LP10 is also
exponentially large, but it is known that it can be solved in polynomial time
[11], [23].

We show later how to extract a feasible solution for LP8 from an LP10 solu-
tion. However, the dual of LP10 does not immediately give a solution to LP9,
and we do not use it. Instead, we use a sort of integral dual of LP10, which
is what [11] provides. Precisely, let C1 ⊂ E be the minimum cut separating s1
from t1, let C2 ⊂ E be the minimum cut separating s2 from t2, and let C3 ⊂ E
be the minimum cut separating both si − ti pairs. In other words, in the graph
(V,E \C3) there exist neither s1 − t1 nor s2 − t2 paths; C3 can be computed by
computing two minimum cuts: one separating s1, s2 from t1, t2, and the other
separating s1, t2 from t1, s2. Then Hu’s theorem states:

Theorem 4. If min(|C1|, |C2|) ≤ |C3|/2, then there exist a concurrent two-
commodity flow in G shipping min(|C1|, |C2|) from s1 to t1 and min(|C1|, |C2|)
from s2 to t2. Otherwise (|C3|/2 < |C1| and |C3|/2 < |C2|), there exist a con-
current two-commodity flow in G shipping |C3|/2 units of flow from s1 to t1 and
|C3|/2 units of flow from s2 to t2. Moreover, these two-commodity flows can be
found in time polynomial in the size of G.

It is clear (and known) that in LP10 we have for any feasible solution α ≥ 1/|C1|,
α ≥ 1/|C2|, and α ≥ 2/|C3|. Let us consider three cases, with the second being
symmetric to the first.
Case 1. In the first case, |C1| ≤ |C2| and |C1| ≤ |C3|/2. Then Hu’s theorem and
algorithm finds a feasible solution to LP10 with α = 1/|C1|. In LP9, we assign
λ = c · α and yj = fP 1

r1(j)
· fP 2

r2(j)
.

Lemma 1. λ and yj as described above make a feasible solution to LP9.

Proof. The constraints 18 follow immediately from the definition of yj and
constraints 21. Regarding constraint 17, we have:

q∑

j=1

yj =

q1∑

l1=1

∑

j∈{1,2,...,q} | r1(j)=l1

yj =

q1∑

l1=1

q2∑

l2=1

∑

j∈{1,2,...,q} | r1(j)=l1∧r2(j)=l2

yj

=

q1∑

l1=1

q2∑

l2=1

fP 1
l1
· fP 2

l2
=

q1∑

l1=1

fP 1
l1
·

q2∑

l2=1

fP 2
l2

=

q1∑

l1=1

fP 1
l1
= 1,

where we used the constraints 20 of LP10. Finally, to verify Constraints 16, we
let S ∈ T be arbitrary. For path P and subset S ⊆ E, we define the matrix BP,S

as follows:

BP,S =

{
1 if P ∩ S �= ∅
0 otherwise
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Then:
q∑

j=1

AjSyj =

q∑

j=1

AjS · fP 1
r1(j)

· fP 2
r2(j)

=

q∑

j=1

(
BP 1

r1(j)
,S +BP 2

r2(j)
,S

)
· fP 1

r1(j)
· fP 2

r2(j)

=

q1∑

l1=1

q2∑

l2=1

(
BP 1

l1
,S +BP 2

l2
,S

)
· fP 1

l1
· fP 2

l2

≤
q1∑

l1=1

q2∑

l2=1

∑

e∈S

(
BP 1

l1
,{e} +BP 2

l2
,{e}

)
· fP 1

l1
· fP 2

l2

=
∑

e∈S

q1∑

l1=1

q2∑

l2=1

(
BP 1

l1
,{e} +BP 2

l2
,{e}

)
· fP 1

l1
· fP 2

l2

=
∑

e∈S

q1∑

l1=1

q2∑

l2=1

BP 1
l1
,{e} · fP 1

l1
· fP 2

l2

+
∑

e∈S

q1∑

l1=1

q2∑

l2=1

BP 2
l2
,{e} · fP 1

l1
· fP 2

l2

=
∑

e∈S

q1∑

l1=1

(

BP 1
l1
,{e} · fP 1

l1
·

q2∑

l2=1

fP 2
l2

)

+
∑

e∈S

q2∑

l2=1

(

BP 2
l2
,{e} · fP 2

l2
·

q1∑

l1=1

fP 1
l1

)

=
∑

e∈S

q1∑

l1=1

BP 1
l1
,{e} · fP 1

l1
+
∑

e∈S

q2∑

l2=1

BP 2
l2
,{e} · fP 2

l2

=
∑

e∈S

⎛

⎜
⎝

q1∑

l1=1 | e∈P 1
l1

fP 1
l1
+

q1∑

l2=1 | e∈P 2
l2

fP 2
l2

⎞

⎟
⎠

=
∑

e∈S

∑

P∈P
fP ≤

∑

e∈S

α ≤ c · α = λ

where we used Constraint 20 to replace
∑q2

l2=1 fP 2
l2

and
∑q2

l2=1 fP 2
l2

by 1, and

Constraint 19 in the last line.

Also, in LP8, assign xS = 1/
(|C1|

c

)
to each S ⊆ C1 with |S| = c, and xS = 0

to all other S ∈ T . Note that we made the assumption that c does not exceed
any cut in G and therefore

∑
S∈T xS = 1, showing constraint 14 is satisfied. We

also assign w = c/|C1|. We proceed to show that this assignment is feasible for
LP8; the fact that we found both equilibria follows from the fact that w = λ.
Constraints 14 and 15 are immediate. We must verify constraints 13, so let
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j ∈ {1, 2, . . . , q} be arbitrary, and let ej be an edge of C1 ∩ P 1
r1(j)

(such an edge

must exist since C1 is an s1 − t1 cut). Then indeed:
∑

S∈T
AjSxS =

∑

S∈T
xS |{i ∈ {1, 2}|P i

ri(j)

⋂
S �= ∅}| ≥

∑

S∈T
xS |{ej} ∩ S|

=
∑

S | ej∈S

1
(|C1|

c

) =
|{S ⊆ C1 | ej ∈ S}|

(|C1|
c

) =

(|C1|−1
c−1

)

(|C1|
c

) = c/|C1| = w.

Case 2. In the second case, |C2| ≤ |C1| and |C2| ≤ |C3|/2. This is symmetric to
the first case.
Case 3. In the third case, |C3| < 2|C1| and |C3| < 2|C1|. Then Hu’s theorem and
algorithm finds a feasible solution to LP10 with α = 2/|C3|. In LP9, we assign
λ = c · α and yj = fP 1

r1(j)
· fP 2

r2(j)
, just as in the first case.

Claim. λ and yj as described above make a feasible solution to LP9.

Proof. Let f1(ei) =
∑

P 1
r1(j)

�ei
fP 1

r1(j)
and f2(ei) =

∑
P 2

r2(j)
�ei

fP 2
r2(j)

. Let

S1 = {e ∈ S : f1(e) > 0 and f2(e) > 0}, and let k = |S1|.
q∑

j=1

AjSyj =

q∑

j=1

AjSfP 1
r1(j)

fP 2
r2(j)

=
∑

e∈S1

f1(e)(1 − f2(e)) +
∑

e∈S1

f2(e)(1− f1(e))

+2
∑

e∈S1

f1(e)f2(e) +
∑

e∈S\S1

f1(e)

q2∑

j=1

fP 2
r2(j)

=
∑

e∈S1

(f1(e) + f2(e)) +
∑

e∈S\S1

f1(e) = 2k/|C3|+ 2(c− k)/|C3|

= 2c/|C3| = λ

Also, in LP8, assign xS = 1/
(|C3|

c

)
to each S ⊆ C3 with |S| = c, and xS = 0

to all other S ∈ T . Note that we made the assumption that c does not exceed
any cut in G and therefore

∑
S∈T xS = 1, showing constraint 14 is satisfied. We

also assign w = 2c/|C3|. We proceed to show that this assignment is feasible
for LP8; the fact that we found both equilibrium follows from the fact that
w = λ. Constraints 14 and 15 are immediate. We must verify constraints 13,
so let j ∈ {1, 2, . . . , q} be arbitrary. Let e1j be an edge of C3 ∩ P 1

r1(j)
and e2j be

an edge of C3 ∩ P 1
r2(j)

(such edges must exist since C3 is separating both pairs

s1 − t1 and s2 − t2). It may be that e1j = e2j . Then indeed:

∑

S∈T
AjSxS =

∑

S∈T
xS |{i ∈ {1, 2}|P i

ri(j)

⋂
S �= ∅}|

≥
∑

S∈T
xS(|{e1j} ∩ S|+ |{e2j} ∩ S|)
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=
∑

S∈T
xS |{e1j} ∩ S|+

∑

S∈T
xS |{e2j} ∩ S|)

=
∑

S | e1j∈S

1
(|C3|

c

) +
∑

S | e2j∈S

1
(|C3|

c

)

=

∣
∣{S ⊆ C3 | e1j ∈ S}

∣
∣

(|C3|
c

) +

∣
∣{S ⊆ C3 | e2j ∈ S}

∣
∣

(|C3|
c

)

= 2

(|C3|−1
c−1

)

(|C3|
c

) = 2c/|C3| = w.

In conclusion, we provided a polynomial-time algorithm for computing the Nash
equilibrium in the game where there are two commodities and the attacker can
attack any subset of c edges, provided c does not exceed the minimum cut of
undirected graph G.

5 Budgeted Attacks: Costs on Edges

In this case, we consider the problem where S − T consists of two commodities
with sources s1 and s2, and sinks t1 and t2. The attacker may choose to attack
any number of edges, and the designer chooses two paths, one for each source-
sink pair. Let A be the payoff matrix. Let qi denote the number of si − ti paths.
A will have q rows, where q = q1 · q2, and h columns, where h = 2|E| is the
cardinality of the power set of E. Let P i

j be the jth path from si to ti, for
i ∈ {1, 2}, where 1 ≤ j ≤ qi. Let r be some correspondence from {1, 2, . . . , q} to
{1, 2, . . . , q1}×{1, 2, . . . , q2}, with ri(j) giving the i

th component of r (1 ≤ i ≤ 2).
Let T denote the power set of E. The columns of A will be indexed by S ∈ T .
Thus: AjS = |{i ∈ {1, 2} | P i

ri(j)
∩ S �= ∅}| −

∑
e∈S c(e). We seek a Nash

equilibrium. To get one, the attacker should solve the following linear program:

LP11: Maximize w subject to
∑

S∈T AjSxS ≥ w ∀1 ≤ j ≤ q (22)
∑

S∈T xS = 1 (23)

xS ≥ 0 ∀S ∈ T . (24)

The above linear program shall be called LP11. The path designer must solve
the dual of this linear program, denoted LP12, described below:

LP12: Minimize λ subject to
∑q

j=1 AjSyj ≤ λ ∀S ∈ T (25)
∑q

j=1 yj = 1 (26)

yj ≥ 0 ∀j ∈ {1, 2, . . . , q}(27)

Our general plan for solving these programs is as follows. We compute four
minimum costs cuts in the network N = (V,E, c). The attacker will choose one
of these cuts, or the empty set as his strategy; note that this is a pure strategy.
This choice will be function of the costs of these cuts; also this choice gives
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us a feasible w in LP11. For the designer, we use Hu’s [11,23] result to obtain
certain flows matching the cuts and use the value of these flows to assign values
(probabilities) to the variables yj from LP12. Finally, we show that LP12 is
feasible with λ = w and these value for yj ; matching primal and dual objective
functions implies we have optimum solutions for both LP11 and LP12.

We continue with the detailed description of this algorithm. Let C1 ⊂ E be
the minimum cost cut separating s1 from t1 in N , let C2 ⊂ E be the minimum
cost cut separating s2 from t2 in N , and let C3 ⊂ E be the minimum cost cut
separating both si − ti pairs. In other words, in the graph (V,E \ C3) there
exist neither s1 − t1 nor s2 − t2 paths; C3 can be computed by computing two
minimum cost cuts: one separating s1, s2 from t1, t2, and the other separating
s1, t2 from t1, s2.

As usual, for S ⊆ E, we use c(S) :=
∑

e∈S c(e) with the usual convention that
c(∅) = 0. We assign λ = w = max(0− c(∅), 1− c(C1), 1− c(C2), 2− c(C3)), and
the attacker picks as his strategy the set of edges above achieving the maximum.
We now verify that this is indeed a feasible solution for LP11. Constraints 23
and 24 are clearly satisfied. For Constraint 22, we must consider the four cases,
depending on how w is selected. If w = 0, then, as for any j Aj∅ = 0− 0 = 0, we
see that 22 is satisfied. If w = 1 − c(C1), then we note that the strategy of the
attacker, C1, being a set of edges separating s1 from t1 in N , satisfies , for any
designer strategy indexed by j, AjC1 ≥ 1− c(C1) and this is the same as 22. The
case w = 1−c(C2) is symmetric to the previous case, while if w = 2−c(C3), then
we note that the strategy of the attacker, C3, being a set of edges separating
both s1 from t1 and s2 from t2 in N , satisfies, for any designer strategy indexed
by j, AjC1 ≥ 2− c(C3) and this is the same as 22. For simplicity of notation, let
c1 = c(C1), c2 = c(C2), and c3 = c(C3). For the designer, we use the following
result of Hu [11](corollary 71.1b in [23]):

Theorem 5. Let G = (V,E) be a graph, let s1, t1 and s2, t2 be pairs of vertices
of G, let c : E → IR+, and let d1, d2 ∈ IR+. Then there exists a 2-commodity
flow subject to c and with value d1, d2 if and only if the following “cut condition”
is satisfied: for any U ⊂ V , we have

∑
i | |U∩{si,ti}|=1 di ≤

∑
e∈E | |U∩e|=1 c(e)

(here, to make notation compact, we use an undirected edge e as a set of two
vertices). Moreover, these two-commodity flows can be found in time polynomial
in the size of G.

When applying this theorem 5, we will choose 0 < d1 ≤ 1 and 0 < d2 ≤ 1
depending on how λ is selected. We will verify that the cut condition is satisfied,
and get a two-commodity flow f1 and f2 as in the theorem. Then in all four
cases, we proceed as follows.

We algorithmically decompose the s1 − t1 flow f1 into at most |E| path flows
f1
j for some paths P 1

j ∈ P1, and the s2 − t2 flow f2 into at most |E| path flows

f2
j for some paths P 2

j ∈ P2; we implicitly (for the purpose of the proof, and

not as part of the algorithm) keep f1
j = 0 if P 1

j is not one of the above paths,

and f2
j = 0 if P 2

j is not one of the above paths. Thus we have the flow value
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constraint for the first and second commodity and the capacity constraint as
follows :

∀i ∈ {1, 2} :

qi∑

j=1

f i
j = di (28)

∀e ∈ E :
∑

j | e∈P 1
j

f1
j +

∑

j | e∈P 2
j

f2
j ≤ c(e) (29)

Recall that we have q = q1 ·q2 variables yj in LP2, and r is a correspondence from
{1, 2, . . . , q} to {1, 2, . . . , q1}×{1, 2, . . . , q2}, with ri(j) giving the ith component
of r (1 ≤ i ≤ 2). We set yj = 1

d1·d2
f1
r1(j)

f2
r2(j)

; algorithmically this is done only

for those at most |E| · |E| indices j for which both f1
r1(j)

and f2
r2(j)

are strictly
positive.

It is immediate that Constraint 27 holds, and we prove that 26 holds below:

q∑

j=1

yj =
1

d1 · d2

q1∑

l1=1

q2∑

l2=1

f1
l1f

2
l2 =

1

d1 · d2

(
q1∑

l1=1

f1
l1

)(
q2∑

l2=1

f2
l2

)

=
1

d1 · d2
(d1 · d2) = 1

where the third equality follows from Equations 28.
Also common to all four cases is the following inequality (whose long proof

similar to Lemma 1 we omit), an upper bound on the left-hand side of Constraint
25:

q∑

j=1

AjSyj ≤
(

1

d1
− 1

)

d1 +

(
1

d2
− 1

)

d2 = (1− d1) + (1− d2) (30)

Only now we consider the four cases, function of how λ is selected. In the first
case, λ = 0 and we choose d1 = d2 = 1; note that 0 < di ≤ 1. It is easy to verify
then that the cut condition is satisfied, as c1 ≥ 1, c2 ≥ 1, and c3 ≥ 2 (this is how
λ was selected). As for Constraint 25, from Equation 30 we deduce that indeed∑q

j=1 AjSyj ≤ 0 = λ.
In the second case, λ = 1 − c1 and we choose d1 = c1 and d2 = 1; note that

0 < di ≤ 1 since we made the assumption that c(e) > 0 for all e and there exists
an s1 − t1 path in G. For the cut condition, notice that d1 ≤ c1, and d2 ≤ c2
follows from 1 − c1 ≥ 2 − c3 (this is how λ was selected) and c3 ≤ c1 + c2 (as
C1 ∪ C2 is a candidate for C3). Also, d1 + d2 = 1 + c1 ≤ c3 (this is how λ was
selected). Therefore the cut condition is satisfied. As for Constraint 25, from
Equation 30 we deduce that indeed

∑q
j=1 AjSyj ≤ 1− c1 = λ.

The third case is symmetric with the second one. λ = 1 − c2 and we choose
d1 = 1 and d2 = c2, and all the arguments from the second case hold.

In the fourth case, λ = 2 − c3. We have two subcases. If c3/2 ≤ c1 and
c3/2 ≤ c2, we use d1 = d2 = c3/2. Note that 0 < c3 ≤ 2 (from the selection of
λ) so 0 < di ≤ 1. It is immediate to verify that the cut condition is satisfied.
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As for Constraint 25, from Equation 30 we deduce that indeed
∑q

j=1 AjSyj ≤
(1− c3/2) + (1− c3/2) = 2− c3 = λ.

The second case of the fourth case has λ = 2 − c3. And either c3/2 > c1 or
c3/2 > c2, and we assume by symmetry that c3/2 > c1. We use d1 = c1 and
d2 = c3 − c1. It is immediate that d1 > 0, and d1 = c1 < c3/2 ≤ 1, since the
choice of λ implies 2 − c3 ≥ 0. Also, c3 − c1 > c3/2 and therefore d2 > 0. Also
d2 = c3 − c1 ≤ 1 since the choice of λ implies 2− c3 ≥ 1− c1. The cut condition
is satisfied since in the only non-trivial case, d2 = c3 − c1 ≤ c2 since as argued
above c3 ≤ c1+ c2 (as C1 ∪C2 is a candidate for C3). As for Constraint 25, from
Equation 30 we deduce that indeed

∑q
j=1 AjSyj ≤ (1− c1)+ (1− (c3− c1)) = λ.

We have checked that in all cases, we get in polynomial time a feasible solution
to LP12. Moreover, we found in polynomial time in all four cases a feasible
solution to LP11 of the same objective vlaue. Thus we have proven:

Theorem 6. For two commodities, there exists a polynomial-time algorithm to
find a mixed Nash equilibrium for the budgeted attacker/designer game.

6 Conclusions

We note that our approach for two commodities works whenever an equivalent
of Theorem 5 holds for the input graph. It is known that Theorem 5 does not
hold for three commodities in undirected graphs, or two commodities in directed
graphs.
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