
How to Choose Communication Links in an Adversarial
Environment?

Assane Gueye, Jean C. Walrand, and Venkat Anantharam

University of California at Berkeley, EECS Department, Berkeley CA 94720, USA
{agueye,wlr,ananth}@eecs.berkeley.edu

Abstract. Given the topology of a network, characterized by an undirected graph,
we consider the following game situation: a network manager is choosing (as com-
munication infrastructure) a spanning tree of the graph, and an attacker is trying to
disrupt the communication tree by attacking one link of the network. Attacking a
link has a certain cost for the attacker who also has the option of not attacking. We
model the interaction between the network manager and the attacker as a bimatrix
game and study the set of mixed strategy Nash equilibria. We define the notion
of critical subset of links and determine the structure of a particular set of Nash
equilibria when the attack cost is nonzero. In each NE of this set, the attacker tar-
gets edges in critical subsets and all edges in the same critical subset are attacked
with the same probability. For the game of zero cost of attack considered in [8],
we characterize the set of all Nash equilibria. Some implications of the results are
discussed and a detailed proof of the NE theorem is provided.

Keywords: Network Topology, Connectivity, Graph Vulnerability, Spanning
Trees, Minimum Cut Set, Game Theory, Nash Equilibrium, Linear Programming,
Blocking pairs of polyhedra.

1 Introduction

In [8], we have studied the strategic interaction between a network manager whose
goal is to choose a spanning tree of a network as communication infrastructure, and
an attacker who tries to disrupt the communication tree by attacking one link in the
network. Therein, we assumed that the cost of attack is equal to zero for the attacker
and we discussed the notions of vulnerability and critical subset of links. We have also
shown that there always exists a Nash equilibrium under which the attacker targets
uniformly, at random, links in a critical set.

In the present paper, we generalize our results to the case where the attacker incurs
a positive cost by attacking a given link of the graph. We revisit the notions of vulnera-
bility and criticality of a subset of links and show that the critical subset attack theorem
in [8] generalizes to the present case. We determine a particular set of Nash equilibria
for the game of positive attack cost, and for the game with zero cost of attack, we char-
acterize the set of all NE. We also provide a unifying proof of the Nash equilibrium
theorem that applies both to the game presented in [8], and the one studied here.

This paper is organized as follows. We present the model and the environment of the
game in Section 2. The notion of critical subset is discussed in section 3 followed by the
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main result of this paper in section 4. We provide a proof of the main theorem in section
6. The proof requires the notion of blocking pair of matrices. Appendix B gives a brief
introduction to this notion and presents a lemma that unifies the proofs of the theorems
in [8] and in this paper. The implications of the result as well as illustrative examples are
presented in section 5. This paper ends with concluding remarks discussed in section 7.

2 Model

The network topology is given by a connected undirected graph G = (V , E) with |E| =
m links and |V| = n nodes. Let T be the set of spanning trees, and let N = |T |.
Each edge e ∈ E is associated with some cost μ(e) that an attacker needs to spend to
successfully attack that link. Each tree T has the same cost for the network manager
that we assume to be equal to 1.

To get all nodes connected in a cycle-free way, the network manager chooses a span-
ning tree T ∈ T of the graph. The attacker simultaneously chooses a link e ∈ E to
attack. The attacker wins if the attacked link belongs to the chosen spanning tree, oth-
erwise the network wins. More precisely, for a choice pair (T, e) of tree and edge, the
attack loss is L(T, e) = 1e∈T for the network, while the net attack reward is equal to
R(T, e) = 1e∈T − μ(e) for the attacker.

The manager picks a spanning tree according to a chosen distribution α on T to
minimize the expected attack loss. Similarly, the attacker chooses a link according to
some distribution β on E to maximize the expected attack reward. We assume that
the attacker has the option of not attacking, which results in a zero net reward for the
attacker and a zero loss for the manager.

We formulate this interaction as a one-shot 2-player game between the network man-
ager and the attacker. Their respective pure strategy sets are the set T of spanning trees
and the set E of edges of the graph. We are interested in analyzing mixed strategy Nash
equilibria of this game.

Let A := {α ∈ �N
+ |

∑
T∈T αT = 1} be the set of mixed strategies for the network

manager, and B := {β ∈ �m
+ |

∑
e∈E βe = 1} the set of mixed strategies for the

attacker. Define A as the loss matrix for the manager, with AT,e = 1e∈T and B is the
reward matrix of the attacker with BT,e = 1e∈T − μ(e). The average expected loss
L(α, β) for the manager, and reward R(α, β) for the attacker are given by

L(α, β) = α′Aβ =
∑

T∈T
αT

(
∑

e∈T

βe

)

, (1)

R(α, β) = α′Bβ =
∑

e∈E
βe

(
∑

T�e

αT − μ(e)

)

. (2)

3 Critical Subsets

In this section we define the notions of vulnerability and critical subset of a graph.



How to Choose Communication Links in an Adversarial Environment? 235

Definition 1. For any nonempty subset of links E ⊆ E , define

M(E) := min
T∈T

| T ∩ E |, and θ(E) :=
M(E) − μ(E)

|E| . (3)

θ(E) is called the vulnerability of E. It is the minimum fraction of edges that E has in
common with any tree minus the average cost of attacking E. Here and throughout the
paper, we use the notation μ(E) =

∑
e∈E μ(e).

A nonempty subset of edges E is said to be critical if it has maximum vulnerability:
θ(E) = maxE′⊆E {θ(E′)} . We let C denote the set of all critical subsets.
The vulnerability of the graph θ is defined to be equal to the vulnerability of its critical
subset(s).

The examples shown in Figure 1 illustrate the definitions presented above. The network
in Figure 1(a) has a vector of attack cost μ = [0.5, 0.5, 0.5, 2, 0.5, 0.5, 0.5]. It contains
a bridge that has a relatively high cost of attack (μ(4) = 2). As a consequence it is
not critical. There are two critical subsets E1 = {1, 2, 3} and E2 = {5, 6, 7} shown
respectively by the dashed and dash-dotted lines. This example illustrates the impact of
the attack cost. When a link is too costly to attack, it becomes less critical.

Figures 1(b) and 1(c) show the same network topology with different costs of attack.
In the first one, the attack costs are μ = [5, 3, 3, 5, 5, 4, 3, 3, 5, 5, 4, 5, 5, 3]/14. For these
values of the costs of attack, the minimum cutset of the graph (links 6 and 8) is critical.
If the attack costs are equal to μ = [2, 5, 1, 2, 1, 1, 6, 5, 3, 7, 1, 4, 3, 6]/21 (second case),
the minimum cutset is no longer critical. It has vulnerability θ(6, 8) = 1−(4+3)/14

2 =
1/4. One critical subset of the graph is given by the set E = {1, 2, 3, 4, 5, 6, 7, 8, }. Its
vulnerability is θ(E) = 0.3631.
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Fig. 1. Examples illustrating definition 1. The vector of attack costs are μ =
[0.5, 0.5, 0.5, 2, 0.5, 0.5, 0.5] for Figure 1(a), μ = [5, 3, 3, 5, 5, 4, 3, 3, 5, 5, 4, 5, 5, 3]/14 for
Figure 1(b), and μ = [2, 5, 1, 2, 1, 1, 6, 5, 3, 7, 1, 4, 3, 6]/21 for Figure 1(c). Each set of dashed
(or dash-dotted) lines is a critical subset.

4 Critical Subset Attack Theorem

Now, we give the critical subset attack theorem for the game defined above, a proof of
which is provided in section 6.

Theorem 1 (Critical Subset Attack Theorem). For the game defined in section 2 with
attack costs μ, the following always holds.
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1. If θ = maxE⊆E
(

M(E)−μ(E)
|E|

)
≤ 0, then there is a NE under which the attacker

will opt to not launch an attack. The equilibrium strategy (αT , T ∈ T ) for the
defender is such that

α(e) :=
∑

T�e

αT ≤ μ(e), ∀e ∈ E . (4)

The corresponding payoff is 0 for both players.
2. If θ ≥ 0, then for every probability distribution (γE , E ∈ C) on the set C of critical

subsets, the attacker’s strategy (β(e), e ∈ E) defined by

β(e) =
∑

E∈C
γE

1e∈E

|E| , (5)

is in Nash equilibrium with any strategy (αT , T ∈ T ) of the defender that satisfies
the following properties:

{
α(e) − μ(e) = θ for all e ∈ E such that β(e) > 0.
α(e) − μ(e) ≤ θ for all e ∈ E .

(6)

Furthermore, there exists at least one such strategy α.
The corresponding payoffs are θ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

E∈C
γE

M(E)
|E| . (7)

3. If μ = 0, then every Nash equilibrium pair of strategies for the game is of the type
in (2.) above.

5 Analyzing the NE Theorem

We discuss the NE theorem by considering a game on the graph shown in Figure 2.
Table 1 shows the parameters and results of the game. The first column shows different
values of the attack costs μ and the second column shows the corresponding critical
subset(s). The third column displays the vulnerability of the graph. For each vector of
attack costs, we compute the Nash equilibria of the game. The next two columns of the
table show the Nash equilibrium strategies, respectively α for the network manager,
and β for the attacker. The equilibrium payoffs are displayed in the last column. In
all equilibria, we have chosen the distribution γE to only focus on a particular critical
subset (the ones shown on the table). Note that we have not shown all Nash equilibria.

1

2
3 4

5
1 2 3 4 5 6 7 8

Fig. 2. Example of graph and its spanning trees. The left figure is the original graph with the
5 edges labeled with their number. The right figures are the 8 spanning trees of the graph also
labeled with their numbers.
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Table 1. Game with positive attack cost played for different values of the cost of attack μ

Attack Cost Critical Set Vulnerability Nash Equilibria Payoffs
μ Ec θ α β (λmin, μmax)

[3 3 5 3 4]/5 (1,4) -0.1
[0 0 2 0 0 1 0 2]/5 No Attack (0, 0)
[0 0 2 1 0 0 0 2]/5 No Attack (0, 0)

[5 2 3 2 3]/5 (1-5)&(2-4) 0
[0 2 1 2 0 0 0 0]/5 [1 1 1 1 1]/5 (0.6, 0)
[0 2 1 2 0 0 0 0]/5 [0 1 1 1 1]/4 (0.5, 0)
[0 2 1 2 0 0 0 0]/5 No Attack (0, 0)

[5 4 2 4 2]/8 (3,5) 0.25
[0 1 0 0 1 2 0 0]/4 [0 0 1 0 1]/2 (0.5, 0.25)
[0 1 0 1 0 1 1 0]/4 [0 0 1 0 1]/2 (0.5, 0.25)

[4 3 2 4 3]/8 (1-5) 0.2
[0 11 1 5 11 12 0 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)
[0 11 1 16 0 1 11 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)
[1 10 1 16 0 0 12 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)

– The first game considers a case where μ = [3 3 5 3 4]/5. Here, edge 3 has a par-
ticularly high cost (equal to the cost of a tree). In this case, the vulnerability of the
graph (θ = −0.1) is negative and the attacker does not make any gain by attacking.
Her best strategy is to “not attack” and the network manager chooses a tree accord-
ing to a distribution α that satisfies (4). There exist many such distributions α; two
of which are shown in the table. Since there is no attack, each player gets a payoff
of zero.

This game models scenarios where attacking requires an investment from the
attacker that is larger than the maximum possible expected reward. As a rational
decision maker, the attack will opt to not attack. The network manager needs to
randomize his choice of trees to deter the attacker from attacking. In fact, if the
network were to pick a fixed tree, then the attacker could get a positive reward by
attacking the cheapest link (of cost 3/5) of that tree. In other word, the randomiza-
tion is necessary for the NE to hold.

– In the next game (second row of the table), the cost of attack is μ = [5 2 3 2 3]/5.
In this case, the maximum attack reward is exactly equal to zero, and it can be
achieved by several attack strategies as can be seen in the table (column 5). Al-
though the attacker cannot gain by launching an attack, the damage she can cause
to the network varies depending on the attack she launches.

This game illustrates the importance of knowing the type/nature of an opponent.
For example, if the attacker is a competitor who also wants to maximize the loss to
the network, then, she will likely attack a link at random with the same probability
(which gives a loss of 0.6). However, if the attacker is just interested in her own
payoff, then she will probably not launch an attack.

– From these two examples and the first part of the theorem, one can infer that if
the network manager is able to influence the attack costs μ, for example making
the links harder to attack by investing on security (physical protection, Firewalls,
Intrusion Prevention Systems (IPS) to avoid Denial of Service (DoS), etc...), then he
can deter the attacker from attacking. This can be done by investing on the links to
the point that M(E) ≤ μ(E) for all subsets of edges E ⊆ E . One can compute the
optimal investment by solving an optimal reinforcement like problem. The network
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reinforcement problem of [4] is related to minimizing the price of increasing the
cost of attack of individual edges in order to achieve a target vulnerability (here 0)
for the graph. For details see [4]. If the cost of attack can be estimated by some
means, this can be a very good candidate for preventive security.

– The last two games are examples where the maximum attack reward is strictly pos-
itive. In the first one, the attacker only targets the links that are less costly which
turn out to be the minimum cutset of the graph (seen by the attacker). In the sec-
ond example, the minimum cut seen by the attacker corresponds to links 3 and 5.
However, the attack’s reward is maximized by targeting all the links with the same
probability as it is shown in the table.

– If all links of the graph have the same cost μ(e) = μ, then the vulnerability of a
subset E (defined in equation 3) becomes θ(E) = M(E)−μ(E)

|E| = M(E)
|E| − μ, and

a critical subset is one that maximizes the ratio M(E)
|E| . This definition of criticality

corresponds to the one given in [8] where the cost of attack was assumed to be zero.
Theorem 1 implies that if the cost of attack μ is larger than M(E)

|E| for all E, the
attacker will not attack. In fact, the net gain of attacking will be negative. If, in the

other hand μ > maxE⊆E
(

M(E)
|E|

)
, then the second part of Theorem 1 corresponds

to the critical subset attack theorem in [8] with γE = 1 for some critical subset E.
The attacker can take any convex combination of uniform attack on the links in a
critical subset, and the manager will choose trees according to (6).

– If γEc = 1 for a some critical subset Ec, we have that the corresponding attack
is to target uniformly links in Ec. The defense strategy should verify

∑
T�e αT −

μ(e) ≤ M(Ec)
|Ec| for all e ∈ E , and equality holds for each e ∈ Ec. Also, by the Nash

equilibria conditions it must be that for any spanning tree T

∑

e∈T

β(e) =
∑

e∈T

1e∈Ec

|Ec|
=

|Ec ∩ T |
|Ec|

≥ M(Ec)
|Ec|

. (8)

The minimum value in the equation above is achieved at each T for which αT > 0.
Since the defender’s payoff is equal to M(Ec)

|Ec| , we have that
M(Ec) = minT (|E ∩ T |) = |Ec ∩ T | for each T for which αT > 0. In other
words, the defender will select only spanning trees that cross the critical subset in
the minimum number of links. Furthermore, the net reward (

∑
T�e αT − μ(e))

is the same at each link e of the critical subset Ec. This quantity is equal to θ,
the vulnerability of the subset Ec. For any other link, this quantity should be less
than θ.

– We have seen in [8] that if the cost of attack is zero, the attacker targets edges on
a given critical subset with the same probability. The theorem of this paper tells
that this still holds even with positive cost of attack. The attack operates by taking
convex combination of uniform strategies on critical subsets.

This uniformity of attack on critical subsets comes from the geometry of the
blocker Pb

A of the spanning tree polyhedron PA induced by the defender’s payoff
matrix A (which is the spanning tree incidence matrix – see appendix B). The attack
is no longer uniform if the payoff matrix changes. To see this, assume for example
that the defender incurs a certain operation cost ηT by choosing spanning tree T . In
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this case his payoff matrix is given as AT,e = 1e∈T + ηT . We consider the simplest
none-trivial topology of two nodes connected by two parallel edges e1 and e2. With
this topology, edge e1 corresponds to tree T1. Similarly for link e2 and tree T2. We
further simplify by assuming that the attack cost μ = 0.

Letting (α, 1−α) and (β, 1−β) respectively be the defender’s and the attacker’s
strategy, the expected attack loss for the defender can be written as L(α, β) =
α(2β + η1 − η2 − 1) + 1 − β + η2. The attacker’s expected reward is R(α, β) =
β(2α − 1) + 1 − α. By analyzing these payoff functions, we see that the NE is
given as follow. If η1 ≥ 1 + η2, then α = 0 and β = 0. If η2 ≥ 1 + η1, then α = 1
and β = 1. If 0 < |η1 − η2| < 1, then α = 1/2 and β = η2−η1+1

2 . Hence, the
attacker’s mixed strategy equilibrium is not in general uniform. We get the uniform
distribution only if η1 = η2.

This shows the importance of the geometry of the problem (namely the polyhe-
dron induced by the payoff matrix and its blocker) for the determination of the NE
structure. The authors have found that [7] for the quasi-zero-sum game defined in
section 2 with arbitrary nonnegative payoff matrix A, and attack cost μ ≥ 0, the
attacker’s NE strategies are obtained by normalizing critical vertices of the blocker
polyhedron Pb

A. In the case of the spanning tree game, the blocker is such that
the normalized vertices correspond to uniform distributions. For a general payoff
matrix, normalized vertices can give arbitrary distribution.

– The Nash equilibria characterization provided in this paper (and which the authors
have studied in a more general setting [7], [6]) can be considered as an application
of the result in [1] to the particular case of quasi zero-sum game. Although Avis
et al. were not interested in characterizing Nash equilibria (which would be very
laborious for an arbitrary two-player matrix game) and did not explicitly consider
the notion of blockers, all the ingredients we have used in our NE characterization
can be derived from their results. Our use of the combinatorial notion of blocker
was the key to our success in characterizing the mixed strategy Nash equilibria of
the game. To our knowledge, such notion was not used before in the context of
computing Nash equilibria.

6 Proof of the Critical Subset Attack Theorem

In this section we provide a proof of the Nash equilibrium theorem presented in section
4. In the first part of the proof, we argue that the strategies given in the theorem for
θ ≤ 0 and θ ≥ 0 are best responses to each other. The second part shows the existence
of a distribution α that satisfies (4) if θ ≤ 0 and (6) if θ ≥ 0. The last part of the
proof shows that when μ = 0, all Nash equilibria have the form given in part (2) of
the theorem. The proof requires the notion blocking pair of polyhedra that we define in
the appendix section B.

6.1 Best Responses

First, notice that if the attacker chooses to not attack, then any α will result to the
minimum loss of zero for the defender (in particular the one given in the theorem).
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Also, if α is such that α(e) − μ(e) ≤ 0, ∀ e ∈ E , one can easily see from (2) that not
attacking is a dominant strategy for the attacker. Thus, if θ ≤ 0, the strategies given in
the theorem are best responses to each other.

Next, we show that if θ ≥ 0 the strategies given in (5) and (6) are best response to
each other. We start by showing that:

Lemma 1. If θ ≥ 0, then not attacking is a dominated strategy for the attacker. The
domination is strict if θ > 0.

The Lemma implies that if θ ≥ 0 the attacker can always at least do as well as than not
attacking (and better strictly better if θ > 0).

Proof Sketch: The proof follows from the fact that if θ ≥ 0, then, the attacker can
always get a nonnegative attack reward by uniformly targeting the edges of a critical
subset E. Indeed, there always exists at least one critical subset. The reward of such at-
tack is lower bounded by M(E)−μ(E)

|E| , which is greater than zero under the assumption
that θ ≥ 0. The bound is strict if θ > 0.

Now, suppose that the defender plays a strategy α that satisfies (6). Then, any distri-
bution β of the form β(e) =

∑
E∈C γE

1e∈E

|E| for some distribution γ = (γE , E ∈ C),
achieves a reward of θ. This is the maximum possible reward that the attacker can get.
To see this, observe that for any β,

R(α, β) =
∑

e∈E
β(e) (α(e) − μ(e)) ≤

∑

e∈E
β(e)θ = θ. (9)

The upper bound of θ is achieved by any β̃ = (1e∈E

|E| , e ∈ E) uniform on a critical subset

E ∈ C. In fact, replacing such β̃ in (2) and reordering the terms, we get

R(α, β̃) =
∑

T∈T
αT

(
∑

e∈E

1e∈E

|E| 1e∈T −
∑

e∈E

1e∈E

|E| μ(e)

)

(10)

=
∑

T∈T
αT

(
|E ∩ T |
|E| −

∑

e∈E

1e∈E

|E| μ(e)

)

(11)

≥
∑

T∈T
αT

M(E)
|E| − μ(E)

|E| =
M(E)
|E| − μ(E)

|E| = θ, (12)

where in the last step we use the fact that E is critical.
As a consequence, any distribution of the form (1e∈E

|E| , e ∈ E) for E ∈ C critical is a
best response and any convex combination of those distributions is also a best response.

Now assume that β is given as in (5) for some distribution (γE , E ∈ C). Then, the
distribution (αT , T ∈ T ) in (6) achieves a loss of r(γ) =

∑
E∈C γE

M(E)
|E| . This is the

minimum possible loss. To see this, use this expression for β to rewrite the expected
loss (1) (for any α) as
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L(α, β) =
∑

T∈T
αT

(
∑

E∈C
γE

(
∑

e∈E

1e∈E

|E| 1e∈T

))

(13)

≥
∑

T∈T
αT

(
∑

E∈C
γE

M(E)
|E|

)

(14)

=
∑

T∈T
αT r(γ) = r(γ). (15)

To get equation (13) from (1), we have reversed the order of the summations over E and
over C.

The lower bound r(γ) can be achieved by choosing α such that
∑

T∈T αT 1e∈T =
θ + μ(e) for each e ∈ E such that β(e) > 0 (the existence of such α is shown in the
second part of the theorem). This can be seen by using

∑
T∈T αT 1e∈T = θ+μ(e) and

β(e) =
∑

E∈C γE
1e∈E

|E| in (1) to get

L(α, β) =
∑

e∈E
β(e)

(
∑

T∈T
αT 1e∈T

)

=
∑

e∈E
β(e) (θ + μ(e)) (16)

= θ +
∑

e∈E

(
∑

E∈C
γE

1e∈E

|E| μ(e)

)

(17)

= θ +
∑

E∈C
γE

(
∑

e∈E

1e∈E

|E| μ(e)

)

(18)

= θ +
∑

E∈C
γE

(
μ(E)
|E|

)

(19)

= θ +
∑

E∈C
γE

(
M(E)
|E| − θ

)

(20)

=
∑

E∈C
γE

M(E)
|E| = r(γ) (21)

This implies that the distribution (αT , T ∈ T ) in (6) is a best response to β given
in (5).

6.2 Existence of the Equilibrium Distribution α

In the previous section we have shown that the strategies given in the theorem are best
responses to each other. The distribution in (5) exists by definition. However, a priori,
one does not know if there exists a probability distribution that satisfies (4) if θ ≤ 0.
Similarly, if θ ≥ 0, one needs to show the existence of a distribution that verifies the
conditions in (6). Using the results discussed in appendix B, we show the existence of
such distributions. More concretely, we will show that:

– if θ ≤ 0, there exists α verifying, α ≥ 0, 1′
T α = 1, and A′α ≤ μ,

– if θ ≥ 0, there exists α verifying, α ≥ 0, 1′
T α = 1, and A′α ≤ θ1E + μ, with

equality in the constraints for each e such that β(e) > 0.



242 A. Gueye, J.C. Walrand, and V. Anantharam

Recall that ‘A’ is the tree-link incidence matrix AT,e = 1e∈T . Also, the spanning tree
polyhedron PA is characterized by (see appendix B, [8], and [3])

PA = {x ∈ Rm
+ | x(E(P )) ≥ |P | − 1, for all feasible partitions P = {V1, V2, . . . , V|P |}}.

(22)

P is said to be a feasible partition of the nodes V of G if each Vi induces a connected
subgraph G(Vi) of G. We let E(P ) denote the set of edges going from one member of
the partition to another, and GĒ(P ) be the graph obtained by removing from G the edges
going across P . The number of connected components of GĒ(P ) is denoted Q(GĒ(P ))
and is equal the size of the partition P . We have also shown in [8] that M(E) =
Q(GĒ) − 1 for all E ⊆ E .

Now, we claim that,

Lemma 2. – If θ ≤ 0, then μ ∈ PA.
– If θ ≥ 0, then (θ1E + μ) ∈ PA.

Using the first part of this lemma, and Lemma 3 of Appendix B, we conclude that if
θ ≤ 0, the value of the following LP is greater than 1.

Maximize 1′
T x, subject to A′x ≤ μ, and x ≥ 0. (23)

Using this, we can construct a distribution α satisfying (4) by normalizing any solution
of this LP.

Similarly, if θ ≥ 0, we can construct a distribution α that satisfies A′α ≤ θ1E + μ.
This gives an α for which we still need to show that equality holds whenever β(e) > 0,
where β is a distribution of the form (5). For that, we make the following additional
claims.

Theorem 2. Let x∗ be the solution of the following LP:

Maximize 1′
T x

subject to A′x ≤ b, x ≥ 0. (24)

where b = θ1E + μ. Then,
a) 1′

T x∗ ≤ 1;
b) A′x∗(e) = b(e), ∀ e ∈ E for which β(e) > 0, where β is given in (5).

Notice that, from Lemma 2 we have that the value of the linear program is greater than
1. This, combined with part a) of the theorem, imply that the value of the LP is exactly 1.
Part b) of the theorem gives the equality conditions that we needed. As a consequence,
x∗ satisfies (6) and implies the existence of the NE distribution α when θ ≥ 0.

6.2.1 Proof of Lemma 2

– By definition of θ, we have θ ≤ 0 ⇔ μ(E) ≥ M(E) for all E ⊆ E . [8, Lemma 1]
gives M(E) = Q(GĒ)−1, where Q(GĒ) is the number of connected components
of the graph G when all edges in E are removed. Thus, θ ≤ 0 ⇔ μ(E) ≥ Q(GĒ)−
1 for all E ⊆ E .
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Now, let P be a feasible partition of the nodes V of G. Using the above observa-
tions, we can conclude that

θ ≤ 0 ⇔ μ (E(P )) ≥ Q(GĒ(P )) − 1 = |P | − 1 (25)

Since the partition P is feasible, μ (E(P )) ≥ |P | − 1 implies that μ ∈ PA, which
ends the proof of the first part of the lemma.

– To prove that the vector b = θ1E +μ ≥ 0 belongs to the polyhedronPA whenever
θ ≥ 0, we argue that

b (E(P )) ≥ |P | − 1, for all feasible partitions P . (26)

Recall, from the above that for all feasible partitions P

M(E(P )) = |P | − 1. (27)

Now, assume that b does not verify (26)– i.e b (E(P )) < |P |−1, for some feasible
partition P . Then one must have,

|P | − 1 >
∑

e∈E(P )

be = θ (E(P ))
∑

e∈E(P )

1 +
∑

e∈E(P )

μ(e) (28)

= θ (E(P )) |E(P )| + μ (E(P )) (29)

= M (E(P )) − μ (E(P )) + μ (E(P )) = M (E(P ))(30)

which contradicts (27). Thus, b (E(P )) ≥ |P |−1 for all feasible P , or equivalently
b ∈ PA.

6.2.2 Proof of Theorem 2

a) To prove that 1′
T x∗ ≤ 1, we first observe that

β′A′x =
∑

T∈T
xT

(
∑

e∈E
β(e)1e∈T

)

(31)

=
∑

T∈T
xT

(
∑

e∈E

(
∑

E∈C
γE

1e∈E

|E|

)

1e∈T

)

(32)

=
∑

T∈T
xT

(
∑

E∈C
γE

(
∑

e∈E

1e∈E

|E| 1e∈T

))

(33)

=
∑

T∈T
xT

(
∑

E∈C
γE

(
|E ∩ T |
|E|

))

(34)

≥
∑

T∈T
xT

(
∑

E∈C
γE

M(E)
|E|

)

(35)

=
∑

T∈T
xT r(γ) (36)

= r(γ)1′
T x (37)
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On the other hand, from the constraints A′x ≤ b = θ1E + μ and using the same
arguments as in (16)-(21), we have that

β′Λ′x ≤ β′ (θ1E + μ) = θ + β′μ = r(γ). (38)

Combining (37) and (38), it follows that,

r(γ)1′
T x ≤ β′Λ′x ≤ r(γ). (39)

Thus 1′
T x ≤ 1 for all feasible x, i.e. the value of the program is at most 1.

b) Notice from the above and from the conclusion of Lemma 2 that for θ ≥ 0 the
value of the LP defined in Theorem 2 is exactly equal to 1. Thus,

β′A′x∗ = r(γ)1T x∗ = r(γ). (40)

Also, A′x∗ ≤ θ1E + μ by the constraints of the primal LP above.
Now, assume that A′x∗(e) < θ + μ(e) for some e ∈ E with β(e) > 0. Then,

β′A′x∗ =
∑

e∈E
β(e)A′x∗(e) (41)

<
∑

e∈E
β(e)(θ + μ(e)) (42)

= θ +
∑

e∈E
β(e)μ(e) (43)

= r(γ), (44)

where the last equality is obtained by using the same arguments as in (16)-(21). This
contradicts observation (40). As a consequence, A′x∗(e) = θ + μ(e) for all e ∈ E with
β(e) > 0.

This ends the proof of the theorem and establishes the existence of an α satisfying
(6) for any β defined as in (5).

6.3 Enumerating All Nash Equilibria

In this section, we consider the zero-sum game where μ = 0 and show that all Nash
equilibria of the game have the form given in Theorem 1 equations (5) and (6).

In this case, since there is no cost of attack, θ > 0. We claim that for any strategy
pair (αT , T ∈ T ) and (β(e), e ∈ E) that are in Nash equilibrium, it must be the case
that (β(e), e ∈ E) is given by

β(e) =
∑

E∈C
γE

1e∈E

|E| , (45)

for some probability distribution (γE , E ∈ C) on the set of critical subsets.
As a consequence of this, we will conclude that α must be in the form given in the

Nash equilibrium theorem.
Because of space limitations, we describe the main points of the proof in appendix

A and for the full proof, we refer the interested reader to [6] and [7].
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7 Conclusion and Future Work

This paper studies a generalization of the topology design game defined in [8], where a
network manager is choosing a spanning tree of a graph as communication infrastruc-
ture, and an attacker is trying to disrupt the communication tree by attacking one link
of the graph. Assuming that the attacker incurs a positive cost by attacking any given
link of the network, we revisit the notions of vulnerability and criticality of a subset of
links.

We have determined the values of the attack costs for which a rational attacker will
opt to not launch an attack. When the attacker decides to attack, we have shown that
there always exists a NE under which she attacks randomly, with the same probability,
links in a given critical subset. The randomization can also be done across critical sub-
sets. The network manager chooses only spanning trees that cross the critical set in the
minimum number of edges, and such that the sum of the probabilities of all trees going
through any link in the critical set minus the cost of attacking that link, is the same.

For the game of zero costs of attack studied in [8], we have characterized the set
of all Nash equilibria. The NE strategies are such that the attacker will always target
links in critical subsets and attacks all links in the same critical subset with the same
probability.

We have shown, by a simple example, that the uniformity of the attack on each
critical subset is a consequence of the geometry of the problem. Mainly, the vertices of
the blocker of the spanning tree polyhedron are such that if normalized, they results to
uniform distribution. This is not always the case. For instance, if the defender incurs
different cost of choosing different spanning trees, the attack strategies are no longer
uniform on critical subsets.

The proof concepts presented in this paper have been generalized to identify Nash
equilibria for a class of quasi zero-sum games. For details of the general study, we refer
the interested readers to [7] and [6].
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A Proof Sketch of the NE Enumeration Claim

Theorem 1, tells that if the attack costs μ = 0, then all Nash equilibrium pairs (α, β)
of the game have the form given in (6) for α and in (5) for β. To show this, we claim
that for any strategy pair (αT , T ∈ T ) and (β(e), e ∈ E) that are in Nash equilibrium,
it must be the case that β is given by

β(e) =
∑

E∈C
γE

1e∈E

|E| , (46)

for some probability distribution (γE , E ∈ C) on the set of critical subsets.
We prove this claim by scaling any mixed strategy β (seen as a vector in R

|E|
+ ) with

a proper constant such that it belongs to the blocker of the spanning tree polyhedron.
The proof is based on the following ideas.

– Since the spanning tree polyhedron PA and its blocker Pb
A are given in terms of

feasible partitions, we establish a correspondence between feasible partitions and
critical subsets of the graphs. Basically, we show that every critical subset is the set
of edges going across the elements of some feasible partition. We define the notion
of critical partitions ΠC (corresponding to critical subsets) and show the following
equivalent claim:

β(e) =
∑

P∈ΠC

γP

1e∈E(P )

|E(P )| , (47)

where γ is now viewed as a distribution on the critical partitions.
– Because the game is zero-sum, we know that all NE (α, β) have payoff θ > 0

which is given as:

θ =
∑

T∈T
αT

(
∑

e∈E
β(e)1e∈T

)

> 0. (48)

We argue that
∑

e∈E β(e)1e∈T > 0 for all T , and can be scaled by a constant κ so
that

∑
e∈E κβ(e)1e∈T ≥ 1. This means that the vector κβ belongs to the blocker of

the spanning tree polyhedron (see Theorem 3 of the appendix). Recall that [8] the
vertices of this blocker are vectors of the form (1e∈E(P )

|P |−1 , e ∈ E), for some feasible
partitions P .

http://www.eecs.berkeley.edu/~agueye/index.html
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We argue that by making the proper choice of κ the vector κβ can be written as

κβ(e) =
∑

P∈ΠC

γP

1e∈E(P )

|P | − 1
, (49)

and show that the proper κ must be in the form κ = |P |−1
|E(P )| for some critical partition

P ∈ ΠC . But all critical partitions (subsets) have the same ratio |P |−1
|E(P )| . By dividing

the equation by κ we get

β(e) =
∑

P∈ΠC

γP

1e∈E(P )

|E(P )| . (50)

Using the correspondence between critical partitions and critical subsets, we get
the claim in (46).

B Blocking Pair of Matrices

The discussion in this appendix section is mostly based on [9, pp. 99-101].
Let A be a r ×m nonnegative matrix. The polyhedron PA associated with A is defined
as the vector sum of the convex hull of its rows (a1, . . . ,ar) and the nonnegative orthant:

PA = conv.hull (a1, . . . ,ar) + R
m
+ . (51)

A row ai of A is said to be inessential if it dominates a convex combination of other
rows of A. If all the rows of A are essential, we say that A is proper. In this discussion
we will assume that A is proper. For example, if A is the tree-link incidence matrix of
the spanning trees of a graph, then A is a proper matrix and PA defines the spanning
polyhedron of the graph.
Next we define the blocker of the polyhedron PA.

Definition 2. The blocker Pb
A of PA is defined as:

Pb
A =

{
x ∈ R

m
+ : x · y ≥ 1, ∀ y ∈ PA

}
(52)

We are interested in characterizing the polyhedronPA and its blocker Pb
A. This is given

by the following theorem by Fulkerson [5]. It is based on the fact that there is a one-to-
one correspondence between the rows of A and the extreme points of PA.

Theorem 3. Let the r-by-m matrix A be proper with rows a1, . . . ,ar, and let the poly-
hedron PA be defined as in (51). Let b1, . . . ,bs be the extreme points of Pb

A, and let B
be the matrix having those points as rows. Then,

i. The blocker Pb
A of PA is given by Pb

A =
{
x ∈ R

m
+ : Ax ≥ 1

}
.

ii. B is proper, and the polyhedronPA can be described as PA =
{
x ∈ R

m
+ : Bx ≥ 1

}
.

iii. The blocker of the blocker Pb
A verifies

(
Pb

A

)b = PA.

A and B are said to form a blocking pair of matrices.
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Blocking pairs of matrices play an important role in the combinatorial problem of max-
imum packing (see Fulkerson[5]). In this paper, we use the theory of blocking pair to
provide an easy argument for the existence of a probability distribution that satisfies a
certain number of constraints.
Consider the following linear program:

Maximize 1′x
subject to A′x ≤ w, and x ≥ 0, (53)

where the constraint A′ is a nonnegative matrix.
We are interested to knowing whether the value of the program is greater than 1 or

not. The following lemma gives an answer to that question.

Lemma 3. The value of the LP in (53) is greater than 1 if and only if w belongs to the
polyhedron PA defined by A.

Proof. The proof of the lemma is as follow.
First notice that strong duality holds for this LP. In fact, Slater’s condition [2] is

satisfied for any nonnegative w. The dual of the LP is given as:

Minimize w′y
subject to Ay ≥ 1, and y ≥ 0. (54)

The constraints of the dual program (54) define the blockerPb
A =

{
y ∈ R

m
+ : Ay ≥ 1

}

of the polyhedron PA.
Now, if w belongs to PA, then for all y ∈ Pb

A, we have that w′y ≥ 1.
Conversely, if w′y ≥ 1 for all y ∈ Pb

A, then w must be in the blocker of Pb
A which

is PA.
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