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Abstract. In this paper, we study dynamic routing games where the de-
cision of an user is spatio-temporal control. Each user ships its demand
over time on a shared resource. We investigate the equilibrium of such
systems and show the existence and uniqueness of equilibrium. In the
second part, we study a stochastic congestion games where there is only
one shared resource and the traffic is indivisible. The information struc-
ture that we consider is such that each user knows the state of its own
buffer but not aware of states and the actions taken by other users. The
game can be described as a game with random environment. We charac-
terize the structure of equilibria policies using linear programming. We
also study the properties of equilibrium considering another model for
stochastic congestion game in which a fixed amount of divisible demand
arrives each day. This demand can shipped to destination by sending
some part today and remaining the next day.

1 Introduction

Routing games are concerned with one or more classes of individuals, where
each class is characterized by a source-destination pair and a demand function.
A given network is shared by the users. Routes are chosen by the players so as
to minimize the delays. In road traffic engineering, routing games appeared in
1952 [5]. Non-cooperative routing has long been studied both in the framework
of road-traffic as well as in the framework of telecommunication networks. Such
frameworks allow us to model the flow configuration that results in networks in
which routing decisions are made in a non-cooperative and distributed manner
between the users. There can be finite or infinite number of users.

In the case of a infinite number of players each player is assumed to be atom-
less. By atomless we mean that the impact of routing choices of a single player
on the utilities of other players is negligible. The resulting flow configuration cor-
responds to the Wardrop equilibrium [5]. This concept, has long been studied in
the context of road traffic where there is an infinite number of players (drivers)
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[3]. In the telecommunication community, the mostly used routing game model
introduced by Orda, Rom and Shimkin [2] is that in which the number of players
are finite, where a player (typically corresponding to a service provider) takes
the routing decisions for the whole class of users that it controls. It then decides
on how to split the demand it controls between various possible routes. They
establish existence and uniqueness of Nash equilibrium over large class of gen-
eral cost functions. This approach also appeared in the road traffic literature
(e.g. [1]) but was not much used there. Such a routing game may be handled by
models similar to [6] in the special case of a topology of parallel links.

An alternative class of routing games is the one in which a player has to
route all the demand it controls through the same path. A special case of such
framework is the “congestion games” introduced by Rosenthal in [4]. All the
above works have been well studied in time-invariant networks.

In this paper, we study a dynamic routing game where the decision of a user
is spatio-temporal. The demand has to be split not only over space but also over
time. As an example, assume that N players have each its own demand which
should be shipped within a week from a given source to a destination. Thus a
player has to split its demand into that corresponding to each of the days of the
week. At each day, the route corresponding to the daily demand of each player
should be determined. Examples of such games in road traffic appear in [13].

A dynamic routing game over T days can often be transformed into an equiva-
lent static one. Indeed, in the equivalent static model, we make T replicas of the
original network, one corresponding to each day. The source node for a player in
each of the replicated networks is connected to a node corresponding to the source
for that player (and we do the same with the destination). The fact that the game
is repeated over time allows often to observe what other players did in the past.

The paper is organized as following. In section 2 we briefly overview some
results in dynamic games that are relevant to the dynamic routing game: the
existence of equilibria within open-loop as well as closed-loop strategies and
procedures for computing them. We obtain explicit expression for equilibrium
considering polynomial cost functions and study its structure. In section 3 a
simple stochastic congestion game is modeled in which only one unit of demand
can arrive to each player with some probability. The state of a player evolves
according to whether they decide to transmit or not. We study the existence
and structure of stationary policies. In section 4 we consider another model of
stochastic congestion game in which the fixed demand arrives each day that has
to be shipped within two days. We end with conclusion in section 5.

2 Dynamic Game with Fixed Demand

Assume that there is a fixed amount of demand that has to be shipped over a
link within a fixed time, say T days. We consider two non-cooperative scenarios.
In the first case the demand is considered as infinitely many users. In other
case we consider finite number of players, where each tries to ship their demand
over the shared link in a selfish way so that the total cost incurred by them is
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minimized. We study structure of spatio temporal equilibrium flows in both cases
using notion of Wardrop equilibrium in the former case and Nash equilibrium in
the latter.

2.1 Non-atomic Routing Games

In the context of road traffic, Wardrop [5] proposed the following definition of
equilibrium

“The journey times on all the routes actually used are equal, and less than those
which would be experienced by a single vehicle on any unused route”

Consider an amount d of demand that has to traverse a common shared link.
Each player has to determine at what day within a common finite set S to leave.
Let xi be the amount of players that leave at day i. A player leaving in day i pays
a congestion cost f(xi) and a delay cost of i units. The vector x = (x1, ..., xT ) is

said to be feasible if
∑T

i=1 xi = d. It is a spatio temporal Wardrop equilibrium
if there is some constant α > 0 such that for each i = 1, ..., T , we have

f(xi) + i ≥ α and xi(f(xi) + i− α) = 0

Equivalently,
all days for which xi > 0, f(xi) + i = α

and for all other i’s, f(0) + i ≥ α.
(1)

and for all i ∈ I we have xi = f (−1)(α− i) .
Thus if f is increasing then so is f (−1) and then xi is decreasing in i at

equilibrium. Thus there is a threshold policy such that till day i∗, some traffic
is shipped everyday, and after that threshold nothing is shipped.

2.2 Atomic Routing Games

In this section we consider finite number of playersN each competing for the link.
The decision of each player influences the cost of the others. Let the demand of
each player i = 1, 2, · · · , N be di > 0 that has to be shipped to destination over a
period of T days. The amount of flow sent by player i in the jth day is denoted by
xi
j and the vector xi = (xi

1, x
i
2, · · · , xi

T ) denotes the flow of user i. The vector xi

is said to be feasible if
∑T

j=1 x
i
j = di. Let the vector xj = (x1

j , x
2
j , · · · , xN

j ) denote
the amount of flow sent by each user on day j. The total flow on day j is denoted
as xj =

∑N
i=1 x

i
j . For a given flow configuration of users (x1,x2, · · · ,xN ), user i

pays a congestion cost of f(xj) and delay cost of j per unit of its flow on day j.
The objective of each user is to minimizes his cost given by

J i(x1,x2, · · · ,xN ) =

T∑

j=1

xi
j(f(xj) + j)

subjected to its demand constraints. A feasible vector x∗ = (x∗1,x∗2, · · · ,x∗N )
is said to be Nash equilibrium if for each user i = 1, 2, · · · , T .
J i(x∗1,x∗2, · · · ,x∗i, · · · ,x∗N) ≤ J i(x∗1,x∗2, · · · ,xi, · · · ,x∗N) for all feasible xi.



208 M.K. Hanawal et al.

The above spactio temporal dynamic game is completely equivalent to a static
parallel link problem studied by [2] with link cost Ji(xi) taking value Ji(xi) =
f(xi) + i. When f is a positive, strictly increasing, convex and continuously
differentiable all the assumptions in type-B functions in [2] are satisfied. Hence
the existence and uniqueness of Nash equilibrium hold. Further the following
property hold for the equilibrium flow.

Proposition 1. The total flow xj is non-increasing in each day.

Proof. Let Lj denote the set of all users who put a positive flow on day j, i.e.,
Lj = {i : xi

j > 0}. From the KKT conditions for all i ∈ Lj there exists a λi such
that (see, [2][eq. 2,3])

f(xj) + xi
jf

′(xj) + j = λi and f(xk) + xi
kf

′(xk) + k ≥ λi for all k �= j.

Summing over the set Lj (j > 1) we get

f(xj)|Lj |+ xjf
′(xj) ≤ f(xj−1)|Lj |+

∑

i∈Lj

xi
j−1f

′(xj−1)

≤ f(xj−1)|Lj |+ xj−1f
′(xj−1)

By the assumption that f and f ′ are monotonically increasing we obtain xj−1 ≥
xj for all j.

Ayesta et al. [7] showed while studying the load balancing non-cooperative game
that the worst case Nash equilibrium occurs when each user have the same
amount of demand, i.e, when users are symmetric. Next we will calculate the
Nash equilibrium for this case.

Symmetric Users: Consider that every user has a fixed demand di = d to
route. Cominetti, Correa, and Stier-Moses [8][Sec. 4.2] showed that the game
with symmetric users is a potential game [9] and the Nash equlilibrium can
be obtained as the solution of a single optimization problem as following. If
x∗ = (x∗

1, x
∗
2, · · · , x∗

T ) is the solution of the following optimization problem

minimize
x=(x1,x2,··· ,xT )

T∑

i=1

xi(f(xi) + i) + (N − 1)

T∑

i=1

∫ xi

0

(f(x) + i)dx

subject to − xi ≤ 0, i = 1, 2, · · · , T and
T∑

i=1

xi = d.

then flow profile at Nash equilibrium is given by xi = {x∗
1

N ,
x∗
2

N , · · · x∗
T

N } for each
user i = 1, 2, · · · , N .

We consider the special case when the congestion cost is polynomial, i.e., of
the form f(x) = axp+ b, for some a, b > 0 and p > 1. Polynomial functions were
introduced for congestion cost originally in the context of road traffic. In [11]
existence of equilibrium and its uniqueness are studied for the general network
topology with polynomial congestion cost. The following proposition gives values
of the flow at equilibrium.
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Proposition 2. For polynomial congestion cost the equilibrium flow is

x∗
j =

⎧
⎪⎨

⎪⎩

(
β−j−b
a+ ap

N

) 1
p

if j < β − b

0 otherwise

where β is such that it satisfies

∑

j:j<β−b

(
β − j − b

a+ ap
N

) 1
p

= d

Proof. See Appendix A.

Next we consider the case when players co-operate among themselves and try to
minimize the total cost.

2.3 Global Optimum

Consider the scenario as in the previous sub section 2.2. The objective of each
user when the total demand D is

minimize
(x1,x2,··· ,xT )

T∑

j=1

xj(f(xj) + j)

subject to − xj ≤ 0, j = 1, 2, · · · , T. and

T∑

j=1

xj = D.

Let (x∗
1, x

∗
2, · · · , x∗

T ) be the optimal value of flows that achieve minima. Then by
the necessary KKT conditions there exist a α > 0 such that the following hold

f(x∗
j ) + x∗

jf
′(x∗

j ) + j = α if x∗
j > 0 and

f(x∗
j ) + x∗

jf
′(x∗

j ) + j ≥ α if x∗
j = 0

(2)

Since we assumed that f is monotonically increasing and convex, the function
F (x) = f(x)+xf ′(x) is monotonically increasing. Also, by writing x∗

j = F−1(α−
j) we observe that flow is monotonically decreasing till day j∗ and after that
nothing is shipped.

From equations (2) and (1) the following lemma is easy to verify.

Lemma 1. Let x∗ = (x∗
1, x

∗
2, · · · , x∗

T ) denote the minimum of the global op-

timization problem
∑T

i=1(g(xi) + i · xi) subjected to constraints, where g is a
differentiable function. Define f(·) = g′(·) then x∗ is Wardrop equilibrium of the
game with cost function f if and only if it is a global optimum.

More general versions of the above results appear in [12][Chapter 18].
Again, considering the polynomial cost structure, optimal flows can be char-

acterized as in the following proposition.
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Proposition 3. For the polynomial congestion cost optimal flow is

x∗
j =

⎧
⎪⎨

⎪⎩

(
β−j−b
a+ap

) 1
p

if j < β − b

0 otherwise,

where β is such that it satisfies

∑

j:j<β−b

(
β − j − b

a+ ap

) 1
p

= D.

With the Nash equilibrium flow and optimal flow in proposition 2 and proposi-
tion 3, we can compute social cost at equilibrium and optimal cost and hence
price of anarchy(PoA). For the polynomial cost function we obtain an upper

bound of

(
1+p

1+p/N

)1+1/p

. For detailed proof see Appendix B. The proof method

is similar to that in [7].

3 Stochastic Congestion Game

3.1 Motivating Examples

The game is motivated by the following scenario: N transport companies share a
network of roads over which they want to schedule their traffic on a day-to-day
basis. The traffic to be routed by each company varies on a day-to-day basis
according to a given stochastic process. The objective of each company is to
route its traffic in such a way so as to minimize the average delay of its traffic.
The cost incurred by a player, which represents the delay due to congestion on
the roads over which they schedule the traffic, depends not only on the amount
it routes but also on the amount the other players route thereby leading to a
game.

Another practical scenario where this game is played is that of a set of univer-
sities who share a cluster of processors over which they want to schedule tasks
which arrive according to a given stochastic process. At the beginning of each
day, each player has to decide the tasks it schedules over each of the processors
with the knowledge that the delay incurred by its tasks depends also on the
scheduling policy of the other players.

In this section we assume that there is only one shared resource (road or
processor), and that the traffic is indivisible, that is, a player cannot divide its
traffic over two or more slots. It should either route the entire traffic or wait.
Unlike in the previous section we consider the case where game is repeated
infinitely many times. Description of our game model is as following. We largely
follow the notation used in [10].
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3.2 Model

1. State space: At the beginning of a slot, player i can be either active or
inactive. In the active state, the player has some amount of traffic to ship
from some source to some destination. It stays in this state until it routes
this traffic and then moves to the inactive state. The player then stays in
the inactive state until a new unit of traffic arrives.
We shall assume that, when player i is in the inactive state, a new unit of
traffic arrives with probability pi as a result of which the player becomes
active. Let xi

t denote the state of player i in slot t, and let xt denote the
state vector at the beginning of slot t. We denote state space of ith player
as X i = {0, 1}. Active state corresponds to 1 and inactive state to 0.

2. Action set: At the beginning of a slot, an active player can decide either
to route its traffic or to postpone. The actions available to player i in slot t,
ait, is thus a subset of {0, 1}. A player sends all of its traffic when it decides
to route in the active mode. We shall denote the action set of player i when
it is in state x as Ai(x). Specifically, Ai(x = 0) = 0 and Ai(x > 0) = {0, 1}.
Let at = (a1t , a

2
t , · · · , aNt ) ∈ ∏N

i=1 A
i(xi

t) denote the action vector at the
beginning of slot t when the state vector is xt. Define the local set of sate-
action pair for player i as Ki = {(xi, si) : xi ∈ X i, si ∈ Ai(xi)}, and K−i

denote the state-action set of all other users, i.e., K−i =
∏N

j �=i Kj

3. Dynamics of the state: The state of player i, xi
t evolves according to a

Markov chain whose transition matrix in slot t depends on the action ait and
the current state. For each user we denote the transition probability from
state x ∈ X i to y ∈ X i when user takes action a ∈ Si(x) as P i

xay. When a
player i is in inactive mode it can get a unit of traffic with probability pi,
hence takes values xi

t+1 = 1 with probability pi or remains in the inactive
mode with probability 1−pi. Similarly, in the active mode if the action is to
transmit then a new state becomes active with probability pi and inactive
with probability 1 − pi. If the state is active and action is not to transmit
than state remains active. Transition probability matrix is given by

P i
(·)a(·) =

[
1− pi pi

(1− pi)a 1− (1− pi)a

]

(3)

4. Cost functions: In a given slot t, an active player who routes its traffic
incurs a cost which is a function of the number of players who routed their
traffic in that slot. On the other hand, if an active player decides to postpone,
then it incurs a fixed cost d which can be inferred as a penalty for the
increased delay incurred by the traffic. Let cit :

∏N
i=1 Ki → R be the cost

incurred by player i in slot t, then

cit(xt, at) = f

(
∑

i

xi
ta

i
t

)

+ d
(
(1− ait)x

i
t

)
. (4)

5. Policies and Information: Define the history of player i at time t to
be a sequence of its past state and actions including the current state
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hi
t = (xi

1, a
i
1, x

i
2, a

i
2, · · ·xi

t−1, a
i
t−1). Let Hi

t denote the collection of all such
histories. The policy of a players i is a sequence of maps (ui

1, u
i
2, · · · ), where

the maps are given by ui
t : H

i
t → M(Ai) with M(Ai) denoting the probabil-

ity vector on the set Ai. Set of all policies of player i is denoted as U i and
the collection U =

∏N
i=1 U

i is called multi-polices. A stationary policy for
a player i is a function ui : Xi → M(Ai) so that ui(·|xi) ∈ M(Ai(xi)). Set
of all stationary policies for player i is denoted as U i

S and the collection of

all users stationary policies as US =
∏N

i=1 U
i
S . Note that when the user is

in inactive mode then only possible action is 0, hence ui(0|xi = 0) = 1. In
our model a stationary policy is completely characterized by the probability
of transmission in active state, i.e., qi := ui(1|1). We use both ui and its
associated qi to denote a stationary policy interchangeably. The transition
probability matrix when the ith users stationary policy is qi is given by

Pi(qi) =

[
1− pi pi

qi(1− pi) 1− qi(1− pi)

]

(5)

For any multi policy u ∈ U , let u−i denote the multi policy without the
policy ui and [u−i|vi] denote the multi policy with the policy ui of ith user
replaced by vi. We assume that each user i has information of its own state
and makes decision only based on this information.

6. Utility and the objective: The objective of player i is to select its strate-
gies so as to minimize the total cost it incurs over the horizon. Let β denote
the distribution of the initial state. Let {Xt, At}t>0 denote the sequence
of random variable on state and action sets, where Xt = {X1

t , X
2
t , · · · , XN

t }
and At = {A1

t , A
2
t , · · · , AN

t }. The state action pair {Xt, At} evolve according
to the distribution which is determined by multi policy u ∈ U , the transi-
tion probabilities and β. We denote this distribution by PU

β and expectation

with respect to this distribution as E
U
β . Each user i = 1, 2, · · · , N seeks to

minimize his average expected cost.

Ci(U, β) = lim sup
T→∞

1

T
E
U
β

T∑

t=1

cit(Xt, At) (6)

Below we restate the definition in [10][Def 2.1] for Nash equilibrium and optimal
response for a stochastic game.

Definition 1. 1. A multi policies u ∈ U is said to be Nash equilibrium if i =
1, 2, · · · , N and for any vi ∈ U i

Ci(β, u) ≤ Ci(β, [u−i|vi]) for any vi ∈ U ii = 1, 2, · · · , N. (7)

2. For any multi policy u, policy ui of user i is said to be optimal response
against u−i if (7) holds for any vi ∈ U i.

3. For any multi polices u, v ∈ U , v is said to be optimal response against u if
for each user vi is the optimal response against u−i.

Next we will study the existence of stationary Nash equilibrium and its
properties.
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3.3 Equilibrium and Properties

Let π(qi) = (π(1|qi), π(0|qi)) denote the stationary distribution on the states of
user i when he/she uses the stationary policy qi ∈ U i

S, where the component
π(x|qi) denotes the stationary probability of state x ∈ Ai. Markov chain of each
user is irreducible with the stationary distribution as a function of policy given
by

π(1|qi) = qi(1 − pi)

qi + pi(1− qi)
and π(0|qi) = pi

qi + pi(1 − qi)
. (8)

The stochastic congestion game defined above satisfies all the assumptions in
Theorem 2.1 in [10]. Hence, we have the following existence result.

Proposition 4. The stochastic game has a stationary multi policy u ∈ US which
is a Nash equilibrium.

The optimal response of the ith user when the other user use stationary policies
can be computed from the linear programming.

3.4 Linear Programming

For any state action pair (x, a) ∈ Ki the expected cost incurred by the the i
player when other user use stationary policy u−i ∈ U−i

S is

ci,u(x, a) =
∑

(x−i,a−i)∈K−i

(∏

j �=i

uj(aj |xj)π(xj |qj)
)

ci(x, a), (9)

where qj denotes the probability associated with stationary strategy uj and
x = [x−i|xi] a = [a−i|ai].
Let z∗i,u = {z∗i,u(x, a); (x, a) ∈ Ki} be such that it minimizes

∑

(x,a)∈Ki

ci,u(x, a)zi,u(x, a) subjected to

∑

(x,a)∈Ki

zi,u(x, a)[δr(x) − P i
xar] ∀r ∈ X i

zi,u(x, a) ≥ 0 ∀ (x, a) ∈ Ki and
∑

(x,a)∈Ki

zi,u(x, a) = 1

(10)

Then the optimal policy is given by

ui∗(a|x) = z∗i,u(x, a)∑
a∈Ai z∗i,u(x, a)

. (11)

Next, we will consider symmetric users and characterize the Nash equilibrium.
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3.5 Symmetric Users

Let p denote the probability that a packet arrives to each players. From equation
(9) observe that ci,u(1, 0) = d(1) and ci,u(0, 0) = 0. By substituting the the
expected cost of ith player when the others use stationary strategy u−i in (10)
the best response of ith player is given by the following linear programming
below. Let x := zi,u(1, 1),

minimize ci,u(1, 1)x+ ci,u(1, 0)
(
1− x

p

)

subjected to 0 ≤ x ≤ p
(12)

If x∗ is the optimal value of the above optimization problem than from equation
(11) the best stationary response of ith player is given by qi = x∗/

(
x∗ +

(
1 −

x∗/p
))
.

Now, considering two player case we characterize the Nash equilibrium as
following.

Proposition 5. For any given functions f, d and packet arrival probability p, if
there exists q ∈ [0 1] that satisfies

qπ(1|q)f(2) + (1− qπ(1|q))f(1)− d(1)

p
= 0,

then (q, q) is the stationary symmetric Nash equilibrium (SSNE). Further, if

f(1) > d(1)
p then ’no-transmit’ for both player is SSNE. If (1− p)f(2)+ pf(1) <

d(1)
p than ’transmit’ for both players is SSNE.

Proof. See Appendix C.

4 Stochastic Congestion Game with Fixed Demand

In this section we consider another version of stochastic congestion games with
one player every day. Each day the arriving player has to decide how much of
the traffic to send that day and how much to send the next day. The model is
as following.

– One player arrives each day with a fixed demand of φ > 0 units. This demand
has to be shipped to the destination using a shared link. φ−λ units of demand
is urgently required at the destination and hence needs to be shipped the
same day by every player, where 0 ≤ λ ≤ φ. The remaining λ units of
demand can be shipped either entirely in that same day or entirely at the
next day, but no later. The ith player ships the remaining λ units of demand
with probability pi the same day. We denote the amount of demand shipped
by the ith player at its arrival date as Xi and it takes values as following

Xi =

{
φ, w.p pi
φ− λ, w.p 1− pi

(13)
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– Cost function: Each player has to pay for the usage of the shared link. We
assume that the amount paid depends on the total units of demand shipped
on that day (congestion cost). Let f denote the congestion function. If the
player decides to send λ units of demand the next day he/she has to pay
a storage cost of d units per demand and the congestion cost the next day.
Note that the cost incurred by the ith player depends only on shipping policy
of the players of the previous day and that of the next day. We denote the
total cost incurred by the ith player as Ji and it is given by

Ji(Xi−1, Xi, Xi+1) = Xif(Xi +φ−Xi−1) + (φ−Xi)(d+ f(φ−Xi +Xi+1))

– Strategy and utility: Each player has to decide whether to ship the entire
demand in one shot or ship only (φ−λ) at its arrival day and the remaining λ
units of demand the next day. The strategy of the ith player is the probability
with which it transmits the entire demand in one shot. We denote it by
pi ∈ [0 1]. We are interested in symmetric equilibria, so we assume that
there is some constant p−i such that any player other than i ships its entire
demand with the same probability p−i. The objective of each player is to
choose a strategy pi ∈ [0 1], for day i, such that it minimizes his/her expected
cost given that other players use p−i. Player i faces the following optimization
given that all other days the strategy used is p−i.

min
0≤pi≤1

Epi,p−i [Ji(Xi−1, Xi, Xi+1)] i = 1, 2, · · ·

Epi,p−i denotes that expectation is taken by assigning probability pi to Xi.

4.1 Equilibrium Strategies

We will be interested in studying the stationary equilibrium of the above stochas-
tic congestion game. In particular, we will study the stationary symmetric Nash
equilibrium (SSNE) assuming linear congestion cost, i.e., f(x) = βx, for some
β > 0. For any given strategy {pi, p−i} profile of the players, the utility function
for the ith player is given by

Epi,p−i [Ji(Xi−1, Xi, Xi+1)]

= piφEpi−1 [f(2φ −Xi−1)] + (1− pi)Epi−1[(φ− λ)f(2φ− λ−Xi−1)]

+(1− pi)aEpi+1[d+ f(λ+Xi+1)]

= pi

(
2βφ2 − βφEpi−1 [Xi−1]− β(φ− λ)(2φ− λ−Epi−1 [Xi−1])− λd− βλ2

− βλEpi+1 [Xi+1]

)
+ β(φ− λ)(2φ− λ−Epi−1 [Xi−1]) + λd+ βλ2 + βλEpi+1 [Xi+1]

Now assume that all player j �= i use the strategy pj = p. Then it is clear that
E[Xi+1] = E[Xi−1] = (φ − λ) + λp. Substituting in the above equations and
continuing the chain of equalities we have



216 M.K. Hanawal et al.

Epi,p−i [Ji(Xi−1, Xi, Xi+1)]

= pi(−2βλ2p+ βλφ − λd) + βφ2 + λd+ βλ(2λ − φ)p (14)

SSNE are characterized in the following proposition.

Proposition 6

– When d ≤ βφ

• p∗i = 0 for all i is SSNE.
• p∗i = (βφ− d)/2λβ for all i is also SSNE.

– When d > βφ
p∗i = 1 for all i is SSNE.

Proof. First assume that d ≤ βφ. Suppose pi > 0 for playeri and pj = 0 for all
other players j �= i. Then from equation (14) it can be seen that the utility of
the ith player is given by

Epi,0[Ji] = pi(βλφ − λd) + βφ2 + λd,

which is strictly larger than the case when pi = 0 is chosen. Hence p∗i = 0 for all
i is a SSNE. To see that p∗i = (βφ − d)/2λβ is also an equilibrium, substitute
this value in equation (14) and notice that it becomes independent of pi. For the
case d > βφ the claim can be verified by by substituting p = 1 in equation (14)
and noticing that the coefficient of pi is negative.

5 Conclusion

We studied the dynamic routing game in which there is both congestion and
delay cost. We established the existence of equilibrium and gave its properties
considering both cases of atomic and non-atomic players. When the demand
of players is random, we considered a simple stochastic congestion game and
investigated the existence of stationary equilibrium policies and its properties.
Its interesting to consider more general model in stochastic game scenario and
study its equilibrium properties. For example, when buffer length is more than
one. We also considered a simple congestion game in which the demand that
arrives is not random but fixed and characterized its equilibrium.

Appendix A: Proof of Proposition 2

Proof

minimize
x=(x1,x2,··· ,xT )

T∑

j=1

xj

N
(axp

j + b+ j) +
N − 1

N

T∑

j=1

∫ xj

0

(axp + b+ j)dx

subject to − xj ≤ 0, j = 1, 2, · · · , T and
T∑

j=1

xj = d.
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If x∗ = (x∗
1, x

∗
2, · · · , x∗

T , ) is the optimal solution than by the necessary conditions
of the KKT theorem there exits λj ≥ 0 for j = 1, 2, 3 . . . T and β ∈ R such that
the following holds

ax∗p
j + b+ j +

ap

N
x∗p
j = β + λj for j = 1, 2, · · · , T (15)

x∗
jλi = 0 for i = 1, 2, · · · , T (16)

T∑

i=1

x∗
j = d (17)

substituting the value of λj from equation (15) into equation (16) we get

x∗
j · (ax∗p

j + b+ j +
ap

N
x∗p
j − β) = 0.

if b + j ≥ β than it is clear that x∗
j = 0. Now consider the case b + j < β, we

have either x∗
j0 or x∗

j > 0. Now suppose that x∗
j = 0, then from equation (15)

and the fact that λj ≥ 0 we get b + j ≥ β, which is a contradiction. Hence, for
the case b+ j < β, x∗

j is strictly positive and can be obtained as the solution of

ax∗p
j + b+ j +

ap

N
x∗p
j − β = 0 , i.e., ax∗p

j =

(
β − j − b

a+ ap
N

) 1
p

.

Substituting the above in equation (17) we get

∑

j:j<β−b

(
β − αi − b

a+ ap
N

) 1
p

− d = 0.

This concludes the proof.

Appendix B: Price of Anarchy

We began by studying the properties of the lagrangian multiplier associated with
equality constraints (β) as a function of number of user. In this regard define a
function Wi for each i = 1, 2, · · · , T as following

Wi(N, γ) = I{i+b<γ≤(i+1)+b}

(
γ − i− b

a+ ap
N

) 1
p

.

Also define W (N, γ) =
∑T

i=1 Wi(N, γ). Some of the properties of the function
W are summarized in the following lemma.

Lemma 2. The function W is such that

1. For a fixed N , W is continuous and monotonically increasing in γ
2. For a fixed γ, W is monotonically increasing N .
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3. For a fixed N , W (N, γ) = 0 has a unique solution denoted as γ(N) in the
interval (1 + b,∞)

Proof. First, notice that for each i, Wi has a right limit at the point i+ b given
by Wi(N, i + b). It is clear that W is continuous in each interval (i + b < γ <
(i + 1) + b), we need to verify its continuity only at the boundaries. Fix j and
consider the difference

lim
γ→((j+1)+b)+

W (N, γ)− lim
γ→((j+1)+b)−

W (N, γ)

= Wj+1(N, (j + 1) + b)−Wj(N, (j + 1) + b)

=

j+1∑

i=1

(
(j + 1) + b− i− b

a+ ap
N

) 1
p

−D −
j∑

i=1

(
(j + 1) + b− i− b

a+ ap
N

) 1
p

+D = 0

Hence W is continuous. Also, Wi is strictly increasing in the interval (i+ b, (i+
1)+ b) for each i which implies that W is strictly increasing. The second claim is
straightforward. To prove the third part of the lemma notice that W starts from
−D < 0 at γ = 1 + b, then the claim follows from the first part of the lemma.

We next show that the unique zero of the function W is increasing in N .

Lemma 3. γ(N) is monotonically decreasing in N

Proof. Let γ(N1) and γ(N2) denote the unique roots ofW (N1, γ) andW (N2, γ)
respectively, and assume that N1 < N2. We have

W (N1, γ(N1)) = 0 = W (N2, γ(N2)) ≥ W (N1, γ(N2)),

where the last inequality follows from second part of lemma 2. Now the claim
directly follows from first part of the lemma 2.

From the previous lemma 3 it is easy to observe that as the number of symmetric
users increases (with total demand held constant), positive flow is sent on lesser
number of days at equilibrium. Let LN denote set of days on which total flow
sent by N users is positive, i.e., LN = {i : i + b < γ(N)}.Then the observation
made form the previous lemmas can be written as LN+1 ⊂ LN . In particular,
when the there is just one user, i.e., centrally controlled system, the positive flow
is send on maximum number of days.

Equilibrium social cost with N users is given by

DN =
∑
i∈LN

x∗
i (a(x

∗
i )

p + b+ i) =
∑
i∈LN

(
γ(N) − i− b

a+ ap
N

) 1
p
(
a

(
γ(N)− i− b

a+ ap
N

)
+ b+ i

)

=
∑
i∈LN

(
γ(N) − i− b

a+ ap
N

) 1
p
(
γ(N) + p

N
(i+ b)

1 + p
N

)
,
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and optimal social cost is given by

D1 =
∑

i∈L1

x∗
i (a(x

∗
i )

p + b+ i) =
∑

i∈L1

(
γ(1)− i− b

a+ ap

) 1
p
(

a

(
γ(1)− i − b

a+ ap

)

+ b+ i

)

=
∑

i∈L1

(
γ(1)− i− b

a+ ap

) 1
p
(
γ(1) + p(i + b)

1 + p

)

PoA =

∑
i∈LN

(
γ(N)−i−b

a+ap
N

) 1
p
(

γ(N)+ p
N

(i+b)

1+ p
N

)

∑
i∈L1

(
γ(1)−i−b

a+ap

) 1
p
(

γ(1)+p(i+b)
1+p

)

≤
a

1
p (1 + p)1+

1
p
∑

i∈L1

(
γ(1) − i− b

) 1
p
(
γ(1) + p

N
(i+ b)

)

a
1
p (1 + p

N
)1+

1
p
∑

i∈L1

(
γ(1) − i− b

) 1
p
(
γ(1) + p(i+ b)

) ≤
(

1 + p

1 + p
N

)1+ 1
p

Where the first inequality follows as γ(N) ≤ γ(1) and LN ⊂ L1.

Appendix C: Proof of Proposition 5

Let q be denote the stationary strategy of player-1, from (9) the value of the
expected cost incurred by player-2 when his/her action is to transmit in active
state is given by

c2,u(1, 1) = qπ(1|q)f(2) + (1− q)π(0|q)f(1) + π(0|q)f(1).
Substituting the above in the objective function in (12), and differentiating with
respect to x we get the following first order optimality condition

qπ(1|q)f(2) + (1− qπ(1|q))f(1)− d(1)

p
= 0. (18)

Suppose player-1 chooses q such that the above equation is satisfied than any
values of x ∈ [0 p] is optimal and any values of q2 ∈ [0 1] is optimal response for
player-2. Hence (q, q) is the stationary symmetric Nash equilibrium. To see the
other part of the proposition, substitute the expression for stationary distribu-
tions in (8), when the stationary policy is q, in (12) to get

(
q2(1 − p)

q + p(1 − q)
f(2) +

(

1− q2(1 − p)

q + p(1− q)

)

f(1)− d(1)

p

)

x− d(1).

If player-1 chooses q1 = 0, x∗ = 0 is the minimizer of the above equation when

f(1) > d(1)
p , hence (0, 0) is the SSNE. By similar arguments we can show that

(1, 1) is the SSNE when (1− p)f(2) + pf(1) < d(1)
p .
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