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Abstract. The spread of cooperation in the evolutionary dynamics of
social dilemma games such as Prisoner’s Dilemma can be facilitated by
various means such as topological heterogeneities, a high benefit-to-cost
ratio, or asymmetric interactions. In evolutionary dynamics, the agents
adopt the strategies of neighbors with higher payoffs with a probability
proportional to the payoff difference. In this study, we analyze evolu-
tionary dynamics of mixed strategies in the Prisoner’s Dilemma game
through the expected value of the payoff difference for arbitrary neigh-
bors and the evolutionary advantage/disadvantage of nodes due to the
degree distributions within their neighborhoods. Simulation results for
various networks and game parameters are also presented.

1 Introduction

Social systems consist of various individuals who try to benefit from interactions
among themselves. In such systems, the emergence of situations in which col-
lective interests contradict private interests are inevitable. These situations are
known as social dilemmas. When a social dilemma occurs, related individuals
usually have two options: they either cooperate or defect, and their decisions
affect the overall outcome. In this manner, while the cooperators represent the
people who contribute to the collective behavior at personal expense, whereas
the defectors represent the ones who do not. In game theory, social dilemmas are
analyzed through widely-used metaphors such as the Prisoner’s Dilemma, Stag-
Hunt, and Hawk-Dove (also known as Chicken or Snowdrift) games [1,2,3]. While
the payoffs taken from possible cooperate-defect combinations differ among the
models, in all of these games, agents get higher payoffs (rewarded) when they
both cooperate rather than both defect.

When the game models are considered for very large populations, the rational-
ity assumption is relatively controversial [4]. For such populations, evolutionary
game theory is used in the analysis of population dynamics. In evolutionary
games, instead of being rational maximizers, players enter the game with par-
ticular strategies attached to them. Players then confront other players who are
programmed to play their own strategies and accumulate payoffs from these in-
teractions. At the end of each time period (generation), strategies that provide
higher payoffs may be adopted by neighboring agents. However, the number of
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players who utilize strategies that provide lower payoffs decline. This process is
similar to evolution in biology. While biological evolution may occur through
natural selection, for socio-economic phenomena evolution mostly arises as a
consequence of imitation or learning. Eventually, a population attains an equi-
librium state, namely an evolutionary stable configuration. A strategy is called an
“evolutionary stable strategy” (ESS) if a whole population using that strategy
cannot be invaded by a small group with a mutant genotype that uses a different
strategy. In this context, ESS is a refined form of the Nash equilibrium, which
provides the main solution basis for classical analysis. While all evolutionary
stable strategies are also Nash equilibria, the converse is not necessarily true [5].

Conventional evolutionary games treat a population as an infinite and homo-
geneous structure, in which every agent has an equivalent position on a corre-
sponding network. However, this is not true for real populations [8,9] in which
interactions and connections among the agents are determined by social and
spatial constraints. Hence, most real populations have heterogeneous network
topologies that may significantly affect the overall behavior of the corresponding
population. For instance, in the Prisoner’s Dilemma game, since cooperation is
a strictly dominated strategy, it can never invade a population in the evolution-
ary sense for infinite homogeneous societies [1]. However, recent studies in the
literature show that the topological properties of structured networks and game
parameters [10] - [15], and heterogeneities and asymmetries in the interactions
of agents [16,17] can facilitate the spread of cooperation through evolutionary
dynamics. In analyzing the cooperative behavior of a network, we utilize mixed
strategies as they provide a higher resolution in the quantitive comparison of
different cases and reveal certain information that can not be extracted via pure
strategy analysis [18].

In this work, we analyze the evolutionary dynamics on structured networks
for the Prisoner’s Dilemma game. Such an analysis may be used for various
purposes. For instance, biological, economic, political studies and many others
may benefit from estimating the level and the strength of cooperative behav-
ior in a particular population. Moreover, when it is possible to manipulate the
topology or game parameters, this analysis can be used for design purposes.
In problems such as designing an organizational structure of a company, trans-
portation planning or the design of many other systems in which a large number
of autonomous agents will participate, it is desirable to attain a topology that
implies a more cooperative behavior since it increases the overall utility of the
population. The expected probability of cooperation at steady state provides a
measure for quantifying the evolutionary favorability of cooperation. Due to the
complex nature of dynamics on heterogeneous, large-scale networks, this value
can be estimated through simulation results rather than analytical or numerical
methods. However, particularly for design purposes, it is crucial to explicitly
represent the influence of topological parameters and game parameters on the
evolutionary favorability of cooperation. To this end, we use analytical methods
for analysis on the micro level. In [18] we present the initial steps of our approach
by examining the expected value of payoff difference for arbitrary neighbors. In
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Table 1. Game Table for Prisoner’s Dilemma

this work, we extend our analysis and discussion related to the expected value of
payoff difference and also investigate the evolutionary advantage/disadvantage
of nodes due to the degree distributions within their neighborhoods. Based on
the analysis, we discuss how topology and game parameters can influence the
cooperative behavior of the network.

The organization of this paper is as follows: Section 2 presents the game model
and the evolutionary dynamics. Section 3 analyzes the dynamics at the micro
level along with the conditions for favorability of cooperation, and Section 4
presents the simulation results and discussions. Finally, Section 5 concludes the
paper with some remarks and indicates possible future directions.

2 Game Model and Evolutionary Dynamics

Prisoner’s Dilemma is perhaps the most-widely used metaphor representing the
social dilemmas. In Prisoner’s Dilemma, a cooperator pays a cost, c, for the
other player to receive a benefit, b, where b > c. By contrast, a defector does
not pay any cost and does not distribute any benefit. This scheme is depicted
by the game table shown in Table 1.

Some social dilemmas in a population can be represented as rounds of Pris-
oner’s Dilemma played among the people who interact with each other. The
social group can be represented via a graph in which the individuals in the net-
work occupy the vertices and links exist among the nodes that play the game
against each other. At each round, the nodes play their current strategies against
all of their neighbors and get accumulated payoffs. If mixed strategies are played,
the payoffs are random rather than deterministic variables and the strategy of a
node can be defined by the probability that it chooses to cooperate.

Analysis of this game on large populations can be obtained through evolu-
tionary game theory [6,7]. Classical evolutionary game dynamics are defined for
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infinite well-mixed populations and known as “replicator dynamics”. Replicator
dynamics are defined by the following differential equation:

Ṗi = Pi(Ui − Ū) (1)

where Pi is the fraction of phenotype i in a population, Ui is the fitness of this
phenotype, defined as the average accumulated payoff for the members of this
phenotype, and Ū is the average accumulated payoff in the entire population.
For finite populations, replicator dynamics do not apply directly and analogous
dynamics, which converge to the replicator dynamics in the limit of infinite com-
plete graphs, should be used [3]. These dynamics involve the following events: At
the beginning of each time step (generation), nodes play a single round of Pris-
oner’s Dilemma against each of their neighbors and they accumulate the resulting
payoffs. After that, each node, x, randomly picks one of its neighbors, y, and
compares their accumulated payoffs Ux and Uy. Node x adopts the strategy of
node y only if Uy > Ux with the transition probability that increases monotoni-
cally to 1 as Uy−Ux increases. Different functions can be used to define transition
probabilities. One possible option is 1/(1 + exp[−(Uy − Ux)/K]) where K char-
acterizes possible noise effects [20]. Alternatively (Uy−Ux)/(max(kx, ky)(b+c)),
where kx and ky are node degrees, can be used [12].

Let us assume that at the end of a time step an arbitrary node, x picks a ran-
dom neighbor y to possibly adopt its strategy. As the essential property of any
transition probability function is to equal zero when Uy < Ux and monotonously
increase as Uy − Ux gets larger, in analyzing evolutionary dynamics we need to
consider the difference of accumulated payoffs for these nodes. These accumu-
lated payoffs can be represented as:

Ux =

kx−1∑

i=1

bxi −
kx−1∑

i=1

cxi +
b

c
cyx − cxy,

Uy =

ky−1∑

i=1

byi −
ky−1∑

i=1

cyi +
b

c
cxy − cyx, (2)

where bxi represents the benefit node x receives from its ith neighbor, and cxi
represents the cost of cooperation that node x pays in its interaction with its ith

neighbor. Note that bxi’s are independent variables which equals b with proba-
bility qxi (cooperation probability of corresponding neighbor) and equals 0 with
probability 1 − qxi. Random variables cxi are also independent and each real-
ization is either c (with probability px) or 0 (with probability 1− px). Random
variables byi and cyi similarly represent the interaction of node y with its neigh-
bors. Furthermore, outcome of the round where x and y play against each other
are depicted by the variables cxy, the cost of cooperation node x pays, and cyx,
the cost of cooperation node x pays. Benefits received by the other player are
deterministic functions of these variables since if one pays the cost the other
receives the corresponding benefit. Note that cxy = c with probability px and
cxy = 0 with probability 1 − px. Similarly we have cyx = c with probability py
and cyx = 0 with probability 1− py.
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3 Micro Level Analysis

Our micro level analysis has two parts. First we consider the expected value of
payoff difference, which determines, for arbitrary neighbors, whose strategy is
more likely to fare better. This part of the analysis involves the game parameters
and the topological parameters. Next we consider the evolutionary advantage of
nodes. In that context we focus on the probability that a particular node is
randomly picked by its neighbors to possibly adapt its strategy. This probability
affects the chances of a node to spread its strategy and solely depends on the
network topology.

3.1 Expected Value of Payoff Difference

For arbitrary neighbors x and y, transition probabilities are determined by the
accumulated payoff difference of nodes, Uy − Ux. The strategy that provides
its player a higher accumulated payoff will be evolutionary favored through the
connection between x and y. Based on the expected value of accumulated payoff
difference, E[Uy − Ux], it is possible to say which strategy, on the average, will
be favored [18]. If this value is negative, strategy of x provides a higher expected
payoff and will be favored. On the other hand, strategy of y will be favored if
E[Uy − Ux] is positive. These two cases are separated by the condition where
E[Uy −Ux] = 0. In light of Eq. 2, E[Uy −Ux] = 0 is attained when the following
is satisfied:

c(kxpx − kypy) + b(q̄y − q̄x + px − py) = 0, (3)

where q̄x =
∑kx−1

i=1 qxi, q̄y =
∑ky−1

i=1 qyi. As b, c and ky are positive, we can divide
the inequality by −(b+ cky) and rearrange to obtain the condition as

py − b+ ckx
b+ cky

px +
b

b+ cky
(q̄x − q̄y) = 0. (4)

For the real variables px and py, Eq. (4) defines a line in two-dimensional space,
R

2. Note that for static network topology and constant game parameters this
line has a constant slope but the intercept may change in time as the strategy of
their neighbors, and consequently q̄x and q̄y, may change during the evolutionary
dynamics. For the points (px,py) which are located below this line we have py
being favored as E[Uy − Ux] > 0. On the other hand, for the points (px,py)
which are located above this line we have E[Uy − Ux] < 0 and px is favored.
Note that as px and py are probabilities, they are bounded within interval [0, 1].
Depending on the parameters of the E[Uy − Ux] = 0 line, the feasible region
where px, py ∈ [0, 1] can at most be divided into four separate regions. Let us
define these regions as follows: Region I is the region where E[Uy −Ux] > 0 and
py < px. Region II is the region where E[Uy − Ux] > 0 and py > px. Region
III is the region where E[Uy − Ux] < 0 and py > px. Finally, Region IV is the
region where E[Uy − Ux] < 0 and py < px. In this context, Regions I and III
are the regions where defective strategy has evolutionary advantage. Regions



Dynamics of Evolutionary Prisoner’s Dilemma on Structured Networks 195

II and IV, on the other hand, are the regions where cooperative strategy has
evolutionary advantage. Existences and sizes of these regions are determined by
the E[Uy − Ux] = 0 line. Possible cases can be classified under 9 major groups.
Examples of cases in each group are depicted in Fig. 1.

Let us consider how the 9 groups shown in Fig. 1 are characterized. In light
of Eq. (4) it can be seen that, as (b+ ckx)/(b+ cky) is always positive, the slope
of the E[Uy −Ux] = 0 line is always positive. This constraint implies that either
both x and y intercepts of the line are 0 or one of them is positive whereas
the other one is negative. So initially we can separate the possible cases into
3 groups depending on the y intercept (or x intercept). As the b

b+cky
term is

always positive, y intercept’s being negative, positive or equal to zero is solely
determined by (q̄x − q̄y).

If (q̄x − q̄y) < 0, then we have positive y intercept and we can further obtain
3 distinct groups based on p∗x, the value of px on the E[Uy − Ux] = 0 line for
py = 1: p∗x < 0 as shown in Fig. 1 (a), 0 < p∗x < 1 as shown in Fig. 1 (b), and
1 < p∗x as shown in Fig. 1 (c).

If (q̄x− q̄y) = 0, then we have both intercepts equal to zero and we can further
obtain 3 distinct groups based on the value of the slope: slope is greater than 1
(kx > ky) as shown in Fig. 1 (d), slope is equal to 1 (kx = ky) as shown in Fig.
1 (e), and slope is smaller than 1 (kx < ky) as shown in Fig. 1 (f).

If (q̄x − q̄y) > 0, then we have positive x intercept and we can further obtain
3 distinct groups based on the value of p∗y, the value of py on the E[Uy−Ux] = 0
line for px = 1: p∗y < 0 as shown in Fig. 1 (g), 0 < p∗y < 1 as shown in Fig. 1 (h),
and 1 < p∗y as shown in Fig. 1 (i).

For arbitrary neighbors x and y, valuable information about their evolutionary
interaction is encoded in the group to which the E[Uy − Ux] = 0 line belongs.
For instance if this line belongs to the groups shown in Fig. 1 (a) or Fig. 1 (i), we
have a significantly influential node, x or y, as it accumulates higher expected pay-
off than the other node for every possible value of px and py in [0, 1]. In this case
the possible evolutionary interaction may favor the cooperation if the influential
node is utilizing a cooperative strategy. Alternatively, if this line belongs to the
group shown in Fig. 1 (e), which consists of a single line that is coincident with
px = py line, neither Region II nor Region IV exists hence it is not possible to
expect an evolutionary interaction that will favor the cooperation. Once the par-
ticular E[Uy − Ux] = 0 line is classified, one can also quantify the favorability of
cooperation through the interaction of x and y by using the areas of the regions.
This quantification can easily be obtained through geometry and it can be used
to compare the favorability of cooperation in different cases. To this end, one may
compare the area of the regions where cooperative strategy is favored (areas of
Regions II and IV) to the area of regions where defective strategy is favored (ar-
eas of Regions I and III). Since these areas can explicitly be represented in terms
of game parameters and node degrees, one can relate these parameters to the ex-
pected evolutionary outcome of the interaction between nodes x and y.

Evolutionary interaction at any time instant between two neighbors, x and y,
is determined by the current E[Uy−Ux] = 0 line. As shown in Eq. (4) parameters
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Fig. 1. Examples for each of the 9 major groups of possible cases determined by the
E[Uy − Ux] = 0 line for two meeting agents, x and y. Upper bound of 1 for px and py
on the axes of R2 (Rx and Ry) are marked with solid lines. Each group is characterized
by the existence and structure of Region I (E[Uy − Ux] > 0, py < px), Region II
(E[Uy − Ux] > 0, py > px), Region III (E[Uy − Ux] < 0, py > px) and Region IV
(E[Uy − Ux] < 0, py < px). The px = py line is also shown as dashed, whereas the line
corresponding to E[Uy ] = E[Ux] is solid.

of this line depends on the topology and game parameters. To interpret Eq. (4)
and the effect of different parameters on the cooperation let us first consider the
example of a well-mixed homogeneous network where the cooperative behavior
is known to be eliminated through evolution. For such a population, every node
has the same degree (kx=ky) and every node is connected to all other nodes
(q̄x=q̄y), which makes the E[Uy − Ux] = 0 line coincident with py = px line,
as depicted in Fig. 1 (e), for every neighbor x and y throughout the whole
evolutionary dynamics. Since neither Region II nor Region IV exists for this case,
it is impossible to expect an evolutionary interaction that is likely to favor the



Dynamics of Evolutionary Prisoner’s Dilemma on Structured Networks 197

cooperation. Since E[Uy] > E[Ux] can only occur when py < px, cooperation is
strongly opposed by evolution. Note that the situation where the E[Uy] = E[Ux]
line coincident with py = px line is the only case where the area of the portion
where cooperative strategy is favored is zero and there is no combination of
px and py where the cooperative strategy provides a higher expected payoff.
In order to promote the cooperative behavior, the E[Uy − Ux] = 0 line needs
to deviate from the px = py line. This deviation can be achieved through the
game parameters and heterogeneity in neighbor degrees. This way, for arbitrary
neighbors it is possible to have some cases where more cooperative strategy
provides a higher expected payoff and possibly be adopted by the other node.

3.2 Evolutionary Advantage of Nodes

In the previous section we presented the analysis and discussions on the evo-
lutionary dynamics of cooperation through the expected value of accumulated
payoff differences for arbitrary neighbors. However, the spread of a particular
strategy from a node depends on the possibility of having a neighbor node con-
sidering to adopt its strategy. For a node y to have its strategy adopted by node
x, first of all node x should pick node y to possibly adopt its strategy. Hence, in
addition to the ares of different regions as proposed in previous part, the prob-
abilities that one node picks the other node should also be considered. If the
interaction of two nodes at any time instant is considered, this can be incorpo-
rated into the analysis by weighing the regions I and III with probability of node
y picking node x and weighing the regions II and IV with probability of node x
picking node y. Based on the assumption that nodes pick any of their neighbors
with equal probability these probabilities are 1/ky and 1/kx respectively.

When we consider the overall network, although the final step in adoption of
a strategy depends on the accumulated payoffs, clearly some nodes have higher
chance than the others as being considered by more nodes at each generation.
Intuitively, one may expect that the nodes with higher degrees are favored in this
context and it is partly true. However, only having large degree is not enough
for a node to have this topological advantage. Consider a scenario, where a
particular node has a very large degree but its neighbors also have very large
degrees. For this particular node the probability of being chosen by any of its
neighbors is quite small and it may not acquire a significant advantage from the
topology.

Let us consider the topological significance of a node for evolutionary dynam-
ics as the expected number of nodes per generation which pick it and may adopt
its strategy, and denote it as n. Based on the assumption that nodes pick any of
their neighbors with equal probability, for a particular node x we have:

nx =

kx∑

i=1

1

kyi
(5)

where kyi is the degree of the ith neighbor of x. For a complete graph with N
nodes, nodes have equivalent positions and they are equally significant as all
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having n = 1. Any given graph can be considered as the outcome of a procedure
where certain edges are removed from a complete graph. As these edges are re-
moved, some nodes increase their chances to spread their strategies whereas oth-
ers have their chances decreased. While the total significance (N) is distributed
uniformly among the nodes for a complete graph, an arbitrary topology is likely
to result in a different distribution.

Having a significance value greater than 1 provides an evolutionary advantage
for the particular node. Note that regardless of the topology every node definitely
picks one neighbor to possibly adopt its strategy, which can be considered as the
measure of the local influence on the evolution of a node. Hence for a network
with N nodes we have:

N∑

i=1

ni = N (6)

Every node is equally influenced from its neighborhood in the evolution pro-
cess, as each of them considers to adopt exactly one of its neighbors at each
generation. However, nodes do not influence their neighborhoods equally. Nodes
with significance values greater than 1 can have more influence on their neigh-
borhoods than their neighborhoods have on them. On the other hand nodes
with significance values smaller than 1 can not influence the evolution in their
neighborhoods as much as they are influenced by that.

To see how this topological effect influences the evolutionary spread of a node’s
strategy, let us consider a simple scenario as shown in Figure 2. In this figure a
small graph with 15 nodes is given. The nodes initially have pure cooperation or
pure defection strategies assigned to them. Given that game parameters satisfy
b > 6c the evolution on this graph definitely ends up at a state where all nodes
cooperate as cooperators accumulate higher payoffs than their defecting neigh-
bors. Throughout the evolutionary process, nodes 1 and 2 spread their strategies.
Both nodes have degree of 6, and their clustering coefficients are also equal. How-
ever, when we consider their chances to spread their strategies it can be seen
that node 1 spreads its strategy much faster. If we consider the first generation
in evolutionary dynamics and pick the transition probability as in [12], neighbors
of node 1 and node 2 adopt their strategies with equal probability of transition,
pt = (b−3c)/(3b+3c). However, expected number of neighbors that pick node 1
to adopt its strategy is larger than the expected number of neighbors that pick
node 2. It can easily be shown that at the first time step, expected number of
defectors that adopt cooperation from node 1 is 4pt/3 whereas expected number
of defectors that adopt cooperation from node 2 is 3pt/4.

Nodes with large n values are much efficient in spreading their strategies and
have an important role in spreading cooperative behavior as cooperators exploit
having large n value better than defectors. This is due to the fact that as a coop-
erator converts a defecting neighbor it increases its fitness, its chance to survive
and spread. As long as all of the defector neighbors of a cooperator are doing
better, it will eventually adopt the defection strategy. However the interesting
condition occurs when a portion of defecting neighbors are doing worse. In this
case if the cooperator can convert any of those defectors, it increases its fitness
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Fig. 2. A simple example to see how topology provides an evolutionary advantage to
certain nodes. While for the game parameters b > 6c this system converges to all
cooperators, node 1 spreads cooperation faster than node 2.

and the portion of its defecting neighbors that are doing worse increases, as long
as all other defecting neighbors are not also neighbors of the converted node. As
n increases, the chance of being picked by such a defecting neighbor significantly
increases and so does the survival potential of a cooperator. For defectors, on
the other hand, this process works the opposite way. When the defector converts
any of its cooperating neighbors, it decreases its fitness and the portion of its
cooperating neighbors that are doing worse decreases, as long as all other coop-
erating neighbors are not also neighbors of this new defecting node. Eventually,
the defector may end up at a state where it has a certain amount of cooperating
neighbors doing better than him and adopt their strategy. Moreover when a de-
fector has low n value, its chance of converting cooperating neighbor decreases
hence it does not cause a significant decrease in its own fitness. However, this
time it is more likely to adopt the strategy of one of its cooperating neighbors,
especially if some of them have large n values and are able to spread cooperation
in their neighborhood. Low n values have even worse effect on the cooperators
as their survival chances are greatly attenuated when their spreading probability
decreases. Based on this discussion we can say that when there is a heterogeneous
distribution of n values in the network, this works in favor of the cooperators.
Although, they have their reduced survival chances for small n values they can
benefit greatly from large n values. Defectors, on the other hand, do not obtain
a great survival advantage from neither small nor large n values.

4 Simulation Results

Simulations were carried out for various networks and different game parameters.
First, we consider mixed strategy evolutions for various cases on Erdös-Rényi
random, Watts-Strogatz small world and Barabási-Albert scale-free topologies
with 1000 nodes. We check for the expected probability of cooperation at steady
state for varying average degree and game parameters. Networks with average
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degrees (k) 4,6,8,10 and 12 are generated for each topology. Game parameters
are normalized by setting b = 1 and c is varied in 0.02 − 0.2 interval with
0.02 increments. For each combination of k and c, 10 simulations are run and
averaged result is reported. Steady state values are obtained through averaging
of 1000 time steps after a warm up period of 10, 000 time steps, starting from a
uniform distribution of strategies among the nodes. Transition probabilities are
computed as presented in [12].

Fig. 3. Expected probability of cooperation at steady state on Erdös-Rényi random
networks for various average degrees and costs of cooperation

Fig. 4. Expected probability of cooperation on Watts-Strogatz small world networks
for various average degrees and costs of cooperation

As it can be seen from the results, expected probability of cooperation is
highly dependent on the network topology. For the same average degree and
cost of cooperation the steady state behaviors are quite different among the three
topologies. As Barabási-Albert scale-free being the most heterogeneous topology,
it shows a more cooperative behavior in a wider range of k and c. In this topol-
ogy, direct links among the hubs also help to promote a certain level cooperation.
Note that, in this topology hubs mostly have high significance values (n) as a
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Fig. 5. Expected probability of cooperation on Barabási-Albert scale-free networks for
various average degrees and costs of cooperation

significant amount of their neighbors have very low degrees compared to them.
When two hubs are connected, the one with higher probability of cooperation
gets an advantage. This is due to the discussion we presented about the effect of
large n values for cooperators and defectors. Both hubs are likely to be imitated
by most of their low degree neighbors through evolution, however as this hap-
pens the more cooperative hub creates itself a more cooperative neighborhood
resulting in higher payoffs and whereas the less cooperative hub reduces its own
payoff as it spreads it strategy. Ultimately the defective hub adopts the strategy
of cooperative hub and its neighbors are also likely to adopt this strategy in
the following generations. Note that in this fashion hubs can also convert their
neighbors with higher probability of cooperation and this is the reason why at
very low values of c and k, the other two topologies can display more cooperative
behaviors. In a sense, the strategy with the highest probability of cooperation
that is played by a hub and also is able to keep that hub resistive (depending
on the parameters b and c) to imitate its low degree neighbors has high chance
of spreading throughout the population for Barabási-Albert scale-free topology.
While connections among the hubs favor this more cooperative strategy, high
significance value differences between hubs and low degree neighbors can also
cause the elimination of even more cooperative strategies which were initially
utilized by low degree nodes.

Results also depict that the Watts-Strogatz small world networks result in the
least cooperative behavior among the three topologies and cooperation easily dies
out with increasing average degree or cost of cooperation. This is expected since
the small world networks are obtained from rewiring (with a certain probabil-
ity of rewiring) of regular networks, hence their heterogeneity lies somewhere
between the two.

Next we consider the effect of significance values on the spread of cooperation.
To this end we simulate the small network in Fig. 2 starting from initial condition
as shown there. This network is specially generated to highlight the influence of
significance values (n) on the spreading chance and speed of strategies. Network
is structured so that for b > 6c it converges to all cooperators starting from the
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particular initial condition. Nodes 1 and 2 are the main sources for the spread
of cooperation among the other nodes. They have the same degree, clustering
coefficients and almost identical except the degree of their neighbors, hence n
values. We simulate this system for b = 1 and c = 0.15 for 100 repetitions and
compute the average probability of cooperation for each node versus time. Note
that there are only pure strategies in this simulation hence p values are either
1 or 0 for each node and computing the average probability of cooperation at
a particular time step is equivalent to the percentage of simulations where that
node acts as a cooperator at that time step. Each simulation is run for 500
time steps as it has been observed to be enough to have all nodes settled as
cooperators throughout the 100 simulations. Results are shown in Fig. 6.

Fig. 6. Average probability of cooperation against time for 100 realization of the simple
example with 15 nodes, starting from initial condition as shown in Fig. 2

Spreading speed and efficiency of nodes 1 and 2 can be compared through
the comparison of average probability of cooperation of nodes 5, 6, 7 to average
probability of cooperation of nodes 9, 10, 11 as these are the one hop neighbors
or node 1 and node 2. Results depict that nodes 9, 10, 11 are quite slower than
the nodes 5, 6, 7 in adopting and settling at the cooperator state.
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5 Conclusion and Future Directions

In this paper, mixed strategy evolution in PD game on structured networks was
considered. Evolutionary dynamics are analyzed on the micro level for arbitrary
neighbors. The expected value of accumulated payoff differences and the ex-
pected number of neighbors that pick a particular node to possibly adopt its
strategy were considered as significant factors in the evolutionary process and
were analyzed. Evolution dynamics and influences of the network topology and
game parameters were presented along with simulation results for various cases.
Random, small world and scale-free topologies were simulated for different av-
erage degrees and costs of cooperation. Scale-free topology presented a higher
robustness against changes in game and network parameters and more coop-
erative behaviors for a wide range of these parameters. By contrast, increases
in the average degree or the cost of cooperation highly attenuate tendency to
cooperate for small world topology due to the higher regularity of this topology.
However, it was also shown that, for very small values of the cost of cooperation,
it is possible to observe more cooperative behaviors with small world or random
topologies as the robustness of scale-free topology may be limiting for such cases
due to the the imitation of hubs by lower degree neighbors who initially utilize
strategies with higher probability of cooperation. Furthermore, it was shown that
the expected number of neighbors that pick a particular node to possibly adopt
its strategy has an important role in that node’s chance to spread its strategy.
When a node has higher fitness, this value affects the speed of spread from that
node. The spreading speed is important for the survival of cooperators since
their survival greatly depend on the number of their cooperating neighbors.

As a future work, evolutionary dynamics for other widely used social dilemma
games can be explored. Moreover, the dependency of evolutionary dynamics on
the network topology and other variables can be analyzed in further details. Also
similar analysis can be studied for dynamic topologies where edges and nodes
are added/removed.
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