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Abstract. This paper studies a class of random access games for wire-
less channels with multipacket reception. First, necessary and sufficient
equilibrium conditions for a contention strategy profile to be a Nash
equilibrium for general wireless channels are established. Then, applica-
tions of these equilibrium conditions for well-known channel models are
illustrated. Various engineering insights and design ideas are provided.
Finally, the results are extended to an incomplete information game set-
ting, and best-response learning dynamics leading to Nash equilibria are
investigated.
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1 Introduction

1.1 Background and Contributions

Game theory and the related field of mechanism design have the potential to
guide engineering efforts to overcome potential design challenges in fourth gener-
ation (4G) wireless networks by providing a bottom-up analytical and principled
approach to design local operation rules and to verify resulting collective network
behavior through equilibrium analyses. In particular, it is illustrated in recent
works [1]-[3] that game theory provides new insights to reverse/forward engineer
existing medium access control (MAC) protocols, better fairness and service dif-
ferentiation, higher throughput and a mechanism to decouple contention control
from handling failed packets for a class of multiple access networks. This paper
also focuses on layer-2 MAC protocols for wireless networks, and provides new
equilibrium results and design insights based on noncooperative game theory.

Wireless channels are broadcast channels by their nature. Therefore, transmis-
sions through them must be coordinated to control multiple access interference
(MAI). Contention based random access approaches, which we consider in this
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paper, include slotted ALOHA, CSMA/CA and IEEE 802.11 DCF, and do not
require centralized scheduling. A key design degree of freedom in random access
is channel access probability determination, or contention resolution, to mitigate
MAI. Different protocols differ in how they implement contention resolution such
as window based and persistence probability based approaches. This paper an-
alyzes equilibrium channel access probabilities (equivalently called contention
resolution strategies, or transmission probabilities) and the resulting network
performance for a wide range of channel models and communication scenarios.

Our contributions can be summarized as follows. We focus on the contention
resolution problem over wireless channels with multipacket reception capability,
and characterize the set of Nash equilibria by providing necessary and suffi-
cient conditions for a Nash equilibrium contention strategy profile. Multipacket
reception capability is an important feature of our model to capture probabilis-
tic receptions in wireless multiple access. We demonstrate applications of these
results in practical communication scenarios, and provide engineering insights
to achieve optimal throughput. Finally, random access games with incomplete
information structure are analyzed by obtaining the form of equilibrium con-
tention resolution strategies, establishing existence and uniqueness results and
illustrating learning dynamics on the best-response path.

1.2 Related Work

There is a large and growing body of work applying game-theoretic techniques
for contention resolution in wireless networks. Here, we mention the ones that
are most relevant to this work.

We focus on a class of random access games, first introduced in [4] and then
further improved in [5]. When compared to these works, we provide more detailed
equilibrium conditions for a contention strategy profile to be a Nash equilibirum
for more general wireless channels.

In [1]-[3] and [6], the main focus is on the dynamics of iterative strategy update
mechanisms such as best-response, gradient, or Jacobi play, achieving a desired
equilibrium point over collision channels. Unlike these works, the physical layer
model considered in this paper is more general, including the collision channel
model as a special case. Except for the incomplete game formulation, our main
focus here is on necessary and sufficient conditions to be satisfied by steady-
state equilibrium contention resolution strategies, rather than on the transient
network behavior. These equilibrium conditions can be solved either analytically
or numerically to obtain equilibrium transmission probabilities, and then the
network can be readily stabilized to a desired equilibrium by broadcasting these
probabilities to users. For the incomplete game formulation, even though the
existence and uniqueness of the equilibrium can be established, such closed-
form or numerical solutions are not readily available, and therefore the transient
network behavior is also investigated by studying learning dynamics on the best-
response path.

Similar to our problem set-up, multipacket reception capability in the ran-
dom access setting is also considered in [7] and [8]. As compared to the existence
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results, which provide limited information about the structure of equilibrium
strategies, appearing in these works, we obtain more detailed necessary and suf-
ficient equilibrium conditions, and solve them, either analytically or numerically,
to derive the shape of equilibrium contention resolution strategies.

2 System Model

Consider a wireless multiple access communication network in which N selfish
mobile users, indexed by I = {1, 2, · · · , N}, are contending for channel access to
communicate with a common base station (BS). The wireless channel is charac-
terized by the stochastic reception matrix

R = (rn,k) 1≤n≤N,
0≤k≤N

, (1)

where rn,k represents the probability that k packets are received correctly given
n of them are transmitted. By default, rn,k is set to zero if k > n. If r1,0 > 0,
we say that the channel is imperfect (or, noisy). All users have identical packet
success probabilities given by

γn =
1

n

n∑

k=1

krn,k. (2)

It is assumed that γn+1 ≤ γn to model destructive effects of MAI on packet
receptions. It is also assumed that γn+1 is strictly smaller than γn for at least
one n in {1, 2, · · · , N − 1} in order to avoid trivialities.

If mobile user i transmits a packet successfully, it receives a normalized utility
of 1 unit. If the transmission fails, it receives a utility of −ci units, where ci > 0
is interpreted as the cost of packet failure for user i. If it waits, it receives a
utility of 0 units. These utilities are necessary for setting up a selfish random
access utility maximization problem as well as allowing us to model different
battery levels, delay and quality-of-service requirements of different users. We
let ui = (1, 0,−ci). The random access game G is defined to be the triple G =〈I, {Si}i∈I , {ui}i∈I

〉
, where Si = [αi, βi] ⊆ [0, 1] is the set from which user

i chooses a transmission probability (i.e., a contention resolution strategy) to
access the wireless channel.

The average utility that a user receives is a function of her transmission prob-
ability and the transmission probabilities of other users. Let S =

∏
i∈I Si be the

product set of user strategies, p be a vector of transmission probabilities in S,
and Ui (p) be the expected utility that the ith user receives as a function of p.
The selfish optimization problem to be solved by user i is to find p�i such that
Ui

(
p�i ,p−i

) ≥ Ui

(
pi,p−i

)
for all pi ∈ Si, where p−i represents the vector of

transmission probabilities of other users. We say that p� = (p�i )i∈I is a Nash

equilibrium if and only if Ui

(
p�i ,p

�
−i

) ≥ Ui

(
pi,p

�
−i

)
for all i ∈ I and pi ∈ Si.
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3 Equilibrium Contention Resolution Strategies: General
Wireless Channels

In this section, we analyze equilibrium contention resolution strategies for a
wireless channel with a general multipacket reception model, and obtain neces-
sary and sufficient equilibrium conditions to be satisfied by a Nash equilibrium
transmission probability vector. In the next section, we will illustrate the appli-
cations of our results in more specific communication scenarios by solving these
equilibrium conditions.

The first critical issue to resolve is the existence of a Nash equilibrium. To this
end, a positive existence result directly follows from the Glicksberg fixed point
theorem [9]. (See also Theorem 1.2 in [10].) However, such existence results pro-
vide limited information about the structure of the Nash equilibria, and selfish
transmission probabilities at these equilibria. Therefore, we establish necessary
and sufficient conditions to be satisfied by a Nash equilibrium transmission prob-
ability vector in the following theorem.

Theorem 1. For a given contention strategy profile p, let

Γi

(
R,p−i

)
=

N∑

n=1

∑

In⊆I:
i∈In,|In|=n

γn
∏

j∈In−{i}
pj

∏

j∈I−In

(1− pj) . (3)

Then, p� is a Nash equilibrium if and only if the following equilibrium conditions
hold for all i ∈ I.
(i) If Γi

(
R,p�

−i

)
> ci

1+ci
, then p�i = βi.

(ii) If Γi

(
R,p�

−i

)
= ci

1+ci
, then αi ≤ p�i ≤ βi.

(iii) If Γi

(
R,p�

−i

)
< ci

1+ci
, then p�i = αi.

Proof. For a given p, it is easy to see that Γi

(
R,p−i

)
is the probability that a

packet transmission from user i becomes successful given the channel reception
matrix R and other users’ transmission probabilities p−i. Then, the expected
utility that user i receives when the random access game is played according to
p is equal to

Ui

(
pi,p−i

)
= pi

(
(1 + ci)Γi

(
R,p−i

)− ci
)
. (4)

Now, suppose that p� is a Nash equilibrium. Firstly, p�i must be βi if Γi

(
R,p�

−i

)
>

ci
1+ci

since Ui

(
pi,p

�
−i

)
is a linear function of pi when p�

−i is fixed. Secondly, p�i
must be αi if Γi

(
R,p�

−i

)
< ci

1+ci
. Finally, p�i can be set to any value in [αi, βi] if

Γi

(
R,p�

−i

)
= ci

1+ci
. This completes the proof for the only if part of the theorem.

The other direction also follows from similar arguments.

For a given R, Γi

(
R,p−i

)
can be interpreted as the contention signal that user i

receives when the contention resolution strategies of other users are given by p−i.
A higher contention signal received by user i means that less MAI is generated
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by other users, and therefore the higher the channel access and the resulting
packet success probabilities of user i are.

In the next theorem, we establish a symmetry property for equilibrium con-
tention resolution strategies in symmetric random access games.

Theorem 2. Assume all users have the same strategy set [α, β] ⊆ [0, 1], and the
same cost of packet failure c > 0. If p� is a Nash equilibrium, then p�i = p�j for
all p�i and p�j in (α, β). In particular, if p�i ∈ (α, β) for all i ∈ I, then all users
access the channel with the same transmission probability p� solving

J (p�) =
c

1 + c
, (5)

where J(p) =
∑N−1

n=0 γn+1

(
N−1
n

)
pn (1− p)

N−1−n
.

Proof. Let I−{i,j} = I − {i, j} and p−{i,j} = (pk)k∈I−{i,j} . Let Γi

(
R,p−i

)
be

defined as in the proof of Theorem 1. We can expand Γi

(
R,p−i

)
as a function

of pj as

Γi

(
R,p−i

)
= Γi

(
R, pj,p−{i,j}

)
=

pj

N−2∑

n=0

∑

In⊆I−{i,j} :

|In|=n

γn+2

∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk)

+ (1− pj)

N−2∑

n=0

∑

In⊆I−{i,j} :

|In|=n

γn+1

∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk) .

The last equation implies the relation Γi

(
R, pi,p−{i,j}

)
= Γj

(
R,p−j

)
. We also

have

∂Γi

(
R,p−i

)

∂pj
= −

N−2∑

n=0

∑

In⊆I−{i,j}:

|In|=n

(γn+1 − γn+2)
∏

k∈In

pk
∏

k∈I−{i,j}−In

(1− pk) ,

which is strictly smaller than zero. Thus, Γi

(
R, pj ,p−{i,j}

)
is strictly decreasing

in pj for any given fixed p−{i,j}. Let p� be a Nash equilibrium such that there
exist p�i and p�j in (α, β) and p�i �= p�j . By Theorem 1, this can happen only if

Γi

(
R, pj,p

�
−{i,j}

)
crosses c

1+c at two points p�j and p�i ; but this contradicts the

strictly decreasing nature of Γi

(
R, pj,p

�
−{i,j}

)
as a function of pj . Equation (5)

follows after some simplifications.

4 Applications and Discussion

We will now demonstrate some applications of the above general equilibrium
results in two specific communication scenarios. Further applications are also
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possible. We start our discussion with equilibrium contention resolution strate-
gies for imperfect collision channels.

4.1 Selfish Random Access over Imperfect Collision Channels

In the collision channel model, a packet transmission is assumed to be successful
only if there is no other user attempting to transmit simultaneously. Hence,
rn,k = δ0,k if n ≥ 2, where δi,j = 1 if i = j, and zero otherwise. We let r1,0 = θ
and r1,1 = 1− θ for some θ ∈ [0, 1]. Here, the parameter θ can be interpreted as
a measure of the noise level summarizing all random factors such as background
noise, fading and path-loss affecting packet receptions. The smaller the θ is, the
less noise is present in the system, and a packet transmission is more likely to
be successful if there is no other transmission attempt. On the other hand, if
θ is large, it is more likely that a packet fails even if there is no other user
transmitting simultaneously.

By setting the strategy sets to [0, 1], we can simplify the equilibrium conditions
in Theorem 1 as follows: p� is a Nash equilibrium if and only if, for all i ∈ I,
it satisfies (i) p�i = 1 if (1 − θ)

∏
j �=i

(
1− p�j

)
> ci

1+ci
, (ii) p�i ∈ [0, 1] if (1 −

θ)
∏

j �=i

(
1− p�j

)
= ci

1+ci
, and (iii) p�i = 0 if (1− θ)

∏
j �=i

(
1− p�j

)
< ci

1+ci
.

To simplify these conditions further, we will focus on the most interesting
case in which ci < 1−θ

θ for all i ∈ I. Other cases can be analyzed similarly.
Let p� be a Nash equilibrium such that a subset I0 of users in I transmit with
positive probability, while others exercise zero transmission probability as their
contention resolution strategies. Then, contention resolution strategies of users
in I0 must satisfy the second equilibrium condition, which leads to closed form
expressions

p�i = 1− 1 + ci
ci

(
1

1− θ
ϕ (I0)

) 1
|I0|−1

, ∀i ∈ I0, (6)

where the set function ϕ : 2I − {∅} 	→ R+ is defined as ϕ (I0) =
∏

i∈I0

ci
1+ci

for all non-empty subsets I0 of I. Note that such a solution is feasible only if(
1

1−θϕ (I0)
) 1

|I0|−1 ≤ ci
1+ci

< 1, which further implies ϕ (I0) < 1 − θ. Therefore,

when |I0| = 1, we set p�i to 1 for i ∈ I0 without causing any ambiguity. Since
transmission probabilities for users with different cost values are different, these
transmission probabilities also indicate how different services are provisioned to
different users.

In Fig. 1, we plot the equilibrium transmission probabilities and the equilib-
rium throughput for the homogenous case versus c by setting N to 5. We focus
only on the equilibrium where all users transmit with the same positive proba-
bility, which corresponds to the fair allocation of communication resources. The

equilibrium transmission probability is, then, given by p� = 1 − N−1

√
1

1−θ
c

1+c .

As expected, when the noise level θ increases, transmission probabilities and the
system throughput decrease. In all cases, small values of c lead to high trans-
mission probabilities, which in turn results in excessive packet collisions and low
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Fig. 1. Equilibrium contention resolution strategies (top figure) and the corresponding
system throughput (bottom figure). Imperfect collision channels with N = 5.

throughput. Similarly, large values of c result in channel under-utilization, and
therefore low throughput. In the middle-ground, there exists an optimal level of c
maximizing the system throughput. It is easy to see that this maximum through-
put is also the best that we can achieve via a central controller since transmission
probabilities are continuous functions of costs. Therefore, there is no loss from
selfish operation if selfish transmission probabilities can be manipulated to drive
the system to the optimal operating point.

For example, Fig. 1 suggests that when c is small, a central controller can
use the parameter θ as a signaling device to manipulate transmission probabil-
ities, and drive the system to the optimal operating point, either by declaring
a fictitious noise level to be greater than the true noise level, or by introducing
artificial noise during the channel estimation phase. This approach will decrease
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Fig. 2. System throughput when selfish users are manipulated by declaring fictitious
noise levels. Perfect collision channel with N = 5.

users’ greediness, eliminate excessive collisions and increase the system through-
put. This operation can also be considered as a design process for user utility
functions based on changing the effective value of c to achieve optimal perfor-
mance. Figure 2 illustrates that the throughput increases significantly, and the
same maximum throughput can be achieved by declaring fictitious noise levels
0.8, 0.5 and 0.2 when c is around 0.1, 0.27 and 0.5, respectively, for a noise-free
channel.

4.2 Selfish Random Access for T -Out-of-N Channels

The second application of our results will be to a special type of multipacket re-
ception channel in which all packets can be reconstructed successfully with prob-
ability 1− θn if the collision size n is smaller than or equal to T ∈ {1, 2, · · · , N}.
On the other hand, if n > T , all packets are destroyed together. If the noise
parameter θn is 0 for all n, then this is the channel model studied in [11] and
[12]. Such channels can be implemented by using T -out-of-N codes [13].

We will focus only on the homogenous case and the Nash equilibrium at which
all users access the channel with positive probability for illustrative purposes, but
a similar analysis can be conducted for the heterogenous case and other equilibria
as in the collision channel model above. We set the strategy sets to [0, 1]. In this

case, J(p) in (5) is given by J(p) =
∑T−1

n=0 (1− θn+1)
(
N−1
n

)
pn (1− p)

N−1−n
. The

common equilibrium transmission probability p� is obtained by solving J (p�) =
c

1+c . If T < N , then J(1) = 0, and it is enough to have J(0) = 1 − θ1 ≥ c
1+c

for the existence of p� solving J (p�) = c
1+c . Otherwise, J(1) = 1 − θN , and we

require 1 − θ1 ≥ c
1+c ≥ 1 − θN . Note also that if 1 − θN > c

1+c (for T = N),
then users transmit with probability one, and if 1− θ1 < c

1+c (for T ≤ N), they
never transmit.
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Fig. 3. Equilibrium contention resolution strategies (top figure) and the corresponding
system throughput (bottom figure) for T -out-of-N channels. θ = 0.25 and N = 10.

In Fig. 3, we plot the equilibrium strategies and the corresponding system
throughput for the channels with the common noise parameter θ = 0.25 when
N = 10. Similar conclusions continue to hold for other values of N and θn
varying with n. As expected, equilibrium transmission probabilities and the cor-
responding throughput increase with T . More importantly, maximum achievable
throughput increases more than linearly with T . We have this maximum through-
put to be around 0.39, 0.9, 1.51 and 6.97 for T = 1, 2, 3 and 9, respectively. For T
large, we also observe a severe cut-off in transmission probabilities and a corre-
sponding sharp decrease in the equilibrium throughput when the cost of packet
failure comes close to the critical level 1−θ

θ . On the other hand, it can be shown
that throughput does not exhibit such an abrupt decrease with increasing cost
for the noise-free channel. This indicates the importance of the calibration of
costs and noise levels in order to avoid high penalty in equilibrium throughput
for noisy T -out-of-N channels with large multipacket reception capability.
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5 Imperfect Information Random Access Games

Now, we turn our attention to imperfect information random access games in
which ci is randomly distributed according to a cost distribution Fi but is per-
fectly known by user i before the start of a transmission. On the other hand,
user i does not know the cost values of other users exactly but only has a set of
belief distributions {Fj}j∈I−{i} to predict them.

In this Bayesian game setting, the strategy of user i is a function si that maps
ci ∈ (0,∞) to a transmission probability pi ∈ [αi, βi]. With a slight abuse of no-
tation, we will still represent the strategy set of user i by Si. As is standard, a
strategy profile s� is said to be a Nash equilibrium if s�i is a solution of the self-
ish utility maximization problem maxsi∈Si Ui

(
si, s

�
−i

)
for all i ∈ I. In contrast

to our analysis in Section 3, this optimization problem is now over the infinite
dimensional function spaces. However, as established in the next theorem, equi-
librium strategy profiles can be identified by using a threshold vector τ � in R

N
+ .

We will skip the proof of Theorem 3 since it is similar to the proofs given above
for Theorems 1 and 2.

Theorem 3. Let Γ̃i (R, s−i) be given as

Γ̃i (R, s−i) =

N∑

n=1

∑

In⊆I:
i∈In,|In|=n

γn

∏

j∈In−{i}

∫ ∞

0

sj (cj) dFj (cj)
∏

j∈I−In

(
1 −

∫ ∞

0

sj (cj) dFj (cj)

)

for all i ∈ I. Then, a strategy profile s� is a Nash equilibrium if and only if s�i
is a threshold strategy in the form

s�i (ci) = βi1{ci<τ�
i } + pi1{ci=τ�

i } + αi1{ci>τ�
i } (7)

almost surely (with respect to Fi) for all i, where τ�i =
Γ̃i(R,s�

−i)
1−Γ̃i(R,s�

−i)
and pi ∈

[αi, βi].

Theorem 3 allows us to restrict the search for equilibrium strategies to only
threshold strategies. Therefore, by viewing the random access game as a game
in which users choose a threshold, we can write the best-response function B :
R

N
+ 	→ R

N
+ , with a slight abuse of notation, as

B (τ ) =

(
Γ̃1 (R, τ−1)

1− Γ̃1 (R, τ−1)
,

Γ̃2 (R, τ−2)

1− Γ̃2 (R, τ−2)
, · · · , Γ̃N (R, τ−N )

1− Γ̃N (R, τ−N )

)
.

By restricting thresholds to take values only from [0, Δ] for some large but finite
positive constant Δ and assuming all belief distributions are continuous, we can
use the Brouwer fixed point theorem to conclude that B has at least one fixed
point, which is the Nash equilibrium of the random access game. Moreover, by
appealing to [14], we can also ensure the uniqueness of the Nash equilibrium if

the Jacobian of B does not have an eigenvalue equal to 1 for all τ ∈ [0, Δ]
N
.
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Fig. 4. For the imperfect collision channel with r1,1 = 0.75, the top figure illustrates
the best-response functions of users 1 and 2, while the bottom figure illustrates the
learning process leading to Nash equilibria. Belief distributions are exponential with
the same parameter λ = 1.

Now, we focus on a numerical application of Theorem 3 to imperfect collision
channels with two users having the same exponential belief distribution with
parameter λ > 0, i.e., F1(c) = F2(c) = 1− e−λc. We set r1,1 to 0.75.

The resulting network behavior can be quite complicated. To start with, de-
pending on the value of λ, the equilibrium does not need to be unique or sym-
metric. For example, in Fig. 4, we show the communication scenario in which
λ = 1 and the best-response functions of users intersect at three different points,
two of which correspond to asymmetric equilibria at which one user sets its
threshold to 0.1, while the other one sets it to 2.1. Moreover, the symmetric
equilibrium is unstable, i.e., small perturbations to this equilibrium will lead
the system to converge to an asymmetric equilibrium when there are multiple
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equilibria. That is, starting from any initial condition except for the symmetric
equilibrium, the learning process on the best-response path converges to only one
of these asymmetric equilibria. For example, at the bottom in Fig. 4, we show
two learning curves with different initial conditions leading to these asymmetric
equilibria. At iteration t + 1, user 1 moves first and updates its threshold to

τ1(t+1) = Γ̃1(R,τ2(t))

1−Γ̃1(R,τ2(t))
by estimating Γ̃1 (R, τ2(t)). Then, user 2 moves and up-

dates its threshold to τ2(t+1) = Γ̃2(R,τ1(t+1))

1−Γ̃2(R,τ1(t+1))
by estimating Γ̃2 (R, τ1(t+ 1)).

Iteration t + 1 terminates after user 2 updates its threshold. As a result, the
time-scale of each iteration corresponds to several tens of time-slots in a phys-
ical system allowing users to accurately estimate the congestion signals. Based
on these observations, we conclude that the symmetric equilibrium, desirable for
fairness purposes, exists but may never appear even in symmetric communication
scenarios when there are multiple equilibria.

On the other hand, the Nash equilibrium is unique for small values of λ, e.g.,
λ = 0.5. Such an equilibrium is automatically symmetric due to the symmetry
in the problem, and our analysis indicates that it is also the stable equilibrium
for noisy collision channels. However, it should be noted that a Nash equilibrium
may not be stable even if it is unique for other channel models, e.g., noise-free
collision channels [15].

6 Conclusions

In this paper, we have focused on layer-2 contention resolution strategies for
wireless networks with multipacket reception. We have obtained necessary and
sufficient conditions for a Nash equilibrium strategy. Applications of these equi-
librium conditions have been illustrated for specific channel models along with the
resulting network performance analysis and various engineering insights. Finally,
we have examined the contention resolution problem with imperfect information,
derived the form of equilibrium strategies, their existence and uniqueness, and an-
alyzed a strategy update mechanism based on best-response dynamics converging
to an equilibrium.
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