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Abstract. We analyze the canonical nonlinear pricing model with lim-
ited information. A seller offers a menu with a finite number of choices
to a continuum of buyers with a continuum of possible valuations. By
revealing an underlying connection to quantization theory, we derive the
optimal finite menu for the socially efficient and the revenue-maximizing
mechanism. In both cases, we provide an estimate of the loss resulting
from the usage of a finite n-class menu. We show that the losses converge
to zero at a rate proportional to 1/n2 as n becomes large.
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1 Introduction

The theory of mechanism design addresses a wide set of questions, ranging from
the design of markets and exchanges to the design of constitutions and political
institutions. A central result in the theory of mechanism design is the “revelation
principle” which establishes that if an allocation can be implemented incentive
compatible in any mechanism, then it can be truthfully implemented in the
direct revelation mechanism, where every agent reports his private information,
his type, truthfully. Yet, when the private information (the type space) of the
agents is large, then the direct revelation mechanism requires the agents to have
abundant capacity to communicate with the principal, and the principal to have
abundant capacity to process information. By contrast, the objective of this
paper is to study the performance of optimal mechanisms, when the agents can
communicate only limited information or equivalently when the principal can
process only limited information. We pursue the analysis in the context of a
representative, but suitably tractable, mechanism design environment, namely
the canonical problem of nonlinear pricing. Here the principal, the seller, is
offering a variety of choices to the agent, the buyer, who has private information
about his willingness-to-pay for the product.

The distinct point of view, relative to the seminal analysis by [11] and [8], re-
sides in the fact that the information conveyed by the agents, and subsequently
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the menu of possible choices offered by the seller, is finite, rather than uncount-
able as in the earlier analysis. The limits to information may arise for various,
direct or indirect, reasons. On the demand side, it may be too difficult or too
complex for the buyer to communicate his exact preferences and resulting will-
ingness to pay to the seller. On the supply side, it may be too time-consuming
for the seller to process the fine detail of the consumer’s preferences, or to iden-
tify the consumer’s preferences across many goods with close attributes and only
subtle differences.

Our analysis adopts a linear-quadratic specification (analogous to that of [11])
in which the consumer’s gross utility is the product of his willingness-to-pay (his
type θ) and the consumed quantity q of the product, whereas the cost of pro-
duction cost is quadratic in the quantity. For this important case, we reveal an
interesting connection between the problem of optimal nonlinear pricing with
limited information to the problem of optimally quantizing a source signal by
using a finite number of representation levels in information theory. In our set-
ting, the socially efficient quantity q for a customer should be equated to his
valuation θ if a continuum of choices were available. In the case where a finite
number of choices are accessible q can take on only some values. If we see θ as
the source signal and q as the representation level, then the total social wel-
fare can be written as the mean square error between the source signal and
the representation signal. Given this, the welfare maximization problem can be
characterized by the Lloyd-Max optimality conditions, a well-established result
in the theory of quantization. Furthermore, we can extend the analysis to the
revenue maximization problem, after replacing the customer’s true valuation by
the corresponding virtual valuation, as defined by [12]. We estimate the welfare
and revenue loss resulting from the use of a finite n-class contract (relative to
the continuum contract). In particular, we characterize the rate of convergence
for the welfare and revenue loss as a function of n. We examine this problem
first for a given distribution on the customer’s type, and then over all possible
type distributions with finite support. We establish that the maximum welfare
loss shrinks towards zero at the rate proportional to 1/n2.

The role of limited information in mechanism design has recently attracted
increased attention. In a seminal paper, [13] considers the impact of a finite num-
ber of priority classes on the efficient rationing of services. His analysis is less
concerned with the optimal priority ranking for a given finite class, and more
with the approximation properties of the finite priority classes. [10] rephrases
the priority rationing problem as a two-sided matching problem (between con-
sumer and services) and shows that already binary priority contract (“coarse
matching”) can achieve at least half of the social welfare that could be gener-
ated by a continuum of priorities. [4] extend the matching analysis and explic-
itly considers monetary transfers between the agents. In particular, they present
lower bounds on the revenue which can be achieved with specific, not necessar-
ily optimal, binary contracts. By contrast, [7] suggest a specific allocation, the
“profit-participation” mechanism to establish approximation results, rather than
finite optimality results, in the nonlinear pricing environment. While the above
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contributions are concerned with single agent environments, there have been a
number of contributions to multi-agent mechanisms, specifically single-item auc-
tions among many bidders. [3] consider the effect of restricted communication in
auctions with either two agents or binary messages for every agent. [5] general-
izes the analysis by allowing for a finite number of messages and agents. In turn,
their equilibrium characterization in terms of partitions shares features with the
optimal information structures in auctions as derived by [1].

2 Model

We consider a monopolist facing a continuum of heterogeneous consumers. Each
consumer is characterized by a quasi-linear utility function: u (θ, q, t) = θq − t,
where q is the quantity of his consumption purchased from the monopolist, θ
describes his willingness-to-pay for the good (his ”type”), and t is the transfer
paid by the agent. The monopoly seller offers q units of products at a cost c (q) =
1
2q

2. Consequently, the net utility of the buyer and seller are given by θq − t (q)
and t (q)− 1

2q
2 respectively, where t (q) is the transfer price that the buyer has

to pay the seller for a quantity q of the product. The specific parameterization of
the utility function and the cost function is referred to as the ”linear-quadratic
model” and has been extensively studied in the literature beginning with [11].
The prior distribution of θ is given by F and has compact support on R. Without
loss of generality we normalize it to the unit interval [0, 1]. We denote the set of
all distribution on the unit interval by Δ ≡ Δ [0, 1].

3 Welfare Maximization

We first consider the social welfare maximization problem in the absence of
private information by the agent. That is, the willingness-to-pay of the buyer,
his type, is publicly known. Moreover, as the transfer t does not determine the
level of the social surplus, but rather its distribution between buyer and seller,
it does not enter the social welfare problem. In the absence of communication
constraints, n = ∞, the social surplus, denoted by SW∞ is then determined as
the solution to the allocation problem:

SW∞ � max
q(θ)

E

[
θq (θ)− 1

2
q2 (θ)

]
. (1)

In the absence of private information, the optimal solution for every type θ
can be obtained pointwise, and is given by q∗ (θ) = θ. In other words, the
socially optimal menu M∗∞ = {q∗ (θ) = θ} offers a continuum of choices and
assigns each consumer the quantity of the good which is equal to his willingness-
to-pay. The resulting social surplus is given by SW∞ = 1

2E
[
θ2
]
. Importantly,

given its linear-quadratic structure, the welfare maximizing problem is equivalent
to minimizing the mean square error (MSE), Eθ[(θ − q)2]. We shall use this
equivalent representation of the problem as we now consider the problem with
communication constraints.
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By contrast, we seek to determine the optimal menu when we can offer only a
finite number of choices, and we denote by Mn the set of contracts which offer
at most a finite number n of quantity choices. Henceforth, such a discretized
contract Mn = {qk}nk=1 is called an n−class contract or n−class menu. The
socially optimal assignment rule then seeks to assign to each buyer with type
θ a specific quantity q (θ) with the property that the quantity q (θ) represents
an element in the n−class contract. For a given number of choices n , the social
welfare problem is:

SWn = max
q(θ)

Eθ

[
θq (θ)− 1

2
(q (θ))

2

]
subject to {q (θ)}1θ=0 ∈ Mn. (2)

Given that the valuation of the buyer is supermodular, i.e. ∂2u (θ, q) /∂θ∂q > 0,
it follows that the optimal assignment of types to quantities has a partitional
structure. Let {Ak = [θk−1, θk)}nk=1 represent a partition of the set of consumer
types where 0 = θ0 < · · · < θk−1 < θk < · · · < θn = 1. A consumer with type
θ ∈ Ak will be assigned q∗ (θ) = q∗k, and the socially optimal menuM∗

n = {q∗k}nk=0
is increasing in k, so that q∗1 < q∗2 < · · · < q∗k. Now, given the relationship to the
mean square error problem discussed above, if we view θ as the source signal and
qk as the representation points of θ on the quantization intervals Ak = [θk−1, θk),
then the solution to the social welfare maximizing contract is given by the n-
level quantization problem, where both the quantization intervals Ak and the
corresponding representation points qk are chosen to minimize the mean square
error (MSE):

MSEn ≡ min
q(θ)

Eθ

[
(θ − q)

2
]
, subject to {q (θ)}1θ=0 ∈ Mn. (3)

Hence, the optimal solution must satisfy the Lloyd-Max optimality conditions,
see [6] and [9].

Proposition 1 (Lloyd-Max-Conditions). The optimal menu M∗
n of the so-

cial welfare problem (2) satisfies:

θ∗k =
1

2

(
q∗k + q∗k+1

)
, q∗k = Eθ

[
θ|θ ∈ [

θ∗k−1, θ
∗
k

)]
, k = 0, . . . , n. (4)

That is, q∗k, the production level for the interval A∗
k =

[
θ∗k−1, θ

∗
k

)
, must be the

conditional mean for θ given that θ falls in the intervalA∗
k and θ

∗
k, which separates

two neighboring intervals A∗
k and A∗

k+1, must be the arithmetic average between
q∗k and q∗k+1. One can observe immediately that q∗k is actually determined by the
first-order condition with respect to (3) because MSEn in (3) is convex in qk
when taking θk and θk+1 as given. Similarly, θ∗k is determined by the first-order
condition when qk and qk+1 are given becauseMSEn in (3) is convex in θk when
taking qk and qk+1 as given. For certain family of distributions (e.g., uniform
distribution and some discrete distributions) we can obtain closed-form solutions
from the Lloyd-Max optimality conditions. We are interested in the relative
performance of finite contracts and evaluate the difference between SW ∗∞ and
SW ∗

n .
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Definition 1. Given any F ∈ Δ, the welfare loss of an n-class contract com-
pared with the optimal continuous contract is defined by L (F ;n) ≡ SW ∗

∞−SW ∗
n .

It is easy to see that the lower bound over all densities is zero, i.e. infF∈Δ L (F ;n) =
0. This can be achieved by a categorical distribution, i.e., Pr

(
θ = k

n

)
= 1

n for
k = 1, ..., n . Our main task is to provide an upper bound over all distributions,
i.e., the worst-case scenario from the point of view of total social welfare.

Definition 2. The maximum welfare loss of an n-class contract over all F ∈ Δ
is given by L (n) ≡ supF∈Δ L (F ;n) .

We first consider a simple example, and show in detail how to use the Lloyd-Max
conditions to obtain the optimal discretized contract and measure the resulting
welfare loss.

Example 1. Suppose that θ is uniformly distributed over [0, 1]. The optimization

problem (2) has a unique optimal solution given by θ∗k = k
n , q∗k = (k−1)/2

n , k =
0, 1, . . . , n. The expected social welfare is SW ∗

n = 1
6 − 1

24n2 and the welfare loss
is SW ∗

∞ − SW ∗
n = 1

24n2 .

In this example, the cutoff points are uniformly distributed, which is due to the
fact that the underlying distribution of θ is uniform. In addition, the conver-
gence rate of the welfare loss induced by discretized contracts is of the order
1/n2. Next, we provide a general estimate of the convergence rate of the welfare
loss induced by discretized contracts as the number of classes tends to infinity.
A direct approach to calculate the welfare loss for general distributions would
require the explicit form of the optimal quantizer, determined by the Lloyd-
Max conditions. But an explicit characterization of the optimal quantizer is not
known, and thus we pursue an indirect approach to obtain a bound through a
series of suboptimal quantizers. For any given F ∈ Δ, we have:

SWn = Eθ

[
θq − 1

2
q2
]
=

1

2
E
(
θ2
)− 1

2
MSEn,

and since the social welfare with the continuous contract is SW∞ = 1
2E

(
θ2
)
, we

obtain

SW∞ − SWn =
1

2
MSEn. (5)

Given the necessary conditions of Proposition 1, it will suffice to confine our
attention to the set of finite menus M∗

n with the property that, given a distri-
bution F ∈ Δ, the menu Mn = {qk}nk=1 can be generated by a finite partition
Ak through qk = E (θ|θ ∈ Ak) , k = 1, . . . , n, so that M∗

n is the feasible set of
menus Mn consistent with the optimality condition (4). For any Mn ∈ M∗

n,

MSEn = Eθ

[
(q − θ)

2
]
=

n∑
k=1

(F (θk)− F (θk−1)) var (θ|θ ∈ Ak) . (6)
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We can write L (F ;n) and L (n), using (5) and (6) as follows:

L (F ;n) = inf
Mn∈M∗

n

[SW ∗
∞ − SWn] = inf

Mn∈M∗
n

1

2

n∑

k=1

(F (θk)− F (θk−1)) var (θ|θ ∈ Ak) ,

(7)

and consequently:

L (n) = sup
F∈Δ

inf
Mn∈M∗

n

1

2

n∑
k=1

(F (θk)− F (θk−1)) var (θ|θ ∈ Ak) . (8)

It is then central to estimate the variance of θ conditional on the interval Ak to
provide an upper bound on L (n).

Proposition 2. For F ∈ Δ, and any n ≥ 1, L (F ;n) ≤ 1
8n2 .

Proof. For any given F ∈ Δ, let Mn be defined by θ′k = k/n,
q′k = E [(θ|θ ∈ [θk−1, θk))] , k = 0, 1, . . . , n. Now, we have L (F ;n) given by:

inf
Mn∈M∗

n

1

2

n∑
k=1

(F (θk)− F (θk−1)) var (θ|θ ∈ [θk−1, θk))

≤ 1

2

n∑
k=1

(
F (θ′k)− F

(
θ′k−1

))
var

(
θ|θ ∈ [

θ′k−1, θ
′
k

))
.

But the variance in any interval is bounded by the following elementary inequal-
ity:

var
(
θ|θ ∈ [

θ′k−1, θ
′
k

)) ≤ 1

4

(
θ′k − θ′k−1

)2
=

1

4n2
.

It then follows that:

L (F ;n) ≤ 1

8n2

n∑
k=1

(
F (θ′k)− F

(
θ′k−1

))
=

1

8n2
,

which concludes the proof.

By considering the uniform distribution of Example 1, we can in fact show that
the maximum welfare loss is bounded both above and below by 1/n2 (up to some
constant).

Proposition 3. For any n ≥ 1, 1
24n2 ≤ L (n) ≤ 1

8n2 , i.e. L (n) = Θ
(

1
n2

)
.

Similar to us, [13] establishes that a finite priority ranking of order n induces a
welfare loss of order 1/n2. His method of proof is different from ours, in that it
does not use quantization explicitly, and in that for the limit results he proposes
uniform quantization of the relevant distribution.
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4 Revenue Maximization

We now analyze the problem of revenue maximization with limited information.
In contrast to the social welfare maximizing problem, the seller wishes to max-
imizes his expected net revenue. The expected net revenue is the difference be-
tween the gross revenue that he receives from the buyer minus the cost of provid-
ing the demanded quantity. The contract offered by the principal now has to sat-
isfy two sets of constraints, namely the participation constraint, θq (θ)−t (θ) ≥ 0,
for all θ ∈ [0, 1], and the incentive constraints: θq (θ)− t (θ) ≥ θq (θ′)− t (θ′), of
the buyer for all θ, θ′ ∈ [0, 1]. The participation constraint guarantees that the
buyer receives a nonnegative net utility from his choice, and the incentive con-
straints account for the fact that the type θ is private information to the buyer,
and hence the revelation of the information is required to be incentive com-
patible. The current problem is then identical to the seminal analysis by [11]
and [8] with one important exception: the buyer can only access a finite number
of choices due to the limited communication with the seller. Now, a menu of
quantity-price bundles is designed by the monopolistic seller to extract as much
profit as possible.

The revenue maximization problem, finding the optimal solution for the al-
location q (θ) and the transfer t (θ) simultaneously, then appears to be rather
distinct from the welfare maximization problem, which only involved the alloca-
tion q (θ). However, we can use the above incentive constraints to eliminate the
transfers and rewrite the problem in terms of the allocation alone. This insight
appeared prominently in the analysis of revenue maximizing auction in [12]. He
showed that the revenue maximization problem can be transformed into a wel-
fare maximization problem (without incentive constraints) as long as we replace
the true valuation θ of the buyer with the corresponding virtual valuation:

θ̂ ≡ ψ (θ) = θ − 1− F (θ)

f (θ)
. (9)

The virtual valuation is always below the true valuation, and the inverse of the
hazard rate (1− F (θ)) /f (θ) accounts for the information rent, the cost of the
private information, as perceived by the principal in the optimal mechanism.
We shall follow [12] and impose the regularity condition that ψ (θ) is strictly
increasing in θ. With this standard transformation of the problem, the expected
profit of the seller (without information constraints) is:

Π∗
∞ = max

q(θ)
Eθ

[
q (θ)ψ (θ)− 1

2
q2 (θ)

]
. (10)

The resulting optimal contract exhibits q∗ (θ) = max {ψ (θ) , 0}. Now, in the world
with limited information, the seller can only offer a finite menu
{(qk, tk), k = 1, . . . , n} to the buyer. After rewriting the revenuemaximizing prob-
lem in terms of the virtual utility, we can omit the dependence on the transfers and
rewrite the problem in terms of a choice over a finite set of allocations Mn:

Π∗
n = max

q(θ)∈Mn

Eθ

[
qψ (θ)− 1

2
q2
]
. (11)
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We denote the distribution function and density function of θ̂ by G and g,
respectively. We have F (x) = Pr (θ ≤ x) = Pr(θ̂ ≤ ψ (x)) = G (ψ (x)), and thus
f (x) = g (ψ (x))ψ′ (x). Using the insights of the previous section, we observe
that maximizing the seller’s revenue is equivalent to minimizing the mean square
error Eθ̂[(θ̂−q)2], where the expectation is taking with respect to the new random

variable θ̂. We then appeal to the appropriately modified Lloyd-Max optimality
conditions to characterize the revenue maximizing contract in the presence of
information constraints:

Proposition 4. The revenue maximizing solution (11) satisfies:

θ∗k − 1− F (θ∗k)
f (θ∗k)

=
1

2

(
q∗k + q∗k+1

)
k = 0, . . . , n− 1, (12)

and

q∗k =
θ∗k−1

(
1− F

(
θ∗k−1

))− θ∗k (1− F (θ∗k))
F (θ∗k)− F

(
θ∗k−1

) k = 1, . . . , n. (13)

Similar to the social welfare problem, we wish to evaluate the upper bound
of Π∗∞ − Π∗

n across all possible distribution functions F ∈ Δ. To this end, we
define the revenue loss induced by an n-class contract compared with the optimal
continuous contract, given a distribution F ∈ Δ, as Λ (F ;n) ≡ Π∗

∞ − Π∗
n and

the maximum revenue loss induced by an n-class contract across all F ∈ Δ
as Λ (n) ≡ supF∈Δ Λ (F ;n). The example of the uniform distribution is again
illustrative before turning to the general analysis.

Example 2. Suppose that θ is uniformly distributed over [0, 1]. The optimization
problem (11) has a unique solution: θ∗k = n+k+1

2n+1 , q∗k = 2k
2n+1 , k = 0, . . . , n.

The maximum expected revenue isΠ∗
n = n(n+1)

3(2n+1)2
and revenue loss isΠ∗

∞−Π∗
n =

1
12(2n+1)2

.

It follows that the convergence rate of the revenue loss induced by discretized
contracts is also of the order 1/n2. We find that the seller tends to serve fewer
buyers as compared to the case when a continuous contract is used. This property
holds for general distributions as the seller’s ability of extracting revenue is
limited. To compensate, the seller reduces the service coverage to pursue higher
marginal revenues. We now provide the convergence rate of the revenue loss
induced by discretized contracts as the number of intervals (classes) tends to
infinity. Thus,

Π∗
∞ −Πn =

1

2

[∫ θ̂0

0

θ̂2g
(
θ̂
)
dθ̂ +

∫ 1

θ̂0

(
θ̂ − q

)2

g
(
θ̂
)
dθ̂

]
. (14)

The first term in the square bracket captures the revenue loss by reducing the
service coverage. The second term in the square bracket and L (F ;n) in (7) are

very much alike. One can immediately get this term by replacing θ by θ̂ and F
by G in L (F ;n). We can then adapt Proposition 2 to the current environment.
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Proposition 5. For any F ∈ Δ, and any n ≥ 1, Λ (F ;n) ≤ 1/8n.

The approximation result of the revenue maximizing problem is similar to the one
of the social welfare program. Likewise, we can use the above uniform example
to establish a lower bound for the revenue losses.

Proposition 6. For any n ≥ 1, 1/12 (2n+ 1)
2 ≤ Λ (n) ≤ 1/8n2, and hence

Λ (n) = Θ(1/n2).

5 Conclusion

We analyzed the role of limited information (or communication) in the con-
text of the canonical nonlinear pricing environment. By focusing on the simple
linear-quadratic specification of the utility and cost function, we were able to
relate the limited information problem directly to the quantization problem in
information theory. This allowed us to explicitly derive the optimal mechanism,
both from a social efficiency as well as from a revenue-maximizing point of view.
In either case, our analysis established that the worst welfare loss due to the
limits of information, imposed by an n-class contract, is of the order of 1/n2. In
Bergemann et al. (2012), we extend the present analysis for the efficient alloca-
tion to a multi-dimensional type space [2].

While the nonlinear pricing environment is of interest by itself, it also rep-
resents an elementary instance of the general mechanism design environment.
The simplicity of the nonlinear pricing problem arises from the fact that it can
viewed as a relationship between the principal, here the seller, and a single agent,
here the buyer, even in the presence of many buyers. The reason for the sim-
plicity is that the principal does not have to solve allocative externalities. By
contrast, in auctions, and other multi-agent allocation problems, the allocation
(and hence the relevant information) with respect to a given agent constrains
and is constrained by the allocation to the other agents. For an information-
theoretic point of view, the ensuing multi-dimensionality would suggest that the
methods of vector quantization rather than the scalar quantization employed
here, would become relevant.

Finally, the current analysis focused on limited information, and the ensuing
problem of efficient source coding. But clearly, from an information-theoretic
as well as economic viewpoint, it is natural to augment the analysis to reliable
communication between agent and principal over noisy channels, the problem of
channel coding, which we plan to address in future work.
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