
Android Security Permissions –

Can We Trust Them?

Clemens Orthacker, Peter Teufl, Stefan Kraxberger, Günther Lackner,
Michael Gissing, Alexander Marsalek,

Johannes Leibetseder, and Oliver Prevenhueber

University of Technology Graz,
Institute for Applied Information Processing and Communications, Graz, Austria

{clemens.orthacker,peter.teufl,
stefan.kraxberger,guenther.lackner}@iaik.tugraz.at

Abstract. The popularity of the Android System in combination with
the lax market approval process may attract the injection of malicious
applications (apps) into the market. Android features a permission sys-
tem allowing a user to review the permissions an app requests and grant
or deny access to resources prior to installation. This system conveys a
level of trust due to the fact that an app only has access to resources
granted by the stated permissions. Thereby, not only the meaning of
single permissions, but especially their combination plays an important
role for understanding the possible implications. In this paper we present
a method that circumvents the permission system by spreading permis-
sions over two or more apps that communicate with each other via arbi-
trary communication channels. We discuss relevant details of the Android
system, describe the permission spreading process, possible implications
and countermeasures. Furthermore, we present three apps that demon-
strate the problem and a possible detection method.

Keywords: Android Market, Security Permissions, Android Malware,
Android Services, Backdoors, Permission Context, Side Channels.

1 Introduction

The opening of mobile device platforms to third party developers was probably
the most significant move of the IT industry in the last years. The availability of
a multitude of applications (apps) has boosted user acceptance and usefulness of
mobile devices like smartphones and tablet computers. Regardless whether for
business or private use, these devices and their apps have the potential to facili-
tate and enrich the user’s everyday life. Mobile platform vendors recognized the
importance of opening their systems to third party developers in order to attract
a wide range of apps. However, the large number of third party developers make
it very hard to provide uniform quality standards for the repository providers.

While, i.e., Apple enforces tight policies on software distributed via their App-
Store for iOS, regarding security and content, Google emphasizes a more open

R. Prasad et al. (Eds.): MOBISEC 2011, LNICST 94, pp. 40–51, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Android Security Permissions – Can We Trust Them? 41

philosophy, providing many liberties to Android developers, distributing their
products via the Android Market. Apps submitted to the Android Market are
rudimentarily checked but the process is not as strict as it is for the AppStore.
Google seems to pursuit a delete afterwards strategy if apps have been found,
which are malicious or are of low quality. Android implements a kill switch to
remotely remove apps installed on customer devices1.

Google introduced a permission system for their Android platform, allowing
developers to define the necessary resources and permissions for their products.
The customer can decide during the installation whether she wants to grant or
deny access to these requested resources such as the address book, the GPS
subsystem or the phone functionalities. Although, this process is challenging to
the standard user, at least an expert will have the ability to draw conclusions
about the theoretical capabilities of an app based on its permissions.

Thereby, the security of the permission system is mainly based on two differ-
ent aspects: the meaning of the permission itself and even more important, the
meaning of combined permissions. For example, when the Internet permission
is combined with the read contacts permission, a possible malicious app could
transfer your private contact data to the Internet. This implication and the
functionality is lost when both permissions are not used in the same application.
Therefore, a large part of the security of the permission system and the trust
in it is based on the assumption that an app only gains access to the resources
that are declared via permissions.

In this work we give a detailed description of the possible communication
paths between applications. We discuss the issue of what we call spreading of
permissions which exploits interprocess communication to allow a transfer2 of
security permissions to apps which did not request them at installation time. We
substantiate this threat by presenting three prototype apps that highlight the
permission spreading problem and demonstrate the detection of a Service based
communication path3.

2 Related Work

In the article Understanding Android Security [1] Enck et al. took a look at
the Android application framework and the associated features of the security
system. One pitfall of Android, as the authors describe, is that it does not provide
information flow guarantees. Also the possibilities of defining access policies in
the source code introduces problems because it clouds the app security since the
manifest file does not provide a comprehensive view of the application’s security
anymore.

1 http://www.engadget.com/2010/06/25/google-flexes-biceps-

flicks-android-remote-kill-switch-for-the/
2 This is not an actual transfer of the permission, but has the same effect.
3 These apps can be downloaded from:
http://www.carbonblade.at/wordpress/research/android-market/

http://www.engadget.com/2010/06/25/google-flexes-biceps-flicks-android-remote-kill-switch-for-the/
http://www.engadget.com/2010/06/25/google-flexes-biceps-flicks-android-remote-kill-switch-for-the/
http://www.carbonblade.at/wordpress/research/android-market/


42 C. Orthacker et al.

SMobile has done some research on the Android Market and its permission
system. They have documented specific types of malicious apps and threats.
In their latest paper [6] they have analyzed about 50,000 apps in the Android
Market. They looked for apps which could be considered malicious or suspicious
based on the requested permissions and some other attributes.

Their key findings are that a big number of apps, available from the market,
are requesting permissions that have the potential of being misused to locate
mobile devices, obtain arbitrary user-related data and putting the carrier net-
works or mobile device at risk. Although the Android OS and Android Market
prompt users for permissions before the installation, users are usually not ready
to make decisions about the permissions they are granting. The most important
statement they make is that fundamental security concerns as well as increase
in malicious apps can be related to poor decisions of the user. Toninelli et al.
came to the same conclusion in [5].

Nauman et al. [2] investigated the Android permission system with special
focus on introducing more fine-grained permission assignment mechanisms. The
authors argue that the current permission system is too static since it does not
take into account runtime constraints and that the accept all or none strategy
is not adequate. Thus, they propose Apex, an extension to the Android policy
enforcement framework which allows users to grant permissions more selectively
as well as to impose constraints on the usage of resources at runtime. Their
extension provides some additional security features which allows a more fine-
grained security policy for Android. A similar approach is outlined in the work
of Ongtang et al. [3].

Similar to [1], Shabtai et al. [4] performed a security assessment of the An-
droid framework in the light of emerging threats to smartphones. They made a
qualitative risk analysis, identified and prioritized the threats to which and An-
droid device might be exposed. In addition, they outlined the five most impor-
tant threat categories which should be countered by employing proper security
solutions. They provide a listing with adequate countermeasures and existing
solutions for the specific threat categories. One of the main propositions is that
the permission system should be hardened to protect the platform better from
misuse of granted permissions.

3 Interprocess Communication

Android apps may activate components of any other app if the other app allows
for it.

The four different types of components providing entry points for other apps
are Activities4, Services, Broadcast Receivers and Content Providers.

If a certain component is requested, the Android system checks whether the
corresponding app process is running and the component is instantiated. If either
of both is not available, it is created by the system. Thus, if a requesting app is

4 For all subsequent Android specific terms we refer to the Android developer docu-
mentation located at http://developer.android.com/index.html

http://developer.android.com/index.html


Android Security Permissions – Can We Trust Them? 43

allowed to access a background Service provided by another application, it can
access it at any time, without the Service having to be started by the user.

3.1 RPC Communication

The Android system provides means for interprocess communication (IPC) via
remote procedure calls (RPC). Since different processes are not allowed to ac-
cess each other’s address space, methods on remote objects are called on proxy
objects provided by the system. These proxy objects decompose (marshal) the
passed arguments and hand them over to the remote process. The method call
is then executed within the remote app component and the result marshaled
and returned back to the calling process. The app programmer merely defines
and implements the interface. The entire RPC functionality is generated by the
system based on the defined interface and transparent to the application.

Interfaces for interprocess communication are defined using the Android in-
terface definition language (AIDL). The resulting Java interface contains two
inner classes, for the local and remote part, respectively.

Typically, the remote part is implemented within an app component called
Service, allowing clients to bind to it in order to receive the proxy object for
communication with the remote part. The Service returns the Stub class in its
onBind()method called by the system upon a connection request from the client.
The client, on the other hand provides a ServiceConnection callback object
along with the bind request in order to receive the proxy object for interprocess
communication with the Stub.

Specific messages, called Intents, identifying the targeted Service, represent
bind requests. A client’s Intent is passed to the Service’s onBind(), so that the
Service can decide whether or not to accept the connection. Upon a successful
connection establishment, the system passes the proxy object corresponding to
the Stub returned from onBind() to the client’s ServiceConnection callback.

Services may declare required permissions5 that are enforced during the bind-
ing. Applications binding to the Service have to declare the use of these permis-
sions correspondingly.

3.2 Communication via Intents

Intents are logical descriptions of operations to perform and are used to acti-
vate Activities, Broadcast Receivers and Services. Since these components may
be part of different applications, Intents are designed to cross process bound-
aries and may transmit information between applications. Note that Intents are
mainly intended to identify a component, optionally adding a limited amount of
additional information to more precisely specify the targeted operation.

Neither Activities, nor Broadcast Receivers or (unbound) Services provide per-
sistent RPC connections for interprocess communication. Still, they may all be
activated by Intents which will be passed to their respective activation methods

5 See Section 4.



44 C. Orthacker et al.

startActivity(), startService(), sendBroadcast() and others. Via their
extras attribute, Intents therefore provide a simple means for transmitting a
limited amount of data to another process’ component. Additionally, Activity
components provide a way to return a result back to their caller. If launched via
startActivityForResult() the calling process may receive a result Intent via
its onResult() method, thus allowing for simple two-way communication.

3.3 Alternative Communication Paths

Content Providers are intended to share data between applications. They are
uniquely identified by URIs and can be accessed via ContentResolver objects
provided by the system. Note that Content Providers are not activated by In-
tents. Reading and writing to Content Providers allows for two-way interprocess
communication if the participating processes have the required permissions.

Apart from the described methods, apps may also communicate by exposing
data via the filesystem and setting global (world) read/write permissions on the
files. Alternatively, apps may share resources if they request the same UID. In
that case they are treated as being the same app with the same file system
permissions. UID sharing is possible for apps signed by the same developer.

We consider these communication approaches as side-channel communication.

3.4 Information Flow Overview

Based on the IPC methods described above, there are four possible communica-
tion paths between two apps A and B (see Figure 1). The S block depicts any
of the aforementioned interprocess interfaces that provides or receives informa-
tion. The arrows indicate the information flow between an app and the remote
component.

– One-Way: An app A can either transfer/receive information to/from an app
B, by using a one-way communication method. This could also be described
as pushing or pulling information to/from an application.

– Real Two-Way: App A exchanges information with app B, by using two-
way communication. Thereby both apps can receive and transmit informa-
tion from A to B and vice versa. This involves an RPC interface as provided
by Services that a client can bind to.

– Pseudo Two-Way: In this variant, two one-way communication channels
are combined to create a two-way communication channel. In this example,
app A transmits information to app B via interface S2 provided by B. In
addition, app B pushes information to A by calling its S1 interface. For this
example two push channels were used, however an arbitrary combination of
push and pull channels could be used. On an abstract information flow level,
this method is equal to the real two-way communication method (regardless
of the employed push/pull combination).

Especially the pseudo two-way method and one-way push method can be used
to transmit information over side channels (e.g. communication by reading and



Android Security Permissions – Can We Trust Them? 45

writing to logging facilities). The available communication paths influence how
potential malicious apps can avoid detection and where they locate the actual
malicious code.

B

S1

B

B

A A

A
S2

SSOne-way
push

Real
two-way

Pseudo
two-way

BA SOne-way
pull

Fig. 1. Two apps A and B can exchange information via one-way or two-way commu-
nication

4 Android Permission Mechanism

Application isolation, distinct UIDs for all apps and permissions are the three
building blocks of Android’s security architecture. Isolation of apps from each
other as well as from the system is assured by executing every app within its
own Linux process. Further, every app runs with a distinct user- and group ID
(UID), assigned at app installation. This allows for protection of memory and
file system resources. Communication and resource sharing are subject to access
restrictions enforced via a fine-grained permission mechanism. Applications are
allowed access to resources if they are granted the respective permissions by the
user.

The isolation of applications, called sandboxing, is enforced by the kernel, not
the Dalvik VM. Java as well as native apps run within a sandbox and are not
allowed to access resources from other processes or execute operations that affect
other apps.

Applications must declare required permissions for such resources within their
manifest file. These permissions are granted or denied by the user during the in-
stallation of the application. The user does not deny or grant permissions during
the runtime of the application6. Permissions are enforced during the execution
of the program when a resource or function is accessed, possibly producing an
error if the app was not granted the respective permission. The Android sys-
tem defines a set of permissions to access system resources such as for reading
the GPS location, or for inter-application/process communication. Additionally,
apps may define their own permissions that may be used by other apps.

There is no central point for permission enforcement, it is scattered over many
parts of the Android system. At the highest level, if permissions are declared in
an application’s manifest file for a component, they are enforced at access points
to that component. These are calls to startActivity() or bindService() for

6 There is no dynamic permission granting as with the Blackberry system.



46 C. Orthacker et al.

activities or services, respectively, that would cause security exceptions to be
thrown if the caller is not granted the required permission.

Permissions may control the delivery of broadcast messages by restricting who
may send broadcasts to a receiver or which receivers may get the broadcast. In
the first case a permission for the protected receiver is declared in the manifest file
(or when registering the receiver programmatically, respectively). It gets enforced
after a sender’s call to sendBroadcast() and will not cause an exception to be
thrown. Rather, the message will simply not be delivered to that receiver if the
sender does not have the required permission. A sender, on the other hand,
may declare a permission within the sendBroadcast() call, which will also be
enforced without the sender noticing.

Permissions for granting read or write access to Content Providers are de-
clared within the manifest file. Apart from that, content providers allow for
a finer grained access control mechanism, via URI permissions. They control
access to subsets of the content provider’s data, allowing a content provider’s
direct clients to temporarily pass on specific data elements (identified by a URI)
to other applications. A dedicated flag on an Intent7 indicates that the recipient
of the Intent is granted permission to the URI in the Intent’s data field, identi-
fying a specific resource, such as a single address book entry. The granted URI
permission is finally enforced once the recipient of the Intent queries the content
provider holding the URI by calling on a ContentResolver object8. Content
Providers declare support for URI permissions in the manifest file. Enforcement
of URI permissions results in security exceptions being thrown if the caller does
not have the required permissions.

Applications may at any time query their context whether a calling PID or
package (name) is granted a permission. This allows for custom-tailored permis-
sion enforcement for specific app requirements. Certain system permissions are
mapped to Linux groups. On app installation, the application’s UID is added
to the respective group (GID). Permission enforcement involves GID checks on
the underlying OS level. The permission to GID mapping is declared within the
system’s platform.xml file. Another specificity are protected broadcasts, which
only the system may initiate.

5 Permission Spreading

As the user grants permissions on installation of an application, it is crucial to
consider all permissions an app requests in context. The combination of spe-
cific permissions may indicate security flaws to the user. Within this work, we
consider the user to be capable of critically analyzing an application’s declared
permissions and understand the implications of granting permissions.

Therefore, the permission system and the decision of the user is based on
the assumption that an app can only use the functionality for which the ap-
propriate permissions are available. We argue, that this security function can

7 Intents are the entities used to activate app components, cf. Section 3.2.
8 Content Providers are not activated via Intents.



Android Security Permissions – Can We Trust Them? 47

be circumvented by spreading security permissions over two or more apps that
use interprocess communication. Thereby the apps are able to gain additional
functionality for which they do not have the corresponding permissions.

5.1 Demonstration

In this section we describe two demo apps that hide the transmission of pri-
vate location data to the Internet by employing permission spreading via an
implemented Service (see Figure 2). The app Backdoor requires the access fine
location (GPS) permission, which could be justified by posing as GPS app that
displays the current position. However, not detectable by the user the app also
implements an Android Service that provides the GPS position to other apps.
The second app – TwitterApp – has the Internet permission and could pose as
a simple app for accessing Twitter, which again would not raise any suspicion
during its installation. However, the user is not able to see that TwitterApp has
malicious code that determines the current GPS position by calling the Ser-
vice of app Backdoor. This GPS position is then posted to a Twitter account9,
which requires the Internet permission. Therefore, the app TwitterApp gains ad-
ditional capabilities by calling a Service of another app and uses its own Internet
permission to publish this information. Although the permission system is not
directly circumvented (the app is still not able to get the GPS position without
the Service of the second app), there are serious implications when analyzing
this method in the context with malicious applications.

Backdoor
ACCESS_FINE

LOCATION
GPS 

system
Internet

Android APIs
TwitterApp

ACCESS_INTERNET

BLOCK 
GPS

SERVICE

BLOCK 
INTERNET

Access GPS
via service of Backdoor

Fig. 2. The app TwitterApp uses the Service of Backdoor to determine the users’s GPS
position and submits it to Twitter via its own Internet permission

5.2 Implications for Malware

When taking a closer look at these two demo apps and the permission spreading
method, we come to several conclusions:

Losing the Permission Context in the Android Market? The Android
Market permission system is intended to support the user in her decision whether
to trust an app before its installation.

9 http://twitter.com/demolocator

http://twitter.com/demolocator


48 C. Orthacker et al.

Thereby, primarily the context in which multiple permissions are used and not
only the permissions themselves, will alarm a user when inspecting a possible
malicious application. However, exactly this context is lost in our presented
attack, since permissions can be distributed over different apps and do not occur
within the same context.

Trust in the Permission System? The Android permission system conveys
a level of trust when an app is installed, since the system functionality can
only be accessed when the appropriate permissions are available. However, when
employing permission spreading, this trust leads to a wrong sense of security.
In this case even an app without any permissions at all can gain additional
functionality by calling functions within other apps that have these permissions.

Where Is the Malicious Code? Assuming, we have a malicious app that
transmits private information information to an attacker without using permis-
sion spreading, then, firstly this app must declare all the required permissions
(e.g., read contact data and Internet access) and secondly it must contain the
malicious code that reads the private data and transmits it to the Internet. Such
an app might raise suspicions due to the employed permissions and the lack of an
adequate description or app use case that would necessitate these permissions.
When analyzed thoroughly, the malicious activity could be detected by decom-
piling the application, capturing network traffic or employing other methods for
detecting malware.

However, when employing permission spreading it is not necessary that the
malicious code is contained within the app that has the permissions required
for the malicious activity. For instance, app Backdoor only contains a Service
that provides the GPS position, but not the malicious code that transmits this
data to an attacker. Therefore, an arbitrary malware detection/analysis method
would never detect the malicious activity when inspecting Backdoor only. In
fact, TwitterApp carries the malicious code and uses Backdoors’s permissions
and Services to gain the information required for the malicious activity.

Furthermore, the app TwitterApp could come without any permission at all
and just acquire the functionality through calling Services on multiple other apps
(e.g., providing contact data, GPS position, Internet access).

Backdoors? Regardless of the malicious code’s location and how the various
available communication paths are employed, permission spreading still requires
the installation of multiple apps by the smartphone users. At a first glance this
might make the likelihood of a successful attack smaller. However, permission
spreading could also be viewed as a classic backdoor that could either be injected
or integrated on purpose into a popular application:

– Such a backdoor Service could be injected into existing source code that
is not protected adequately. Since, the malicious code is not present but
only the code required for providing certain information or functionalities, it
might be difficult to detect such a backdoor – especially when communication
side channels are employed (e.g. by writing data to a system log).



Android Security Permissions – Can We Trust Them? 49

– The backdoor could be injected on purpose into a popular app by the com-
pany developing the app itself, by a developer that is involved in the devel-
opment of an popular app or by a government10.

– The backdoors could be integrated into multiple apps created by the same
developer who then convinces the user to install more than one of the apps
(e.g. by promoting add-ons, splitting functionality, additional levels for a
game, by using a common API for multiple apps, by providing demo/full
versions of applications, etc.).

6 Countermeasures

During the analysis of the permission spreading problem, we have also inves-
tigated countermeasures and implemented another demonstration app that fo-
cuses on the detection of a communication path between permission spreading
apps. Concerning detection, we need to deal with the following question: How
can we detect malware that employs permission spreading? The answer strongly
depends on the employed communication method. We will give a short overview
about the possible detection methods in the following sections.

6.1 Service Detection

Android Services are the simplest method for establishing a two-way communi-
cation path in Android. Services must be declared within the app manifest and
get an identifier that is used when calling the Service. The detection therefore
can be categorized into the detection of a service and the detection of a call to
this service:

Detection of a Service

– Android Market - by the User: The Android market does not state
which Services are provided within the application. Therefore, the user is
not able to get information about the Services employed by an application.

– Android Market - by Google: Since the manifest of each app is readable,
Google would be able to gain information about the employed Services within
all market applications.

– Android Smartphone - by the User: The user is able to get informa-
tion about running Services from the Android system. However, non-running
Services are not displayed by the standard apps bundled with the Android
system.

– Android Smartphone - by an App (e.g., a virus scanner): An arbi-
trary app without any permissions can query the Android PackageManager

for installed applications. For each of these installed apps it is possible to
list the declared Services. In addition the ActivityManager can be used to
list the running Services.

10 The possible attempt to catch Facebook account data in Tunisia is a good example
for such an attack: http://www.wired.com/threatlevel/2011/01/tunisia/

http://www.wired.com/threatlevel/2011/01/tunisia/


50 C. Orthacker et al.

Detection of Service Calls
Services are called by using Intents as parameters for the startService() or

bindService() methods. The bindService() method enables the calling app
to maintain a communication channel that is used for information exchange. The
direct detection of such an Intent, the activation of a Service, or an established
communication channel would require direct access to the Android system, which
to our current knowledge is not possible without adding appropriate functions
to the Android source code. At least for the bindService() method we have
discovered a simple method, that allows us to determine when a Service is called
and limit the possible apps that issued this call. We have also created a simple
demo app (ServiceBindDetection) that can be installed as background Service
and notifies the user whenever a Service is called by another application:

– The Android system Service allows an app to retrieve a list of all running
Services (extracted via the AcitivityManager). In addition, for each Service
the number of connected clients can be extracted. A client is connected when
a ServiceConnection is maintained between a Service and the app that calls
this Service.

– The detection app runs a loop in the background that in each iteration
stores the running Services and their client count. Whenever the client count
changes the user is notified within the Android notification bar.

– Whenever such a change occurs the detector could also get a list of currently
running tasks (also via the ActivityManager) and thereby limit the possi-
ble callers11. By observing different calls to the same Service over time the
possible perpetrators could be narrowed down.

We emphasize that this method does not work when startService() is used,
since it does not maintain a communication channel and therefore does not list
the calling app as connected client. Furthermore, we might miss certain calls
when the duration of a bindService() ServiceConnection is smaller than the
idle time of the Service checker loop.

6.2 Detection of Alternative Communication Paths

As described in Section 3, numerous ways for communication between applica-
tions exist. Acquiring information on interprocess communication other than via
binding to Services turns out to be difficult. Information about Intents being sent
would be valuable to detection of permission spreading. However, there does not
seem to be a user-mode facility to obtain such information. Ongoing research
will focus in this area.

Detection of communication via side channels like reading and writing to
Content Providers seems to be even more difficult. Only in-depth analysis of the
involved applications might yield satisfactory results.

11 The most probable caller is the app that is currently running, however it cannot be
ruled out that another app running in the background issues the call.



Android Security Permissions – Can We Trust Them? 51

7 Conclusions and Outlook

The security of the Android permission system and the trust placed into the sys-
tem is based on the assumptions that an app only has access to the functionality
defined by the stated permissions and that all employed permission are displayed
to the user within the same context (the app to be installed). As we show, these
assumptions are not valid, since permissions can be spread over multiple apps
that use arbitrary communication paths to gain functionality for which they do
not have the appropriate permissions.

The intention of this work is to highlight the possible dangers and the wrong
sense of security when trusting the permission system. Thereby, possible coun-
termeasure range

– from making changes to the permission system including requiring permis-
sions when using IPC between applications, or displaying communication
interfaces prior to app installation,

– over implementing automatic detection systems within the Android Market,
or performing an in-depth analysis of APK files,

– to shift the detection to the Android smartphone, by detecting communica-
tion events caused by permission spreading.

Addressing the detection on smartphones, we have presented a method to detect
a covert communication channel involving Services. However, further investiga-
tions are necessary, since there is a large number of possible communication
channels, ranging from documented IPC to not so obvious side channels.

References

1. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE Se-
curity and Privacy 7, 50–57 (2009)

2. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, pp. 328–332.
ACM (2010)

3. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: 2009 Annual Computer Security Ap-
plications Conference, pp. 340–349 (December 2009)

4. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
Android: A Comprehensive Security Assessment. IEEE Security & Privacy Maga-
zine 8(2), 35–44 (2010)

5. Toninelli, A., Montanari, R., Lassila, O., Khushraj, D.: What’s on Users’ Minds?
Toward a Usable Smart Phone Security Model. IEEE Pervasive Computing 8(2),
32–39 (2009)

6. Vennon, T., Stroop, D.: Android Market: Threat Analysis of the Android Market
(2010)


	Android Security Permissions – Can We Trust Them?
	Introduction
	Related Work
	Interprocess Communication
	RPC Communication
	Communication via Intents
	Alternative Communication Paths
	Information Flow Overview

	Android Permission Mechanism
	Permission Spreading
	Demonstration
	Implications for Malware

	Countermeasures
	Service Detection
	Detection of Alternative Communication Paths

	Conclusions and Outlook
	References




