
R. Prasad et al. (Eds.): MOBISEC 2011, LNICST 94, pp. 25–39, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Context-Aware Privacy Policy Language
for Controlling Access to Context Information

of Mobile Users

Alireza Behrooz1 and Alisa Devlic2

1 Appear Networks, Kista Science Tower
164 51 Kista, Sweden

alireza.behrooz@appearnetworks.com
2 Ericsson Research, Färögatan 6

164 80 Stockholm, Sweden
alisa.devlic@ericsson.com

Abstract. This paper introduces a Context-aware Privacy Policy Language
(CPPL) that enables mobile users to control who can access their context
information, at what detail, and in which situation by specifying their context-
aware privacy rules. Context-aware privacy rules map a set of privacy rules to
one or more user's situations, in which these rules are valid. Each time a user's
situation changes, a list of valid rules is updated, leaving only a subset of the
specified rules to be evaluated by a privacy framework upon arrival of a context
query. In the existing context-dependent privacy policy languages a user's
context is used as an additional condition parameter in a privacy rule, thus all
the specified privacy rules have to be evaluated when a request to access a
user's context arrives. Keeping the number of rules that need to be evaluated
small is important because evaluation of a large number of privacy rules can
potentially increase the response time to a context query. CPPL also enables
rules to be defined based on a user's social relationship with a context requestor,
which reduces the number of rules that need to be defined by a user and that
consequently need to be evaluated by a privacy mechanism. This paper shows
that when compared to the existing context-dependent privacy policy languages,
this number of rules (that are encoded using CPPL) decreases with an
increasing number of user-defined situations and requestors that are represented
by a small number of social relationship groups.

Keywords: Context-aware privacy rules, social relationships, mobile users.

1 Introduction

Advances in context-aware technologies are making peoples’ lives easier by sensing
and collecting information from their surroundings and using this context to assist
people in performing their daily tasks. In most scenarios, preserving privacy and
integrity of users' personal data is a major issue. People would like to control who can
access their context information, at what level of detail, when, and in which

26 A. Behrooz and A. Devlic

situations. Therefore, it is important that people can grant restricted access to their
context information or deny access to it, depending on their current situation. There is
a need to specify a user's context-aware privacy preferences, enabling a user to define
different sets of privacy rules and when they are applicable. A user's situation is
defined by a set of context values that are obtained through some automated means
(i.e., via sensors). Note that we distinguish between context values whose access is
controlled by a privacy mechanism (i.e., sensitive context) and context values which
are used to determine a user's situation (i.e., situational context).

We tried to express context-aware privacy policies using eXtensible Access
Control Markup Language (XACML) [1] in our earlier work [2]. However, for each
privacy rule in XACML, a logical combination of conditions can be specified that
determines whether the rule should be applied or not. Therefore, we specified a user's
situational context in the condition part of the privacy rule along with the authorized
requestors' condition and the logical function that should be applied to all condition
parts in the rule when the condition is evaluated. Since the logical function can be an
AND operation, for a condition to be valid all the condition parts have to be evaluated
to TRUE. Since at the time when a user situation changes the requestor information is
not necessarily available, the requestor condition part cannot be evaluated. Therefore,
privacy rules cannot be filtered upon a situational context change. Consequently, upon
receiving a context request, all the specified privacy rules must be evaluated,
regardless of the fact that only some of these rules might be valid in the user's current
situation. We refer to the described privacy policy languages, in which a user's
situational context is used as an additional condition based upon which the decision
for granting or denying access to the requested context is made, as context-dependent
privacy policy languages.

A user's social relation with the requestor has been identified in several studies
[3][4] as one of the most important factors influencing a person's willingness to
disclose their context information. However, in most of the existing privacy policy
languages, social relationship is not used to define privacy preferences. Hence, the
ability to define privacy preferences based on a user's social relationships with
potential requestors can reduce the number of privacy rules that need to be specified
by a user, since potentially a large number of requesters can be represented by a social
relation. Consequently, fewer rules need to be evaluated by a privacy mechanism.

In order to address these problems, we propose a context-aware privacy policy
language (CPPL) based upon the following two design considerations: (1) a user's
situations are defined separately from their privacy rules and (2) a context requestor
can be specified using its identity or its social relationship to a user. The CPPL design
assumes a privacy mechanism that will, when a user's situation changes, select the
privacy rules that are valid in this situation. Since a user's situation is defined by a set
of values assigned to context parameters, a context change does not necessarily imply
a situation change. In fact, we assume that a user's situation will change at least an
order of magnitude less frequently than each of its context parameters. Consequently,
the selection of a set of privacy rules will be in frequent (as compared to the rate of
context changes). When a context request arrives, the privacy mechanism will check
(based on a context requestor) only the rules that are valid in the current situation that
have been updated at the latest situation change.

 A Context-Aware Privacy Policy Language for Controlling Access 27

We describe architecture of the privacy framework that provides the described
context-aware privacy mechanism. Additionally, we create an analytical model to
compute the reduction in the number of rules that have to be evaluated by the privacy
mechanism when they are specified using CPPL as opposed to when they would be
specified using other context-dependent policy languages. We show that this
reduction linearly increases with the number of situations and requestors that are
represented by a few social relationship groups.

The rest of this paper is organized in 6 sections. Section 2 describes our motivation
scenarios, leading to requirements for a context-aware privacy policy language.
Section 3 reviews the related works according to the identified requirements. Section
4 describes the syntax of the proposed privacy language. Section 5 describes the
privacy framework architecture. Section 6 provides the analytical model, while
section 7 concludes the paper with plans for future work.

2 Motivation Scenarios and Requirements

This section presents two scenarios that motivate the need for context-aware privacy
in the daily lives of average mobile users and derives requirements for a context-
aware privacy language from these scenarios.

Bob uses a mobile application that collects his body temperature, heart rate, and
blood pressure. A Healthcare Institution (HCI) collects all these health information of
the application users. When a health emergency occurs (i.e., one or more health
indicators exceeds a predefined threshold), the application will detect it, then it will
send this information along with the Bob’s current location to the HCI. HCI will in
turn identify the nearest available nurse to Bob and ask her to visit Bob.

Alice uses a mobile application to share her activities with her family and friends
on specific occasions. She agrees to allow her husband to see her current activity
while she is in Paris, but not otherwise. When Alice is on vacation (this context
information can be inferred from her current location and calendar), she wants to
inform her friends about the city she is visiting. She is also willing to share her
location at the street level with her friends on weekends so they can find each other
and go out together.

From these scenarios we identified the requirements that should be considered
when selecting an existing or designing a new context-aware privacy policy language:

• User-defined situation: A privacy policy language should enable users to
define privacy preferences that are valid in specific situations. A situation
should be specified by users based on their available context (via a tool with
a graphical user interface), using parameters defined in the context model.

• Rich context model: A context model should be rich enough to allow users
to define any situation, while at the same time it should be customized for
use by applications in a particular domain.

• Periodic-time: A privacy policy language should enable the definition of
privacy rules that are valid during periodic time intervals (e.g., on weekends,
on work days from 12:00 to 13:00, etc.).

28 A. Behrooz and A. Devlic

• Social relationship: Users should be able to define their privacy rules based
on the social relationship that they have with other people. Maintaining
social contacts with a small number of groups and using these groups to
specify privacy rules can significantly reduce the number of rules that users
need to specify.

• Fine-grained access: Users should be able to specify the granularity of
context information that they want to disclose to others in a privacy rule.

• Context-awareness: Privacy policy rules should be context-aware, thus they
should be evaluated when a user’s situational context changes (rather than
when a request for sensitive information arrives). As a result, only a subset
of privacy rules that are valid in the user's current situation will be checked
by the privacy mechanism when a context request arrives.

• Conflict-handling: There is a potential risk that more than one privacy rule is
valid and can be applied in a particular situation. In some cases, these rules
can indicate different actions. For example, one rule might grant access to
the requested context, while another rule denies it. A privacy policy language
must provide a mechanism to handle such conflicts.

3 Related Work

This section reviews the state-of-the-art context-dependent privacy languages
according to the requirements identified in the previous section.

3.1 Houdini

Houdini [5] is a context-aware privacy framework that enables users to specify their
privacy preferences through web-based forms. Privacy preferences can be defined
based on the users’ current situation, their social relationship with the requestor or the
requestor's identity, and the relation of the requestor's current situation with respect to
their own current situation (e.g., if they are located on the same street).

Users can define potential situations through web-based forms. However,
situations cannot be defined or modified using the privacy policy language, since the
privacy language is decoupled from the context model. Instead, a user's situation is a
single variable that is used in the privacy policy rules and whose value must be
calculated before evaluating the corresponding rule.

Conflict handling is supported by assigning priorities to rules. If there is a conflict
between different rules actions, the rule with the highest priority will be considered.

There is no support in privacy policies for periodic time conditions. Additionally,
granularity of disclosed context information cannot be controlled.

3.2 UbiCOSM

The Ubiquitous Context-based Security Middleware (UbiCOSM) [6] represents
privacy policies as tuples of one or more contexts that are associated with a set of
privacy permissions. A privacy permission determines what kind of operation can or

 A Context-Aware Privacy Policy Language for Controlling Access 29

cannot be performed on a particular resource. Privacy permissions are not directly
assigned to particular users. Instead, when a user enters a particular context (e.g., a
physical location), the associated permission becomes applicable to this user.
Permissions have a property that can be assigned either a positive or negative value
indicating that access to the requested data is granted or denied, respectively.
Additionally, it is not possible to control the granularity of disclosed information.

The UbiCOSM middleware allows mobile users to define situations based on their
context and map their privacy permissions to these situations. It updates the set of
valid permissions whenever the user's situation changes, which decreases the policy
evaluation time when a context request arrives.

There is no explicit support in UbiCOSM for defining a user's situation based on a
periodic time interval. Additionally, conflict handling is not supported. A user’s social
relationship cannot be used (rather than the requestor's identity) to define privacy rules.

3.3 CoPS

The Context Privacy Service (CoPS) [7] enables mobile users to control who can
access their context data, when, and at what granularity. CoPS does not enable
specification of a user's situations and rules based on a user's context. Instead, CoPS
uses an optimistic or pessimistic approach to define a default policy in which all
requests are granted or denied, except those that match one of the rules specified by a
policy maker. By defining only the rules that specify under which circumstances
context should be disclosed or not (depending on the chosen default policy) the
number of rules that need to be specified and evaluated is reduced.

Access to context can be granted for the restricted time (e.g., only once, for 2 hours,
always allow, or never allow). A context model in CoPS is limited to context variables
provided by the middleware. A hierarchical syntax (e.g., "campus.building.room") can be
used by a user to control the granularity of the disclosed context information. Context
granularity can be specified using a spatial precision (e.g., "Room 123"), temporal
restriction, or freshness of the disclosed context information (e.g., to disclose the user’s
location 15 minutes ago).

CoPS implements definition of groups and access control based on the membership
in the specified groups, which decreases the effort of specifying and evaluating the
policy rules. Groups can reflect an organization structure or can be defined by a user.

If more than one rule matches the request, conflict handling is performed using the
CoPS specificity algorithm that identifies the most specific rule from the matching
rules set by comparing their structure fields in the specified order of priority.

3.4 Context Privacy Engine

The Context Privacy Engine (CPE) [8] extends the traditional Access Control List
(ACL) mechanism with a set of context constraints that have to be evaluated to
validate a particular privacy policy. Context constraints are used to define context
conditions that are associated to either the context owner or the context requestor,

30 A. Behrooz and A. Devlic

using XQuery expressions. However, a user's situation defined in the policy is not
reusable in other rules. Therefore, if more than one policy should use a particular
situation, then this situation definition must be repeated in each of these policies.

A subject and a requestor in CPE policies can be individuals or groups of people.
However, a group (e.g., defining a user’s social relationships) is expected to be
created by an application.

CPE supports conflict handling by considering a policy level, which is an optional
field in the policy. A policy at a higher level overrides all policies at lower levels. If
there are multiple policies with the same level, the most specific one will be applied.

The CPE policy language does not provide a means to control the granularity of
disclosed context information. This policy language is context-dependant, thus when
a context request arrives, all the privacy policies have to be evaluated regardless of
the user's current situation. Additionally, evaluating context-dependent privacy
policies requires retrieving context data upon arrival of a context query, which can be
time consuming.

3.5 SenTry

The SenTry language [9] is designed as a combination of a user-centric privacy
ontology (called SeT Ontology, written in Web Ontology Language (OWL) [10]) and
the Semantic Web Rules Language (SWRL) [11] predicates. For each context entity a
policy instance is defined which contains the associated privacy rules (defined as
SWRL predicates). The SenTry language supports two categories of rules: Positive
Authorization Rules (PAR) and Negative Authorization Rules (NAR). NAR rules can
only have a "deny" effect, while PAR rules can either allow access to the requested
context or transform the context information according to the specified granularity.

Privacy rules are context-dependent, thus the context-awareness requirement is not
met. Situations can be defined using the SWRL predicates, however SWRL does not
support more complex logical combinations of predicates than the conjunction, which
makes is difficult to define arbitrarily complex situations.

SenTry provides the “grant override” combination algorithm to handle conflicts
among different rules, which is an optimistic algorithm that grants access if at least
one rule grants access to the requested context information. Different combination
algorithms can be defined to handle conflicts, but it is up to the privacy framework to
decide what algorithm should be applied for all the policies in the system.

3.6 Summary

Table 1 shows that none of the existing privacy languages fully meets the identified
requirements. Most of these languages enable definition of situations and support a
rich context model, but none of them enables definition of situations based on
periodic time intervals. Languages that satisfy the context-awareness and/or the social
relationship requirement enable a small number of privacy rules that have to be
evaluated by a privacy mechanism upon a context query arrival.

 A Context-Aware Privacy Policy Language for Controlling Access 31

Table 1. Summary and comparison of context-dependent privacy policy languages

 Houdini UbiCOSM CoPS CPE SenTry
User-defined situation +/- + - +/- +/-
Rich context model +/- +/- - + +/-
Periodic-time - - - - -
Social relationship - - +/- + -
Fine-grained access - - + - +
Context-awareness - + - - -
Conflict-handling + - + + +/-

4 CPPL Model

This section introduces a novel CPPL language that enables mobile users to define
their context-aware privacy preferences in a specific granularity based upon the social
relationship of a user with a context requestor. By defining different parts of the
language, we explain how CPPL meets all the identified requirements.

CPPL specifies context-aware privacy rules by mapping a set of privacy rules to
one or more user situations, in which these privacy rules are valid (as shown in
Figure 1). A CPPL policy contains one or more context-aware privacy rules.

<xs:complexType name="ContextPrivacyRuleType">
 <xs:sequence>
 <xs:element minOccurs="0" ref="cppl:Description" />
 <xs:element type="cppl:Situations" />
 <xs:element type="cppl:RuleSet" />
 </xs:sequence>
 <xs:attribute name="contextPrivacyRuleId" type="xs:ID" />
</xs:complexType>

Fig. 1. XML schema representation of a Context Privacy Rule

The Situations element contains one or more Situation elements each of which is
defined by one or more context conditions that must apply to an entity (as depicted in
Figure 2). To determine if an entity is in a particular situation, all the conditions in the
Conds element have to evaluate to true. The Entity element represents a context
owner, which can be an environment, a device, or a user. For example "<Entity
>user|Bob</Entity>" refers to Bob as a user. The entities in CPPL are expressed
using the MUSIC context model [12]. The MUSIC context model enables context
parameters to be specified in a hierarchical manner by noting all the parent concepts
in the inheritance chain to which the context parameter is assigned to (e.g.,
"#healthInfo.bloodPressure.systolic"). CPPL uses entities and context parameters to
define situations, thus meeting the rich context model requirement.

32 A. Behrooz and A. Devlic

<Situation situationId="Emergency">
 <Entity>#user|Bob</Entity><Conds><CondOp op="OR"><Cond>
 <Logical op="OR"><Constraint param="#healthInfo.bloodPressure.systolic"
 op="NEQ" value="105" delta="15.0"/>
 <Constraint param="#healthInfo.bloodPressure.distolic"
 op="NEQ" value="70" delta="10.0"/>
 </Logical></Cond><Cond><Constraint param="#healthInfo.heartRate"
 op="NEQ" value="75" delta="25.0"/>
 </Cond></CondOp></Conds></Situation>

Fig. 2. A Situation element representing Bob’s health emergency

Each time a user's situation changes, the list of valid privacy rules are updated; it is
this set of rules that will be checked upon receiving a context query. This design
makes the CPPL context-aware as was elaborated in section 2.

The Conds element contains either a single condition (Cond) or a condition
operator (CondOp) that performs a logical operation on two or more single
conditions. Operators provided in the current version of CPPL are logical AND and
OR. The Cond element can be defined as a single constraint or a logical combination
of constraints. In the example in Figure 2, an "OR" logical combination of the
abnormal blood pressure and abnormal heart rate is defined to indicate an emergency
situation. The former is a logical combination of two constraints while the latter is a
single constraint. Note that two kinds of operators are used in this example. One is
applied to constraints or conditions, while another operator is applied to context
parameters to define a constraint.

The Constraint element (illustrated in Figure 2) is used to specify the set of context
parameters that define a condition. It specifies five attributes:

• entity: An optional attribute that is used to specify an entity to which the
context parameters belong to. If it is not specified, the default entity of
parent situation element will be used.

• param: It refers to the context parameter that can be assigned a value (e.g.,
"#location.civilAddress.city").

• op: The operator applied to one or two context parameters for constraint
verification. Table 2 shows the constraint operators that are supported
in CPPL. The definition of these operators is adopted from [13].

• value: The value of the context parameter.
• delta: This attribute is used for continuous parameters. It shows the

acceptable range of context parameters values for a given constraint.

Table 2. Constraint operators

GT Greater than NGT Not greater than STW Starts with
LT Lower than NLT Not lower than ENW Ends with
EQ Equals NEQ Not equals NSTW Not starts with
CONT Contains NCONT Not contains NENW Not ends with

 A Context-Aware Privacy Policy Language for Controlling Access 33

The CPPL time constraint element is used to specify any (periodic) time constraint.
It contains either a DateRange element or an Interval element. The former defines a
time range that begins and ends at the specified date and time. The latter specifies an
interval that has the following attributes:

• daysOfWeek: denotes week days in the form of numbers or words,
representing one or more days or a range of days (e.g., notations
"mon,wed,fri" or "1-3" can both be used to represent Monday,
Wednesday, and Friday).

• months: denotes months of the year by their names or numbers. Months can
enumerated or represented by a range (e.g., "2,4,7" or "may-aug").

• daysOfMonth: numbers between 1 and 31 that indicate days in a month.

The Interval element contains an optional "TimeRange" element for specifying time
periods with "startTime" and "endTime" attributes. An example of using the
TimeConstraint element to represent working hours is shown in Figure 3.

<TimeConstraint ><Interval daysOfWeek="MON-FRI">
 <TimeRange startTime="08:00:00" endTime="16:00:00" />
</Interval></TimeConstraint>

Fig. 3. An example of the use of the TimeConstraint element

Figure 4 shows the definition of Ruleset element, a collection of Rule elements that
are mapped to one or more situations. The Rule element (see an example in Figure 7)
describes who (Identity element) can access what kind of context information
(ContextParams element). The effect of a privacy rule is to permit or deny access to
the requested context information. When there is more than one rule in a rule set, a
combination algorithm should be used to evaluate the final effect and resolve
potential conflicts of the RuleSet. This algorithm uses a "denyOverrides" or
"permitOverrides" policy to deny or permit access to the requested context if at least
one rule from the set evaluates to deny or permit, respectively. This algorithm can be
used to determine the final effect of the multiple rule sets in a user's privacy policy.

<xs:complexType name="RuleSet">
 <xs:attribute name="combinationAlg" type="xs:string" use="optional" />
 <xs:sequence><xs:element type="cppl:RuleType" /></xs:sequence>
</xs:complexType>
<xs:complexType name="RuleType"><xs:sequence>
 <xs:element type="cppl:IdentityType" /> <xs:element type="cppl:ContextParamsType" />
 </xs:sequence>
 <xs:attribute name="effect" type="cppl:EffectType" />
</xs:complexType>

Fig. 4. XML schema representation of Ruleset element

34 A. Behrooz and A. Devlic

The ContextParams element specifies sensitive context parameters assigned to an
entity. Using an AnyContextParam element within the ContextParams element
indicates that all context parameters can be accessed by all potential requestors.

Privacy rules can be defined based on a user's social relationship with a context
requestor, enabling a user to specify a rule for a class of requestors instead for each
requestor individually. The Identity element enables different ways of representing a
context requestor in a privacy rule, using the following elements:

• One: an individual represented by an id.
o e.g. <one id="sip:admin@HCI.com"/>

• Many: a group of users in the same administrative domain.
o e.g. <Many domain="HCI.org"/>

• Relation: a group of people having a specific relation to the context owner.
o e.g. <Relation relation="spouseOf"/>

• AnyIdentity: is used for rules that should be applied to all the requestors.

Figure 5 shows an example of RuleSet element that permits Alice’s friend to access
her current location at the city level.

<Rule effect="Permit">
 <Identity><Relation relation="friendOf"/></Identity>
 <ContextParams><ContextParam>
 <Entity>#user|Alice</Entity>
 <Param>#location.civilAddress.city</Param>
 </ContextParam></ContextParams>
</Rule>

Fig. 5. Privacy rule allowing Alice’s friends to access her location

When a group of people are selected using the Many or Relation elements, it is
possible to exclude one ore more individuals from the selected group using the Except
element (as depicted in Figure 6).

<Identity><Many domain="HCI.org">
 <Except id="sip:Alice@example.com"/>
</Many></Identity>

Fig. 6. Using Except element to exclude an individual from a group

5 Privacy Policy Management System Architecture

A Privacy Policy Management System (PPMS) provides a context-aware privacy
mechanism supporting the CPPL language that enables a user to control access to
his/her sensitive context depending on this user's current situation. We refer to the
user controlling access to his/her sensitive context information as the context owner
and to the user requesting access to the context owner's sensitive context as the

 A Context-Aware Privacy Policy Language for Controlling Access 35

context requestor. Note that we assume that a context owner and a context employ
different devices to control and request access to a particular context, respectively.

As illustrated in Figure 7, the PPMS executes at the context owner's device and
consists of four components: Policy Administration Point (PAP), Policy Refinement
Point (PRP), Policy Enforcement Point (PEP), and Policy Decision Point (PDP). A
context owner specifies his/her privacy preferences (step 1). These preferences are
transformed by the PAP into the CPPL policies and stored into the CPPL Repository
(step 2). The PRP reads the privacy rules from the policies stored in the CPPL
repository (step 3), extracts the situational context parameters that are used in
conditions of these rules, and sends the request to the Context Provider to retrieve
these context parameters (step 4). The Context Provider obtains the requested context
from the sensors that can provide this information and fires the context changed event
containing the sensed context data. This event is received by all the components that
have previously requested this information (steps 5 and 11).

6. Valid privacy rules

5.
Situ

ati
on

al

co
nte

xt
ch

an
ge

d

4.
Con

tex
t re

qu
es

t10. Context request

11. Context changed

Fig. 7. The overall architecture of privacy policy management system

The PEP controls access to the context owner's sensitive context. After receiving a
context request from the context requestor (step 7), the PEP asks the PDP to check if
this requestor is permitted to access the requested context (step 8). The PDP checks
the list of valid rules in the owner's current situation in order to determine is
the requestor is permitted to access the requested sensitive context. It returns the
authorization decision to the PEP, which is either to permit or to deny access to
the requested context (step 9). If the request is permitted, the PEP will forward the
context request to the context provider (step 10). Otherwise, the context request will

36 A. Behrooz and A. Devlic

be rejected. After obtaining the context information from sensors, the PEP will
receive the updated context (step 11), format this context in the granted scope (if the
access to it has been permitted), and send this scoped value to the requestor (step 12).

If the updated context sent in the changed context event is the situational context, it
will be received by the PRP (step 5). The PRP will determine if this situational
context update has caused the change of a user's situation and if so it will update the
list of valid privacy rules in this new situation & send this list to the PDP (step 6).
This process is called policy refinement and must be performed before determining if
the context requestors are authorized to access the requested context. However, if the
changed context is not a situational context, the policy refinement is not necessary
because the valid rules are already up to date.

The PPMS has been implemented in Java and integrated as a component in the
MUSIC context middleware [14]. We plan, as part of the future work, to evaluate the
performance of the proposed privacy mechanism in terms of the latency that this
mechanism adds to the context response time.

6 Analytical Model

As earlier elaborated, a small number of privacy rules encoded using a context-aware
privacy policy language should be evaluated by a privacy mechanism upon arrival of
a context query. To fulfill this goal, CPPL introduces two approaches: (1) filtering the
context-aware privacy rules based on the context owner’s current situation and (2)
representing context requestors using their social relationship with the context owner.

This section describes an analytical model that is used to compute and compare the
number of privacy rules that need to be evaluated by a privacy mechanism when they
are specified using a context-dependent privacy policy language vs. when they are
specified using the CPPL.

In order to simplify the model we made the following three assumptions:

• Each privacy rule specifies access of a single requestor (i.e., an individual or
a group of people) to a single context parameter.

• For any requestor and the owner's sensitive context parameter, a separate
privacy rule has to be defined.

• The number of the sensitive context parameters whose access is controlled is
the same in each situation.

In context-dependent privacy policy languages, the number of privacy rules that need
to be evaluated by a privacy mechanism (NCB) is equal to the number of requestors
used in the privacy rules (R) multiplied by the sum of the number of sensitive context
parameters (CSi) in all the user's defined situations (S):

∑∑
==

=
S

1i
S

S

1i
SCB ii

C*C*R =N R

(1)

Since the number of sensitive context parameters in different situations is the same

(i.e., []),,,1, SSjS CCCNSSji
i

==∈∈∀ (1) becomes:

 A Context-Aware Privacy Policy Language for Controlling Access 37

SCB CSRN **= (2)

In CPPL, the number of privacy rules that need to be evaluated by the privacy
mechanism (NCPPL) is equal to the number of valid privacy rules in a user's current
situation. Since the privacy rules in CPPL can be specified for both the individual
requestors and the groups, NCPPL can be calculated as the sum of the number of groups
(G) and number of individual requestors that are identified by their identity (RIND)
multiplied with CS:

() SINDCPPL CRGN *+= (3)

In order to compare the number of rules that need to be evaluated by a privacy
mechanism when they are encoded using a context-dependent privacy language vs.
when they are encoded using CPPL, we compute the ratio of NCB and NCPPL:

INDCPPL

CB

RG

SR

N

N

+
= *

 (4)

The result of (4) can be interpreted as the reduction in the number of the rules
achieved by CPPL design of context-aware privacy rules. Since each potential
requestor either belongs to a group or is considered as an individual requestor, and
assuming that there are no empty groups, the sum of groups and individual requestors
is less than or equal to the number of all requestors. Furthermore, there is always at
least one situation even if a user has not defined any situation, to which the privacy
rules are mapped (i.e., an "Always" situation). Thus, it can be concluded that NCPPL
will always be lower than or equal to NCB. Additionally, the more user-defined
situations and the larger the number of requestors that are represented by social
relationship groups, the more effective CPPL becomes compared to the existing
context-dependent privacy policy languages. If all the rules are defined for individual
requestors and there is only one situation, the number of rules in CPPL will be equal
to the number of rules in context-dependent privacy languages.

7 Conclusion

This paper introduces a context-aware privacy policy language (CPPL), which can be
used to represent context-aware privacy preferences of mobile users in order to
control access to their context information. A user's context is used in context-aware
privacy rules to specify which of these rules are valid in particular situation(s). CPPL
enables a user to define situations using a set of context parameters that are defined in
a context model. When a user's current situation changes, a list of valid rules is
updated by a privacy mechanism (that implements support for CPPL), thus leaving
only relevant rules to be evaluated upon arrival of a context query.

CPPL enables a user to specify privacy rules based on a social relationship with a
context requestor, thus reducing the number of rules that need to be specified by the
user and that consequently need to be evaluated by the privacy mechanism.

In the existing context-dependant privacy policy languages a user's context is used
as an additional condition in a rule, along with a requestor's identity. In order to

38 A. Behrooz and A. Devlic

process a context request, the privacy mechanisms supporting these languages need to
process all the specified rules and to retrieve all context values that are used to define
privacy preferences, which can in the case of evaluation of a large number of rules,
significantly increase the privacy policy evaluation time.

We provide an analytical model that calculates a reduction in the number of rules
that need to be evaluated by a privacy mechanism when they are encoded using CPPL
(vs. when they are compared to context-dependent privacy languages), showing that
effectiveness of CPPL increases with an increasing number of defined situations and
requestors that are represented by a small number of social relationship groups.

As part of the future work, we plan to perform a performance evaluation of the
proposed privacy framework in terms of the latency it adds to the context response
time. Moreover, a usability study will be done to make sure that our approach can be
easily employed by average mobile users.

References

[1] Moses, T.: eXtensible Access Control Markup Language (XACML) Version 2.0.
Technical report, OASIS (February 2005)

[2] Devlic, A., et al.: Context inference of users’ social relationships and distributed policy
management. In: Proc. of the 7th IEEE International Conference on Pervasive Computing
and Communication (PerCom 2009), 6th Workshop on Context Modeling and Reasoning
(CoMoRea 2009), Galveston, Texas, USA, pp. 755–762 (March 2009)

[3] Consolvo, S., et al.: Location Disclosure to Social Relations: Why, When, and What
People Want to Share. In: 11th International Conference on Human-Computer Interaction
(CHI 2005), pp. 81–90. ACM Press, Las Vegas (2005)

[4] Olson, J.S., et al.: Preferences for Privacy Sharing: Results & Directions CREW
Technical Report (2004)

[5] Hull, R., et al.: Enabling context aware and privacy-conscious user data sharing. In: 5th
IEEE International Conference on Mobile Data Management (MDM 2004), Berkley, CA,
USA, pp. 187–198 (January 2004)

[6] Corradi, A., Montanari, R., Tibaldi, D.: Context-based Access Control Management in
Ubiquitous Environments. In: Third IEEE International Symposium on Network Computing
and Applications (NCA 2004), Cambridge, MA, USA, pp. 253–260 (August 2004)

[7] Sacramento, V., Endler, M., Nascimento, F.N.: A Privacy Service for Context-aware
Mobile Computing. In: First International Conference on Security and Privacy for
Emerging Areas in Communications Networks (SecureComm 2005), Athens, Greece, pp.
182–193 (September 2005)

[8] Blount, M., Davis, J., et al.: Privacy Engine for Context-Aware Enterprise Application
Services. In: IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Shanghai, China, vol. 2, pp. 94–100 (December 2008)

[9] Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information Services for
Distributed Resource Sharing. In: 10th IEEE International Symposium on High
Performance Distributed Computing, San Francisco, pp. 181–184 (2001)

[10] McGuinness, D.L., Harmelen, F.: OWL web ontology language overview. W3C
submission, W3C Recommendation (2003), http://www.w3.org/TR/
owl-features/

[11] Horrocks, I., et al.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C submission, http://www.w3.org/Submission/SWRL/

 A Context-Aware Privacy Policy Language for Controlling Access 39

[12] Reichle, R., Wagner, M., Khan, M.U., Geihs, K., Lorenzo, J., Valla, M., Fra, C.,
Paspallis, N., Papadopoulos, G.A.: A Comprehensive Context Modeling Framework for
Pervasive Computing Systems. In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS,
vol. 5053, pp. 281–295. Springer, Heidelberg (2008)

[13] Reichle, R., et al.: A Context Query Language for Pervasive Computing Environments.
In: Sixth Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom 2008), Hong Kong (March 2008)

[14] IST project MUSIC, Self-Adapting Applications for Mobile Users in Ubiquitous
Computing Environment project, http://www.ist-music.eu

	A Context-Aware Privacy Policy Language for Controlling Access to Context Information of Mobile Users
	Introduction
	Motivation Scenarios and Requirements
	Related Work
	Houdini
	UbiCOSM
	CoPS
	Context Privacy Engine
	SenTry
	Summary

	CPPL Model
	Privacy Policy Management System Architecture
	Analytical Model
	Conclusion
	References

