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Abstract. The convergence of our increasing reliance on mobile devices
to access online services and the increasing number of online services
bring to light usability and security problems in password entry. We pro-
pose using gestures with taps to the screen as an alternative to passwords.
We test the recall and forgery of gesture authentication and show, using
dynamic time warping, that even simple gestures are repeatable by their
creators yet hard to forge by attackers when taps are added.
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1 Introduction

There are two prevalent trends in the way we use the Internet today. One is the
increasing reliance on mobile devices to access online services, and the other is
the ever increasing number of online services. Such services, like online banking,
email, social networking, etc, all require its users to create and track credentials.
The most common form of credentials are passwords and personal identification
numbers (PIN). With so many different services, the number of credentials to
remember and manage can be overwhelming, prompting users to fallback on
less secure measures such as reusing the same password across multiple sites,
creating simpler passwords, or relying on password reset [24].

With smartphones, an additional problem is introduced by the limited screen
real estate: password entry. Password guidelines suggest that “good” passwords
contain a mixture of letters, numbers, and symbols. Memorizing and typing these
passwords is already frustrating, but the task becomes even more cumbersome
on mobile phones’ virtual keyboards where letters, numbers, and symbols may
appear on separate screens. A survey of 50 smartphone users revealed that pass-
word entry is considered more annoying than other limitations to mobile devices,
such as a small screen or poor signal. In addition, 56% of theses users had typed
a password incorrectly at least once every ten times [10].

Smartphones using virtual keyboards take input by reading taps to the screen.
Often, the user sees a larger or highlighted version of the key being tapped. Pass-
word entry fields have also been modified to display the most recently typed letter
for a short interval. Soft keyboards often place letters, numbers, and symbols

R. Prasad et al. (Eds.): MOBISEC 2011, LNICST 94, pp. 13–24, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



14 Y. Niu and H. Chen

into separate screens because of space limitations. When they display letters and
symbols or numbers concurrently, only a subset of alternate characters are avail-
able by holding down the tapped letter for a longer interval to indicate choice
of the alternate character. The extra feedback provided helps the user verify
her intended keystrokes, but it also helps a nearby third party to observe the
user’s keystrokes. The extra taps needed to switch between letter, number, and
symbol screens also discloses the order of letters, numbers, and symbols within
the password.

We propose an alternative to passwords and PINs: gestures with touch in-
put. We define gestures as a series of small movements involving motion wrists
and forearms while the hand holds the phone. The sheer range of motion and
subtleties of force and speed will provide variations between users, even though
there some motions, e.g. circles, that may be popular components in gestures.
For even more variation, the user can tap the screen with her thumb while she
holds the phone to perform a gesture.

2 Gestures

Phishing and human behavior studies demonstrate that humans are creatures of
habit [11]. At an even more basic level, muscle memory enables us to learn and
perform motor skills quickly and repeatedly without much conscious effort.

Gestures capture a biometric quantity of muscle memory and physical char-
acteristics of the specific user. For the purposes of authentication, we care only
about gesture recall rather than gestures identification.

2.1 Usability Benefits

Gestures provide a faster and more convenient method of authentication com-
pared to a complex password. Studies [2,24] show that passwords that are hard
to guess are (not surprisingly) also hard to remember. Gestures, on the other
hand, rely on motor skills. Touch typing, brushing your teeth, or signing a signa-
ture are examples of fine motor skills into which we put little conscious thought,
but are activities we can replicate accurately and precisely.

A few use cases for gesture authentication are described below.

Device Unlock and Second Factor. The most obvious application of gesture au-
thentication is replacing existing phone unlock mechanisms involving pins or
gestures drawn on the touchscreen. Gestures can also be used to supplement
existing authentication mechanisms where additional proof is needed.

Password Management. Because gestures should be easy to remember, it is pos-
sible for users to record one gesture for every unique password. However, remem-
bering which password corresponds to which gesture could get complicated as the
number of unique passwords increase. One increasingly common method of deal-
ing with multiple passwords is to rely on a passwordmanager. In this scenario, the
gesture will serve as the master password for unlocking all other passwords.
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Alternatively, because storing passwords on the phone is risky in case the
device is stolen, we could use gestures to access credentials stored remotely1 or
as alternate OpenID credentials. Another advantage of this approach is that it
eases the processing burden of running gesture recognition on the phone.

2.2 Security Benefits

A gesture based authentication system would make it more difficult for a shoulder
surfer to replay the password, even if he observes the entire gesture. Subtleties
like force, speed, flexibility, pressure, and individual anatomical differences would
prevent the casual observer from repeating the gesture well enough to authenti-
cate successfully. Furthermore, there are taps to the screen which may be hidden
as the user moves the phone. These types of gestures will not require users to
look at the screen, so they can gain increased privacy by choosing gestures that
can be performed by holding the phone away from the view of onlookers, such
as under a table.

Entropy. A text-based password’s entropy depends heavily on its length. The
entropy per character is log2(N) bits where N is the size of the pool from which
the characters are selected. When all 94 printable ASCII are in the pool, the
theoretical entropy per character is 6.55 bits for a random password.

Intuitively, gestures contain more entropy than text passwords because users
are not limited to printable characters. Quantitatively, the theoretical entropy
provided by our gestures can be measured using the following factors:

It is possible to record with a sample rate between 100hz to 120hz on some
smartphones. The accelerometer in the earliest Android phone can record each
axis with 8−bit precision, and this precision will only improve as accelerometers
improve. For instance, 13− bit precision recording is already possible on existing
accelerometers. Considering orientation gives us 8.49, 8.49, and 7.49 bits of data
per sample for the x, y, and z axis, respectively. Using a conservative sampling
rate of 60hz for both acceleration and orientation, we get 2908.2 bits of entropy
per second. If we consider just acceleration, one second of gesture data contains
1440 bits of entropy. Adding touches to the screen further complicate things, as
there are any number of taps the user may choose to perform concurrently while
performing the gesture.

Shoulder Surfing. Shoulder surfers observing typed passwords on smartphones
may have an easier time when the device has a touchscreen, such as an iPhone or
Nexus One by taking advantage of visual feedback to the user as they select let-
ters or switch between numbers, symbols, and letters. Gestures are more robust
against shoulder surfers, even those with video cameras. It is hard to estimate
the force and timing of gestures correctly solely with brute force. Furthermore,
the standard recording frame rate for HD video is 29fps or 30fps in devices
like the iPhone, whereas we can sample gesture data at a conservative rate

1 We assume the existence of secure storage for such credentials.
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of 60fps. Tapping lightly on the screen with the thumb while moving the phone
will further frustrate the attacker, since the attacker would need to identify each
tap and its timing.

3 Experimental Design

We conducted two sets of users studies to determine user recall and attacker
success rates.

The stages to our experiments are: 1. a) A long term user study with only
gestures and b) a follow up attack study and 2. a) an attack study on the two
simplest gestures from stage 1 with touches to the screen added and then b) a
long term user study on recall. We recruited users from the computer science
department at UC Davis because we did not believe that technical expertise
would affect gesture choice or performance. We relied on a 3rd party application,
Contextlogger [12], which gave us only accelerometer data, for Stage 1, but found
that it was insufficient for our needs in Stage 2, at which point we developed a
custom Android application.

Stage 1A: Gesture Only. Each subject was asked to perform the gesture of his
choice several times a day, at least 5 iterations at a time, over at least a week.
Most subjects participated for at least one month. We had 5 participants who
performed 7 gestures. The seven gestures are: 2 are alphas, the Nike ‘swoosh’,
alpha followed by a circle, first letter of the Thai alphabet, the subject’s initials,
and the subject’s signature.

Stage 1B: Attacks. We assume an attacker with access to video. The attacker is
limited to 5 attempts at gesture replication before the victim’s account is locked
out. Subjects from Stage 1A were asked if they would allow their gesture to
be video recorded. We recorded a total of 6 from 4 participants from a frontal
angle and a back angle, which we felt gave the most direct views of the gesture
performance.

Participants from Stage 1A were asked to play the role of the attacker with
the incentive of a small prize awarded to the most convincing attacker. 6 subjects
volunteered. Subjects were allowed as much time as they needed to perform the
attacks, and there was no set rules as to how attacks must proceed.

Stage 2A: Adding Taps. We asked two “victims” from Stage 1B with the sim-
plest gestures, the alpha and the swoosh, to record new videos showing the same
gesture they used in Stage 1A, this time with taps added. These gestures were
recorded using an Android application that we developed. We recruited 9 sub-
jects to act as attackers. They were asked to view the two victim videos, again
with no set rules as to how the attacks must proceed. Attackers were told that in
addition to the movement, taps had been added to each gesture. These partici-
pants were given the videos to study and when they were ready, asked to record
at least ten attempts for each victim gesture.



Gesture Authentication with Touch Input for Mobile Devices 17

We chose to perform the attack study before starting a second longterm study
to test our hypothesis that adding taps would make very simple gestures harder
to imitate.

Part 2B: Extended Study with Taps. We recruited subjects for a long term study,
once again, and had 6 users. We asked these subjects to provide at least two
weeks of data. The six gestures performed were: the Nike swoosh with 5 taps,
a parry-thrust with 2 taps, signature with 4 taps, two loops with 3 taps, a back
and forth motion with 3 taps, and initials with 2 taps.

4 Analysis

We present two examples from an earlier feasibility study not discussed in this
paper - a simple compound (Fig 1) consisting of an alpha connected to a circle,
and a complex gesture (Fig 2) consisting of a Chinese character written in cursive
to demonstrate what forgery and recall might look like.
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Fig. 1. Simple Gesture
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Fig. 2. Complex Gesture

As seen in figure 3, multiple trials of the same gesture generally have the same
shape, but the timing varies. We used DTW to compute the similarity between
a victim’s gestures, and the similarity between the victim’s gestures and those
of his attackers.
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Fig. 3. Overlays of Gesture Data, adjusted to match for the first feature

4.1 Dynamic Time Warping

Dynamic time warping (DTW) is a dynamic programming sequence alignment
algorithm that matches one time series onto a reference time series. The result is a
monotonically increasing path and a cumulative matching cost. If two sequences
are identical, then the path is a perfect diagonal and the cumulative matching
cost is 0. When two sequences differ slightly, the cumulative matching cost is
the sum of the distances between the two points matched. DTW with Euclidean
distance matching allows us to measure the similarity of two gestures.

4.2 Methodology

In our experiments, we use an existing implementation of DTW [8]. To computer
the score for similarity between a gesture and the reference gesture, we do the
following:

Let n be the number of repetitions we have for an instance g ⊂ G of a gesture
G, and r ⊂ G is the set of repeated gestures currently used as reference set. The
reference set can be considered the stored “password” and is generated by the
user during the initial training period. After this, users only need to perform
their gesture once to authenticate. The score, Θ, is then:

Θ =
1

n

n∑

i=1

1

n− 1

n−1∑

j=1

dtw(ri, gj) (1)

For victim and reference sets, let m be the number of attempts f ⊂ F we have
for a gesture G, and r ⊂ G is the instance of the victim’s gesture currently used
as reference. The score, Θ, is then:

Θ =
1

n

n∑

i=1

1

m

m∑

j=1

dtw(ri, fj) (2)
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We use Equation 1 to generate an average score, which we then used to compute
two cutoff values: 1) mean of the repetition scores + standard deviation

2) mean of the repetition scores + half the standard deviation.

The cufoff value determines whether the gesture in question scores low enough
(i.e. is similar enough) to the reference gestures.

5 Results

Our extended study showed promising results in that most gestures, except the
very simplest, were repeatable by their creators yet difficult to forge by attackers.

5.1 Stage 1: Gesture with No Taps

Gesture Variation. For each user, we gathered at least one week of data (at
least 35 repetitions of the same gestures). Our goal in this study was to find a
scoring system that is lenient enough to give a legitimate user some leeway in
gesture variation and shift over time, and at the same time makes it difficult for
an attacker to succeed. We do not address gesture shift over time in our analysis,
although we did notice that as time went on, the average DTW scores of later
gestures were decreasing and stabilizing.

In these studies, the false negative rate is 1− rate of success for repetitions,
and the false positive rate is the rate of success for attacks. Lower scores indicate
greater gesture similarity, because the score is a reflection of the total matching
cost between two sequences.

Using Reference Set. Simply using a globally established average DTW value
skews the average with initially inconsistent performance. Choosing just one ges-
ture runs into the danger of selecting an outlier that will skew the false negative
and false positive rates as well. We randomly sampled 5 files from all gestures to
act as our initial, acceptable gesture set and generated a set of

(
5
2

)
DTW scores

for each possible pair of gestures. From this set, we tested two possible upper
limits to the scores: 1) Average score + Stdev(set of reference scores) and 2)
Average score + Stdev(set of reference scores)/2. We calculated average score
using Equation 1 where n = 5. We adjusted the maximum acceptable score by
taking the average of half of the remaining gestures to balance the outliers that
were possibly in the initial gesture reference set. We use the same adjusted scores
to evaluate the success of attacks. Results are shown in Table 1. This simulates
the case where a user has been using gestures to authenticate for some time.

Using adjusted scores, we see that it improves the repetition success rates, but
again, skew from outliers is significant enough to improve the attacker’s success
rates when the gesture is overly simple. A slightly more complicated compound
gesture, alpha+circle, maintained relatively low false positive and low false
negative rates.
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Table 1. Repetition Success Rates with Reference Set (1) and Adjustments (2)

Cutoff 1 Cutoff 2 Attack Cutoff 1 Attack Cutoff 2

alpha1 0.93 0.88 0.57 0.26

alpha2 1 1 0.61 0.26

nike 1 0.98 1.0 0.75

alpha+circle 0.94 0.9 0.06 0.01

initials 0.95 0.93 0.1 0

signature 0.97 0.96 0.15 0.02

Thai letter 0.98 0.93 NA NA

alpha and circle was successfully performed by just one attacker. Again,
the majority of successful attacks on alpha2 came from the subject who per-
formed alpha1.

5.2 Stage 2: Gesture with Taps

Attack Study. To judge success on gesture forgery with taps, we examined the
taps data first, as we expected the gesture data to be similar to the attacks de-
scribed previously. Attackers were often unsure of the number of taps and varied
the number as they tried to perform the gestures. At first glance, it seems as
though attackers are fairly successful (see Table 2) at guessing the number of
taps. However, when we use DTW to score the similarity of timing between at-
tackers and victims, none of the attackers’ scores fall into the acceptable range2.

Table 2. Tapping Count Success Rates for Attacks. The Alpha received 130 attempts,
and the Swoosh received 118.

Attacker Alpha (2 taps) Swoosh (5 taps)

1 0.21 0.17

2 0.93 0.85

3 0.23 0

4 0 0.70

5 0 1

6 0.57 0.02

7 0.81 0

8 0.08 1

9 0.44 1

2 Between 0 and (Victim’s average score + stdev(victim’s score)).
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Extended Study. We used the same methodology from stage 1 to evaluate gesture
performance. A gesture passes if both the timing and number of taps are correct,
and then we evaluate the accelerometer data. We show rates of success in table 3.
The results demonstrate that gesture movements are clearly replicable, even with
the additional task of memorizing taps, by their respective owner. In some cases,
the taps seem to be more difficult to remember than the gesture - for example,
the back-forth movements were performed with high success rates, but the taps
associated with the gesture had the lowest success rates of all gestures. The cutoff
rates are adjustable, however, so for services that do not require high security,
the more lenient rate could be used for authentication. Conversely, for services
that require more security, an even stricter cutoff rate could be enforced.

Table 3. Success Rates of Tasks for Gesturing with Taps

Touch Count Touch Timing Touch Timing Accelerometer Accelerometer

Cutoff 1 Cutoff 2 Cutoff 1 Cutoff 2

back-forth 0.94 0.87 0.82 0.96 0.89

initials 0.92 1.00 0.97 0.90 0.86

loops 0.97 1.00 0.84 0.92 0.74

parry thrust 0.97 0.98 0.97 1.00 0.79

signature 0.89 0.93 0.79 0.93 0.79

swoosh 0.96 0.94 0.90 0.95 0.88

6 Related Work

Traditionally, authentication factors for computer systems are classified as one of
the following: something you know, something you have, or something you are.
Biometrics, the measurement of physical characteristics or behavioral traits to
identify an individual, are a way to provide evidence for that last factor. Factors
such as fingerprints, retinal patterns, or voice patterns have been well studied
and evaluated. Jain et al provide a survey of biometric methods [9].

Tapping a rhythm in place of password entry was proposed by Wobbrock [23].
The TapSong user studies showed differences in people’s tapping of the same
song, and that eavesdropping was difficult because the attacker had no sense of
what song was being “played.”

Many consumer electronics devices today contain 3-axis accelerometers to
measure the positioning and motion of the device. When the device is ma-
nipulated by the user, the motions can be a biometric, capturing unique bio-
mechanical traits of the user. Accelerometers have been used to capture gaits
[6,16], arm-sweeps [7], and hand gestures [4,14,15]. The accelerometers provide
a time-series of measurements in the 3-axes while the motion is performed.
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Ravi et al [21] used accelerometer data to recognize 8 activities, such as brush-
ing teeth, running, going up or down stairs, etc using a single accelerometer at-
tached near the pelvic region. They used FFT to extract the energy associated
with an activity and used the Weka toolkit [1] to classify the activities. They
discussed and tried various classifiers, finally finding that plurality voting yielded
the best results.

Existing signature and gesture recognition systems make use of dynamic time
warping techniques to score the similarity of inputs [13, 14, 17]. Template adap-
tation changes the expected sequences used in matching based on age of the
template and its similarity to the current input. If the current input is a match,
the old template is discarded and the current input becomes the new template.
We apply these techniques to address personally unique gesture recognition.

Pylvänäinen [20] used Hidden Markov Models (HMM) to build a recognizer
for accelerometer recorded gestures without using feature extractors. However,
the gestures described, a “circle or an upward line” are too basic to be used
for authentication. They were able to determine that sampling at 30Hz was
sufficient enough for maximum accuracy.

Similary, Schömer et al [22] worked on gesture recognition and training using
the Wiimote. The Wiigee project [19] deals with gesture recognition using a left
to right HMM.

Patel et al [18] use gestures to authenticate untrusted public terminals by
displaying a pattern that must be replicated on a user’s cellphone through ges-
turing.

Farella et al [5] tested four distinct gestures and found that it is possible to
distinguish these gestures in small groups. Chong and Marsden [3] tested the
usage of gestures as passwords by creating a limited “alphabet” from which all
gesture passwords would be formed. Our system removes the restriction of any
alphabet and allows users to choose whatever motions they want as their gesture.
Moreover, we are the first, to the best of our knowledge, to combine screen taps
with movements to enhance the security of gestures.

Czeskis et al [4] demonstrated that users are able replicate simple gestures
accurately in order to activate RFIDs. Again, a key difference in their goals and
ours is the reproducibility of gestures: We want only one person to successfully
be able reproduce his own gesture.

7 Conclusions and Future Work

We proposed gesture-based authentication on mobile devices. We evaluated sev-
eral scoring and decision methods using dynamic time warping. We conducted
user studies to examine the consistency of repeating one’s own gestures over time
and the difficulty of emulating others’ gestures.

We discovered that the more complicated gestures, unsurprisingly, have low
false positive rates and low false negative rates. We also found that we can en-
hance the security of the simplest gestures by requiring the user to tap the screen
during the gesture, because the attackers were unable to observe or replicate cor-
rectly the number of taps or the timing of the taps.
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Our examination of the gesture with tap data revealed an unexpected benefit:
by examining the taps data first, we can sometimes avoid the more computa-
tionally expensive task of comparing accelerometer data. Adding taps effectively
makes the gesture a two part “password” for attackers, while it remains one
integrated motion for the average user.

Gesturing to authenticate can protect users from shoulder surfers and ma-
licious bystanders who may observe the process of password entry. To prevent
attackers from emulating gestures, the user should avoid overtly simple gestures,
or combine these simple gestures with tapping.

7.1 Future Work

Based on feedback from stage 2 of the user study, one additional step could be
implemented before uploading the data: asking the participant whether they feel
that gesture could pass the authentication process with a simple “Yes” or “No”
popup. We also need to study the effect of feedback to the user in the form of
“Pass” or “Fail” when they upload each gesture attempt.
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P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727,
pp. 205–213. Springer, Heidelberg (2009)

4. Czeskis, A., Koscher, K., Smith, J., Kohno, T.: Rfids and secret handshakes: de-
fending against ghost-and-leech attacks and unauthorized reads with context-aware
communications. In: CCS 2008: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, pp. 479–490. ACM, New York (2008)

5. Farella, E., O’Modhrain, S., Benini, L., Riccó, B.: Gesture Signature for Ambient
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19. Poppinga, B., Schlömer, T.: wiigee: A Java based gesture recognition library for
the wii remote, http://wiigee.sourceforge.net/
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