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Abstract. We introduce a game, called “The Maze”, as a brain-computer
interface (BCI) application in which an avatar is navigated through a maze
by analyzing the player’s steady-state visual evoked potential (SSVEP) re-
sponses recorded with electroencephalography (EEG). The same
computer screen is used for displaying the game environment and for the
visual stimulation. The algorithms for EEG data processing and SSVEP
detection are discussed in depth. We propose the system parameter values,
which provide an acceptable trade-off between the game control accuracy
and interactivity.

1 Introduction

With a brain-computer interface (BCI) brain activity is read and used for en-
abling a subject to interact with the external world, without involving any mus-
cular activity or peripheral nerves. BCI is now widely regarded as one of the
most successful applications of the neurosciences and is in a position to signifi-
cantly improve the quality of life of patients suffering from amyotrophic lateral
sclerosis, stroke, brain/spinal cord injury, cerebral palsy, muscular dystrophy,
etc [1].

In this work we consider non-invasive, electroencephalography (EEG)-based
BCI method based on the steady-state visual evoked potential (SSVEP). SSVEP
is a response recorded from the occipital pole of a brain on the repetitive pre-
sentation of visual stimuli (i.e., flickering stimuli). When stimulation is at a
sufficiently high rate (starting from 6 Hz), the individual transient EEG re-
sponses overlap, leading to a steady state signal: the signal resonates at the
stimulus rate and its multipliers [2]. This means that, when a subject is look-
ing at a stimulus flickering at frequency f , one can detect f , 2f , 3f, . . . in the
recorded EEG data. Since the amplitude of a typical EEG signal decreases as
1/f in the spectral domain [3], the higher harmonics become less prominent. Fur-
thermore, SSVEP is embedded in other on-going brain activity and (recording)
noise. Thus, when considering a too small recording interval, erroneous detec-
tions are quite likely to occur. To overcome this problem, averaging over several
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recording intervals [4], or recording over longer time intervals [5] are often used
for increasing the signal-to-noise ratio (SNR) in the spectral domain. Finally, in
order to increase the usability and the information transfer rate of the SSVEP-
based BCI, the user should be able to select one of several commands, which
means that the system should be able to reliably detect several (nf ) frequencies
f1, . . . , fnf

. This makes the frequency detection problem more complex, calling
for an efficient signal processing and decoding algorithm.

BCIs were initially aimed for medical purposes, but currently they attract a
lot of attention from the entertainment community [6], since they can be used
as a new interface, e.g., for mind-controlled games, or for remotely controlling
devices. Several studies on SSVEP BCI gaming were published during the last
few years [7,8].

In this paper, we present a novel BCI SSVEP game, which achieves good
performance thanks to an appropriate detection algorithm combined with spatial
filtering. We also discuss some necessary modifications to the game strategy,
which can make this brain game more easy to use and more attractive.

2 Methods

2.1 EEG Data Acquisition

The EEG recordings were performed using a prototype of an ultra low-power 8-
channels wireless EEG system, which was developed by imec1, and built around
their ultra-low power 8-channel EEG amplifier chip [9]. The data are transmitted
at a sampling rate of 1000 Hz, for each channel. We used an electrode cap with
large filling holes and sockets for mounting of active Ag/AgCl electrodes (Acti-
Cap, Brain Products). The recordings were made with eight electrodes located
on the occipital pole (covering the primary visual cortex), namely at positions
P3, Pz, P4, PO9, O1, Oz, O2, PO10, according to the international 10–20 elec-
trode placement system. The reference electrode and ground were placed on the
left and right mastoids, respectively.

The raw EEG signals are filtered above 3 Hz, with a fourth order zero-phase
digital Butterworth filter, so as to remove the DC component and the low fre-
quency drift. A notch filter is also applied to remove the 50 Hz powerline inter-
ference.

2.2 Calibration Stage

The game uses only four commands for navigating the avatar through the maze:
“left”, “up”, “right” and “down”, hence, four stimulation frequencies are needed.
During our preliminary experiments, we noticed that the optimal set of stim-
ulation frequencies is very subject dependent. This motivated us to introduce
a calibration stage, preceding the actual game play, for locating the frequency
band, consisting of four frequencies, that evoke prominent SSVEP responses in
1 http://www.imec.be

http://www.imec.be
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the subject’s EEG signal. To this end, we propose a “scanning” procedure, con-
sisting of several blocks. In each block, the subject is visually stimulated for
15 seconds by a flickering screen (≈ 28◦ × 20◦), after which a black screen is
presented for 2 seconds. The number of blocks in the calibration stage is defined
by the number of available stimulation frequencies. We have used a laptop with
a bright 15,4" LCD screen with a 60 Hz refresh rate. In order to arrive at a
visual stimulation with stable frequencies, we show an intense stimulus for k
frames, and a less intense stimulus for the next l frames, hence, the flickering
period of the stimulus is k + l frames and the corresponding stimulus frequency
is r/(k + l), where r is the screen’s refresh rate. Using this simple strategy, one
can stimulate the subject with the frequencies that are dividers of the screen
refresh rate: 30 Hz (60/2), 20 Hz (60/3), 15 Hz (60/4), and so on. We grouped
these frequencies into overlapping bands, for which each band contains four con-
secutive stimulation frequencies (e.g., band 1: [6 Hz, 6.66 Hz, 7.5 Hz, 8.57 Hz],
band 2: [6.66 Hz, 7.5 Hz, 8.57 Hz, 10 Hz], and so on). After stimulation, we
visually analyze the spectrograms of the recorded EEG signals, and select the
“best” band of frequencies to be used in the game. We have to admit that this
frequency selection procedure is subjective, and probably not optimal, calling
for an automated procedure.

2.3 Spatial Filtering

Following the minimum energy combination method proposed in [10], we use a
spatial filter designed in the following way: a linear combination of the channels
is sought that decreases the noise level of the resulting weighted signals at the
specific frequencies we want to detect (namely, the frequencies of the oscillations
evoked by the periodically flickering stimuli, and their harmonics). This can be
done in two steps. In the first step, all information related to the frequencies
of interest must be eliminated from the recorded signals. The resulting signals
contain only information that is “uninteresting” in the context of our application,
and, therefore, could be considered as noise components of the original signals.
In the second step, we look for a linear combination that minimizes the variance
of the weighted sum of the “noisy” signals obtained in the first step. Eventually,
we apply this linear combination to the original signals, resulting in signals with
a lower level of noise.

The first step can be done by subtracting from the EEG signal all the com-
ponents corresponding to the stimulation frequencies and their harmonics. For-
mally, this can be done in the following way. Let us consider the input signal,
sampled over a time window of duration T with sampling frequency Fs, as a
matrix X with channels in columns and samples in rows. Then, one needs to
construct a matrix A, which should have the same number of rows as X and as
the number of columns twice the number of all considered frequencies (includ-
ing harmonics). For a given time instant ti (corresponding to the i-th sample
in X) and frequency fj (from the full list of stimulation frequencies including
the harmonics), the corresponding elements ai,2j−1 and ai,2j of the matrix A
are computed as ai,2j−1 = sin(2πfjti) and ai,2j = cos(2πfjti). For example,
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considering only nf = 2 frequencies with their Nh = 2 harmonics and a time
interval of T = 2 seconds, sampled at Fs = 1000 Hz, the matrix A would have
2× nf × (1 + Nh) = 2× 2× 3 = 12 columns and T ×Fs = 2000 rows. The most
“interesting” components of the signal X can be obtained from A by a projection
determined by the matrix PA = A(AT A)−1AT . Using PA the original signal
without the “interesting” information is estimated as X̃ = X − PAX. Those re-
maining signals X̃ can be considered as noise components of the original signals
(i.e., the brain activity not related to the visual stimulation).

In the second step, we use an approach based on Principal Component Anal-
ysis (PCA) to find a linear combination of the input data for which the noise
variance is minimal. A PCA transforms a number of possibly correlated vari-
ables into uncorrelated ones, called principal components, defined as projections
of the input data onto the corresponding principal vectors. By convention, the
first principal component captures the largest variance, the second principal com-
ponent the second largest variance, and so on. Given that the input data comes
from the previous step, and contains mostly noise, the projection onto the last
principal component direction is the desired linear combination of the channels,
i.e., one that reduces the noise in the best way (i.e., making the noise variance
minimal).

The conventional PCA approach estimates the principal vectors as eigenvec-
tors of the covariance matrix Σ = E{X̃T X̃}, where E{·} denotes the statisti-
cal expectancy2. Since the considered EEG signal has 8 channels, Σ has size
8 × 8, is positive semidefinite and, therefore, it is possible to find a set of 8
orthonormal eigenvectors (represented as columns of a matrix V ), such that
Λ = V ΣV T , where Λ is a diagonal matrix of the corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λ8 ≥ 0. Then, the K last (smallest) eigenvalues are selected
such that K is maximal, and

∑K
k=1 λ9−k/

∑8
j=1 λj < 0.1 is satisfied. The corre-

sponding K eigenvectors, arranged as columns of a matrix VK , specify a linear
transformation that efficiently reduces the noise power in the signal X̃. The same
noise-reducing property of VK is valid for the original signal X. Assuming that
VK would reduce the variance of the noise more than the variance of the signal
of interest, the signal that is spatially filtered in this way, S = VKX, would have
greater (or, at least, not smaller) SNR [10].

2.4 Classification

The straight-forward approach to select one frequency (among several possible
candidates) present in the analyzed signal is based on a direct analysis of the
signal power function P (f) that is defined as follows:

P (f) =

(
∑

t

s(t) sin(2πft)

)2

+

(
∑

t

s(t) cos(2πft)

)2

,

2 Since the original signal is high-pass filtered above 3 Hz, the DC component is
removed and, therefore, the filtered data are centered (the mean is close to zero).
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where s(t) is the signal after spatial filtering. Note that the right-hand part
of this equation is the squared Discrete Fourier Transform magnitude at the
frequency of interest [10]. The “winner” frequency f∗ can then be selected as the
frequency with maximal (among all considered frequencies f1, f2, . . . , fnf

) power
amplitude:

f∗ = argmax
f1,...,fnf

P (f).

Unfortunately, in our case, this direct method is not applicable due to the nature
of the EEG signal: the corresponding power function decreases (similarly to 1/f)
with increasing f . In this case, the true dominant frequency could have an power
amplitude less than the other considered lower frequencies. In [5] it was shown
that the SNR does not decrease with increasing frequency, but remains nearly
constant. Relying on this finding, one can select the “winner” frequency as the
one for which the SNR is maximal, P (f)/σ(f), where σ(f) is an estimation of
the noise power for frequency f .

The noise power estimation is not a trivial task. One way to do this is to record
extra EEG data from the subject, without visual stimulation. In this case, the
power of the considered frequencies in the recorded signal should correspond
to the noise level. Despite its apparent simplicity, this method has at least two
drawbacks: 1) an extra (calibration) EEG recording session is needed, and 2) the
noise level changes over time and the pre-estimated values could significantly
deviate from the actual ones. To overcome these drawbacks, we need an efficient
on-line method of noise power estimation. As a possible solution, one can try
to approximate the desired noise power σ(f̃) for a frequency of interest f̃ using
values of P (f) from a close neighborhood O(f̃ ) of the considered frequency
f̃ . A simple averaging σ(f̃ ) ≈ E{P (f)}f∈O(f̃)\f̃ produces unstable (jittering)
estimates if the size of the neighborhood O(f̃) is small. Additionally, a large
neighborhood could contain several frequencies of interest that could bias the
estimate of σ(f̃).

In our work, we have used an approximation of noise based on an autoregres-
sive modeling of the data, after excluding all information about the flickering,
i.e., of signals S̃ = VKX̃ (see previous subsection). The rationale behind this
approach is that the autoregressive model can be considered as a filter (working
through convolution), in terms of ordinary products between the transformed
signals and the filter coefficients in the frequency domain. Since we assume that
the prediction error in the autoregressive model is uncorrelated white noise, we
have a flat power spectral density for it with a magnitude that is a function of
the variance of the noise. Thus, the Fourier transformations of the regression
coefficients aj (estimated, for example, with the use of the Yule-Walker equa-
tions) show us the influence of the frequency content of particular signals on
the white noise variance (σ̃). By assessing such transforms, we can obtain an
approximation of the power of the signal S̃.
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More formally, we have:

σ(f) =
πT

4
σ̃2

|1 − ∑p
j=1 aj exp(−2πijf/Fs)| ,

where T is the length of the signal, i =
√−1, p is the order of the regression model

and Fs is the sampling frequency. Since for the detection of each stimulation
frequency, we use several channels and several harmonics, we could combine
separate values of the SNR as:

Q(f) =
1

K(Nh + 1)

K∑

k=1

Nh+1∑

h=1

Pk(hf)/σk(hf),

where K is the dimensionality of the signal S and (Nh + 1) is the number of the
multipliers of the considered frequency f (one fundamental frequency plus its
Nh harmonics).

The “winner” frequency f∗ is defined as the frequency with the largest index
Q(·) among all frequencies of interest:

f∗ = arg max
f1,...,fnf

Q(f).

2.5 Game Design and Implementation

We have developed a SSVEP-based BCI game “The Maze”, in which the player
can control an avatar in a simple maze-like environment. The task is to navi-
gate the avatar (depicted as Homer Simpson’s head) to the target (i.e., a donut)
through the maze (see Fig. 1). The game has several pre-defined levels of increas-
ing complexity. A random maze mode is also available. The player can control
the avatar by looking at flickering arrows (showing the direction of the avatar’s
next move) placed in the periphery of the maze. Each arrow is flickering with its
own unique frequency taken from the selected frequency band (see Section 2.2).
The selection of the frequencies can be predefined or set according to the player’s
preferences.

The game is implemented in Matlab as a client-server application and can
run either in parallel Matlab mode (as two labs) or on two Matlab sessions
started as separate applications. The server part is responsible for the EEG
data acquisition, processing and classification. The client part is responsible for
the game logic, user interface and rendering. The client-server communication is
implemented using sockets and due to a minimal data transfer rate (during the
game only commands are sent from the server to the client) it can work over
a regular network, allowing also (optionally) to run the game on two different
computers. For the accurate (in terms of timing) visualization of the flickering
stimuli, we have used Psychtoolbox 3 (http://psychtoolbox.org).

To reach a decision, the server needs to analyze the EEG data acquired over
the last T seconds. In the game, T is one of the tuning parameters (must be set

http://psychtoolbox.org
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Fig. 1. Snapshot of “The Maze” game

before the game starts), which controls the game latency. Decreasing T makes
the game more responsive, but in the same time it makes the interaction less
accurate, resulting in wrong navigation decisions. By default, a new portion of
the EEG data is collected every 200 ms. The server analyzes the new (updated)
data window and detects the dominant frequency using the method described
above. The command corresponding to the selected frequency is sent to the client
also every 200 ms, thus, the server’s update frequency is 5 Hz. The final decision
(the command that is executed) is made by the client using the history of the
last m frequency detections: if in the queue of the last m detected frequencies
there is a frequency with more then m/2 occurrences, then this frequency is
considered to be the “final winner”, otherwise no decision is made.

As mentioned above, the game control has an unavoidable time lag. In order
to “hide” this latency, we let the avatar change its navigation direction only in
so-called decision points: as the avatar starts to move, it will not stop until it
reaches the next decision points on its way. This allows the player to use this pe-
riod of “uncontrolled avatar movement” for planning (by looking on appropriate
flickering arrow) the next navigation direction. By the time the avatar reaches
the next decision point, the EEG data window, which is to be analyzed, already
contains the SSVEP response corresponding to the new navigation direction.

2.6 Influence of Window Size and Decision Queue Length on
Accuracy

To assess the best combination of the window size T and the decision queue
length m, we have studied their influence on the classification accuracy. Six
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healthy subjects (all male, aged 24–34 with average age 28.3, four righthanded,
one lefthanded and one bothhanded) participated in the experiment. Only one
subject had prior experience with SSVEP-based BCI. For each subject, several
sessions with different stimulation frequency sets were recorded, but we present
the results only for those sessions, for which the stimulation frequencies coin-
cide with the ones that are determined with the calibration stage. Each subject
was presented with a specially designed level of the game, and was asked to
consequently look at each one of four flickering arrows for 20 seconds followed
by 10 seconds of rest, so the full round of four stimuli (flickering arrows) was
4 × (20 + 10) = 120 seconds. The stimulus to attend to was marked with the
words “look here”. Each recording session consisted of two rounds and, thus,
lasted 4 minutes. The recorded EEG data where then analyzed off-line using ex-
actly the same mechanism as in the game: for each position of the sliding window
(of size T ) the detected frequency was pushed in the queue (of length m), and
the final decision was based on reaching more than 50% of the votes. Due to the
design of the experiment, the true winner frequency is known for each moment
of time, which enables us to estimate the accuracy.

3 Results and Discussion

The results of the experiment described in Section 2.6 are shown in Table 1. With
the accuracy of the frequency classification we mean the ratio of the correct
decisions with respect to all decisions made by the classifier. Note, that the
chance level of accuracy in this experiment is 25%.

From Table 1 it can be seen that, in general, the longer queues of the decision
making mechanism lead to a better accuracy of the game control. The drawback
of the longer queues is an additional latency. To reduce the later, the server’s up-
date frequency (the actual one is 5 Hz) can be increased. This, in turn, increases
the computational load (mostly on the server part).

Based on our experience (also supported by the data from Table 1), we can
recommend to use the window size T = 3 and the queue length m = 5 (or more)
as default values for an acceptable gameplay.

Unfortunately, the information transfer rate (ITR) commonly used as a per-
formance measure for BCIs, is not relevant for the game, at least in its actual
form. By design, the locations of the decision points depend on the (randomly
generated) maze, and, therefore, the decisions themselves are made at an irreg-
ular rate, which, in turn, does not allow for a proper ITR estimation.

A few more issues concerning the visual stimulation and the game design need
to be discussed. Even though the visual stimulation in the calibration stage (one
full-screen stimulus) differs from the one used in the game (four simultaneously
flickering arrows, see Figure 1), we strongly believe that the frequencies selected
in such a way are also well suited for the game control. This belief has been
indirectly supported during our experiments (see Section 2.6): the frequency
sets, different from the ones selected during the calibration stage, in most cases
yield less accurate detections.



36 N. Chumerin et al.

Table 1. Classification accuracy as a function of window size T and decision queue
length m

T (s) m subject 1 subject 2 subject 3 subject 4 subject 5 subject 6
1 57.14% 91.96% 75.22% 53.35% 49.78% 47.32%

1 3 58.80% 93.06% 78.24% 52.31% 49.54% 48.38%
5 59.13% 94.71% 81.49% 53.61% 50.00% 48.08%
1 70.83% 99.51% 88.97% 69.36% 64.71% 53.92%

2 3 72.70% 100.00% 89.03% 69.39% 65.56% 54.34%
5 73.14% 100.00% 89.36% 71.01% 66.22% 54.52%
1 74.18% 100.00% 92.66% 81.79% 69.84% 62.50%

3 3 75.28% 100.00% 92.05% 82.39% 71.31% 62.50%
5 76.19% 100.00% 92.26% 82.74% 72.02% 62.20%
1 73.17% 100.00% 94.82% 86.59% 70.43% 63.11%

4 3 74.68% 100.00% 94.55% 87.18% 70.19% 63.14%
5 75.68% 100.00% 94.93% 89.19% 70.95% 63.51%
1 65.28% 100.00% 94.10% 88.89% 65.63% 63.89%

5 3 65.81% 100.00% 94.49% 88.97% 65.07% 62.87%
5 65.63% 100.00% 93.36% 89.45% 64.45% 63.28%

One of the drawbacks of SSVEP-based BCIs with dynamic environment and
fixed locations of stimuli is the frequent change of the subject’s gaze during the
gameplay, which leads to a discontinuous visual stimulation. To avoid this, we
introduced an optional mode where the stimuli (arrows) are locked close to the
avatar and move with it during the game, which might make the game more
comfortable to play.

Several subjects have noticed that the textured stimuli are easier to concen-
trate on than the uniform ones. Some of our subjects preferred the yellow color
of the stimuli to the white color, which partially might be explained by a char-
acteristic feature of the yellow light stimulation: it elicits an SSVEP response
of a strength that is less dependent on the stimulation frequency than other
colors [11].

BCI-based gaming is research direction that is still in its infancy, and still a lot
of issues to be tackled before it could become accepted in the gaming community.
All these issues, including the ones discussed above, clearly indicate the necessity
of further BCI research, in general, and the development of suitable applications
for interactive entertainment, in particular.
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