
Elckerlyc in Practice – On the Integration

of a BML Realizer in Real Applications

Dennis Reidsma and Herwin van Welbergen�

Human Media Interaction, University of Twente, The Netherlands
d.reidsma@utwente.nl

http://hmi.ewi.utwente.nl

Abstract. Building a complete virtual human application from scratch
is a daunting task, and it makes sense to rely on existing platforms for
behavior generation. When building such an interactive application, one
needs to be able to adapt and extend the capabilities of the virtual human
offered by the platform, without having to make invasive modifications to
the platform itself. This paper describes how Elckerlyc, a novel platform
for controlling a virtual human, offers these possibilities.

Keywords: Virtual Humans, Embodied Conversational Agents,
Architecture, System Integration, Customization.

1 Introduction

Virtual Humans (VHs) are used in many educational and entertainment settings:
serious gaming, interactive information kiosks, kinetic and social training, tour
guides, storytelling entertainment, tutoring, interactive virtual dancers, enter-
taining games, motivational coaches, and many more. Building a complete VH
from scratch is a daunting task, and it makes sense to rely on existing platforms.
However, when one builds a novel interactive VH application, one needs to be
able to adapt and extend the capabilities of the VH offered by the platform,
without having to make invasive modifications to the platform itself.

The SAIBA framework [1] provides a good starting point for designing interac-
tive VHs. Its emerging Behavior Markup Language (BML) defines a specification
of the form and relative timing of the behavior (e.g. speech, facial expression,
gesture) that a BML Realizer should display on the embodiment of a VH.

Elckerlyc is a state-of-the-art BML Realizer. Elsewhere, we described its mixed
dynamics capabilities, that allow one to combine physics simulation with other
types of animation, and its focus on continuous interaction, which allows it to
monitor its own performance and allows for last moment modification of behavior
plans with respect to content and timing, which makes it very suitable for VH
applications requiring high responsiveness to the behavior of the user [2]. Here,
we will focus on its role as a component in a larger application.

� This research has been supported by the GATE project, funded by the Dutch Or-
ganization for Scientific Research (NWO) and the Dutch ICT Regie.

A. Camurri, C. Costa, and G. Volpe (Eds.): INTETAIN 2011, LNICST 78, pp. 83–92, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

http://hmi.ewi.utwente.nl


84 D. Reidsma and H. van Welbergen

2 Requirements for a Modular and Extensible Realizer

An application that uses a VH as one of its components might have several
requirements for the BML Realizer. Specific additional gestures and face expres-
sions might be needed; the application might need to run distributed over several
machines; the experimenter might need detailed logs of everything that the VH
does; one might want to replace the graphical embodiment of the VH, or its
voice; the embodiment of the VH might need to reside in a custom game engine
instead of Elckerlyc’s default renderer; and one might need to plug in completely
new custom behaviors and modalities for a specific usage context.

Developing extensions or alternative configurations of Elckerlyc should be pos-
sible without requiring changes to the core Elckerlyc system (that is, extensions
should not require recompilation of the Elckerlyc source). After all, if Elckerlyc
extensions lead to a modification of Elckerlyc itself, then this would essentially
lead to a separate Elckerlyc fork for every application using Elckerlyc. This would
make it difficult to share new extensions with the community. Also, once Elck-
erlyc has been forked to accomodate a new modality engine or behavior type,
it becomes difficult to take advantage of improvements in the ‘core’ Elckerlyc
source: they need to be painstakingly merged into the fork.

Below follows a number of extensibility requirements for Elckerlyc, that should
be implemented as non-invasive modifications : they may entail the implementa-
tion of new run-time libraries, or the addition of new resources ; but should not
require compile time dependencies for Elckerlyc on new code.

– Integration with new renderers, speech synthesizers, physics simulators, ...
– Flexible ways to send BML to the realizer, and to adapt the BML stream

with capabilities for filtering and logging.
– Provide a transparent mapping from input (BML behavior elements) to out-

put (control of the VH’s embodiment).
– Provide possibilities to add new behavior types or output modalities.
– Provide easy ways to integrate a BML Realizer as a component in an appli-

cation, independent of variables such as the OS and programming language
on which the application is developed.

3 Related Work

Like Elckerlyc, the BML Realizers Smartbody [3], EMBR [4] and Greta [5] were
specifically designed for integration with existing renderers, to allow a wide range
of behavior types, and/or to facilitate integration in different applications. Elck-
erlyc additionally contributes a transparent and adjustable mapping from BML
to output behaviors (rather than the mostly hardcoded mappings in other real-
izers), and allows for easy integration of new modalities and embodiments, for
example to control robotic embodiments. In this section, we discuss how various
requirements were solved for the three realizers mentioned above, and shortly
indicate the differences with our solutions. In the next section, we will go deeper
into the solutions used in Elckerlyc, also showing how they impact actual use.



Elckerlyc in Practice 85

Integration with Existing Renderers. Smartbody provides the BoneBus
library to connect the Smartbody realizer to a renderer. BoneBus uses UDP to
transport (facial) bone positions and rotations from the realizer to the renderer.
BoneBus is designed to hide the details of the exact communication protocol
used, so that its exact implementation can be changed at a later stage without
changing realizers or renderers that use the library. As the data transport proto-
col is non-trivial and due to change, reimplementing BoneBus in programming
languages other than C++ or using the BoneBus interface with other transport
mechanisms (TCP/IP, shared memory, etc.) is infeasable. Currently, SmartBody
has been integrated with a number of renderers. The output of Greta contains
MPEG-4 facial and body action parameters. By using the MPEG-4 standard,
Greta can potentially be used with any renderer that supports MPEG-4. How-
ever, MPEG-4 –especially for body animation– is not widely supported.

Elckerlyc currently uses the Thrift remote procedure call (RPC) framework [6]
to handle its communication with the renderer. Unlike the BoneBus library, this
allows us to set up a communication channel that is agnostic to the programming
language used on either side and that allows one to configure and change the
mode of transport (e.g. TCP/IP, shared memory, pipes).

Available Behavior Types and Extensibility. Smartbody use keyframe an-
imation and a fixed set of biologically motivated motion controllers (e.g. for gaze)
to achieve facial and body motion. EMBR uses keyframe animation, procedural
animation with a fixed set of expressive parameters, autonomous motion (such
as eyeblink and balancing), morph targets for facial animation, and controllable
shaders (e.g. for blushing). Greta uses procedural body animation with a fixed
set of expressivity parameters, and Ekman’s action units [7] for facial animation.

Elckerlyc allows all of the above, and adds physically simulated animation
and audio (sound effect) behaviors. More importantly, we contribute the abil-
ity to add custom behavior types and new output modalities without requiring
modifications to Elckerlyc’s source code, described in Sections 4.3 and 4.4.

Integrating the Realizer as a Component in an Application. SmartBody
offers integration with the Active MQ messaging system to provide independency
of platforms and programming language, and to allow distributed setups. EMBR
and Greta offer integration with the SEMAINE/Active MQ [8] messaging frame-
works to achieve this; Greta additionally offers integration with Psyclone.

Elckerlyc uses Ports and Adapters to facilitate quick development of support
for new types of integration; current implementations include support for the
SEMAINE/Active MQ system and a simple direct TCP/IP connection. In Sec-
tion 4.1 we discuss this in detail, and also touch upon several other things made
possible by this architectural feature.

4 Design of a Flexible and Extensible BML Realizer

In this section we discuss the elements in Elckerlyc’s architecture that facilitate
configuration, extension, and adaptation of the system. We start with a global



86 D. Reidsma and H. van Welbergen

Fig. 1. Elckerlyc’s architecture

overview. After that, we discuss the main possibilities in detail. For each topic
we first sketch a ‘user need’; subsequently, we show which elements of Elckerlyc
are designed to meet that user need, and how one uses them.

Fig. 1 shows the relevant parts of the architecture. Dashed boxes indicate com-
ponents that can be changed at initialization, black boxes indicate unchangeable
components. The Behavior Planner controls the VH by sending a stream of BML
Blocks to Elckerlyc through a BML Realizer Port. Section 4.1 discusses how Ports
can be used, e.g., to integrate Elckerlyc with various distributed messaging sys-
tems. The Parser parses the BML stream, and provides the Scheduler with a list
of BML behavior elements and time constraints between these elements. Sec-
tion 4.3 discusses how to add custom BML behavior elements. The Scheduler
generates an execution plan, based on these elements and constraints. Different
Engines (e.g., a speech engine, an animation engine, a face engine) keep track
of, and manage, unimodal plans for their specific modality. Section 4.4 discusses
how to add new Engines. Engines are also responsible for translating behavior
elements to a form that is actually displayed on the embodiment of the VH. Sec-
tion 4.2 discusses how this mapping from abstract behavior element to concrete
forms can be reconfigured. The final resulting animation is sent to the Renderer.
Section 4.5 shows how new Renderers can be integrated with Elckerlyc.

4.1 Ports, Pipes, and Adapters

User need 1: Integrating Elckerlyc as component in an application

Elckerlyc is designed to be used as component in a larger application context.
The application may need to run distributed over several machines, platforms,
and programming languages. The developer may want to log all interactions for
post-hoc analysis. Nevertheless, the interface between Elckerlyc and application
should remain as simple as possible: BML goes in; feedback comes out.



Elckerlyc in Practice 87

A minimal interface to a BML Realizer has functionality to (1) send a BML
string to the Realizer and (2) register a listener for Realizer feedback. This is
the BMLRealizerPort in Fig. 1. Both the Behavior Planner and the BML Realizer
are connected to such a BMLRealizerPort. The adapter pattern [9] allows us to
change the exact transport of BML and feedback to and from a BML Realizer,
with no impact on the Behavior Planner and BML Realizer.

Fig. 2. Top right: the Realizer and BehaviorPlanner are connected directly on a Real-
izerPort. Left: the Realizer and BehaviorPlanner are connected through the Semaine
API; they are unaware of this plumbing, they still communicate through RealizerPorts.
Bottom right: a LogPipe logs the messages that pass through it to a file.

Elckerlyc implements the BMLRealizerPort interface. We have implemented
Adapters that plug into BMLRealizerPorts and transport their messages over
various messaging frameworks. Pipes are used to intercept BML and feedback,
allowing one to measure it, let it go through slightly modified, or at a different
rate. We have developed a pipe that logs the BML and feedback passing through,
and one that buffers BML messages for a BMLRealizerPort that can only handle
one BML message at a time. Fig. 2 shows some examples.

4.2 Gesture Binding and Other Bindings

User need 2: Transparently Mapping BML to Output Behaviors

BML provides abstract behavior elements to steer the behavior of a VH. A specific
BML Realizer is free to make its own choices concerning how these abstract
behaviors will be displayed on the VH’s embodiment. For example, in Elckerlyc,
an abstract ‘beat gesture’ is by default mapped to a procedural animation from
the Greta repertoire. The developer may want to map the same abstract behavior
to a different form, e.g., to a high quality motion captured gesture.

Elckerlyc’s AnimationEngine uses a XML description, called the GestureBinding,
to achieve a mapping from abstract BML behaviors to Plan Units that determine
how the behavior will be displayed in the embodiment. The GestureBinding,
clearly illustrated in Fig. 3, can be customized by the application developer;
other Engines provide similar bindings.



88 D. Reidsma and H. van Welbergen

Fig. 3. Gesture Binding fragment binding the head element to the nod plan unit.
Both the nod and shake motion units ex- ecute behaviors of type ”head”. They both
satisfy the constraint action=”ROTATION”, but only the nod motion unit satisfies
the constraint rotation=”NOD” and is therefore selected to execute the head nod. The
Gesture Binding maps the repeats parameter value in the BML behavior to the value
of parameter r specified in the procedural motion unit. The value of parameter a is
not defined in the BML head behavior, therefore the default value of a, as defined in
the Gesture Binding, is used in the procedural animation.

4.3 BML Elements and Plan Units

User need 3: Adding new behavior types

Elckerlyc offers a large repertoire of Plan Unit types, in various Engines, that
can be mapped in a Binding to give form to the abstract BML behaviors: physical
simulation, procedural animation, morph target and MPEG-4 face control, Speech
Units, etcetera. Still, a developer may need completely new Plan Unit types. For



Elckerlyc in Practice 89

example, to make the VH more lively, one may want to add a PerlinNoise Plan
Unit that applies random noise to certain joints of the VH, as a kind of ‘idle
motion’. Such new Plan Units need to become available in the GestureBinding
(see previous section); furthermore, one might want to extend the XML format
of BML with < PerlinNoiseBehavior > to allow direct specification of this idle
motion by the Behavior Planner.

New BML behaviors are created by subclassing the abstract class BMLBehav-
iorElement; they can be registered with the Parser using a static call. At ini-
tialization of Elckerlyc, the new BML behavior type are coupled to a single
Engine by adding it to the behavior class → engine mapping (note that multiple
behavior types can be coupled to the same Engine).

New PlanUnits implement the PlanUnit interface (for the AnimationEngine:
rotate joints on the basis of time and animation parameters [2]). Such plan units
are initialized from the GestureBinding through their class name (as a string),
using Java’s reflection mechanism (that is, the ability to construct a new object
from its class name). This ensures that any Plan Unit implementing the right
interface for an Engine can be used in the Binding for that Engine without
requiring additional compile time dependencies.

4.4 New Modality Engines

User need 4: Adding new modality Engines

The Nabaztag is a robot rabbit with ears that are controlled by servo motors and
a body on which colored led lights are displayed. We needed to control this rabbit
using BML, without encumbering Elckerlyc itself with Nabaztag specific code and
libraries. To achieve this, we built a new Nabaztag Engine that was registered for
handling all non-speech behaviors. For example, head nods were mapped in the
Nabaztag Engine to a NabaztagPlanUnit that would move the ears shortly forward
and back again; a sad face expression was mapped to a NabaztagPlanUnit that
let the ears droop; etcetera.

Each Engine must implement the Engine interface (indicated by the lollipops
in Fig. 4, top). All our current Engines are implemented on the basis of the
DefaultEngine, a skeleton implementation of the interface. The DefaultEngine
uses a Planner, PlanManager, Player and PlanPlayer and manages and plays
a unimodal plan containing Plan Units (e.g. a gesture, a speech clause, etc.).
The Planner resolves and constructs the unimodal plan on the basis of pro-
vided behavior elements and the constraints acting upon them. The PlanMan-
ager manages the unimodal plan and provides several functions to query its state
or modify it. The Player plays back the units in the unimodal animation plan.
In the DefaultPlayer, this functionality is fully delegated to a PlanPlayer. The
Animation Engine and Face Engine require specialized Players that manage the
combination of plan units that act simultaneously on the VH (e.g. physical sim-
ulation and keyframe animation), but can still delegate most of their playback



90 D. Reidsma and H. van Welbergen

Fig. 4. Elckerlyc’s Default Engine setup (top), and the internals of (from left to right,
top to bottom) the Animation Engine, Face Engine, Speech Engine and Nabaztag
Engine. Dashed blocks are changeable at initialization. Note that the Speech Engine
requires access to the PlanManagers that handle the Animation and Face Plans, to
set up the facial movement co-occurring with speech. The Nabaztag Engine, like most
other Engines, mostly uses the default Engine components.

functionality to a PlanPlayer. A MultiThreadedPlanPlayer plays its plan units
in a seperate thread. This is beneficial for plan units whose playback would
otherwise block the playing thread.

The Nabaztag Engine. Building the new Nabaztag Engine involves develop-
ing the Plan Units that implement the basic control for the modality. A Plan
Unit defines a way to control the robot – using one of its control primitives, see
below – over the duration from the start time till the end of the Plan Unit. The
control primitives for the Nabaztag robot are (1) move the ears of the robot to a
specified position, (2) move the ears forward or backward by a specified amount,
and (3) set one of the LEDs to a certain color. We implemented two Plan Unit
types. The “MoveEarTo” Plan Unit moves the ears to a specified position by
linear interpolation during the duration of the Plan Unit. The “WiggleEarTo”
Plan Unit interpolates the ear from its current position to the specified target
position and back to the starting point, during the duration of the Plan Unit,
using a sinoid interpolation. Given these Plan Units, and a NabaztagBinding
for mapping BML behaviors to Nabaztag PlanUnits, the Nabaztag Engine is



Elckerlyc in Practice 91

constructed using the standard available Engine components (see Fig. 4). A
completely new modality Engine has been added by implementing two basic
control Plan Units and an XML Binding. Due to the setup of Scheduler and
Engines, synchronisation between the new Nabaztag Units and other modali-
ties –e.g., speech– is automatically handled by Elckerlyc and requires no further
implementation effort.

4.5 Integration with Renderers

User need 5: Integration with other rendering environments

By default, Elckerlyc renders the VH in its own OpenGL based rendering envi-
ronment. One might, however, want to use Elckerlyc to animate an embodiment
in another rendering environment such as Half Life, Ogre, or Blender.

To seperate the renderer from Elckerlyc, we follow a design similar to that pro-
posed by Russel and Blumberg [10]. The Animation Engine animates a local
copy of the joint setup of the VH. The joint rotations set by Elckerlyc are copied
to the renderer regularly (typically each frame).

The renderer therefore needs to support functionality to (1) provide Elckerlyc
with the joint structure of the VH at its initialization, and (2) provide Elck-
erlyc with means to copy joint rotations to the virtual human in the renderer.
Both requirements should be satisfied in a manner independent of renderer and
transport (e.g. through TCP/IP, function call, shared memory). We use the re-
mote procedural call framework Thrift [6] to achieve this. We have designed
a language independent interface (using Thrift’s interface definition language)
that a renderer should implement to achieve connectivity with Elckerlyc. This
interface is automatically compiled to an interface in the target language of the
renderer. The transport mode is chosen at initialization time. We have made a
proof-of-concept implementation for the Ogre rendering environment.

5 Discussion

We have discussed how Elckerlyc can be tailored to the needs of specific appli-
cations, without requiring invasive modifications to Elckerlyc itself. Elckerlyc’s
flexibility has allowed us to connect it to a behavior planner using either the
SEMAINE framework or simple function calls, and to switch between such con-
nections with a simple configuration option. The logging port allowed us to
easily record all communication with Elckerlyc for user experiments, by simply
changing the wiring between the behavior planner and Elckerlyc. The BMLReal-
izerPort also allowed us to exchange both the realizer and the behavior planner
very easily. We have designed several behavior planners that implements be-
havior planning of a VH and one that replaces the VH behavior planning by a
generic Wizard of Oz interface. The ability to easily replace the BML Realizer
and behavior planner is also valuable for testing. We have designed a mockup
BML Realizer that allows us to test behavior planners rapidly. This mockup



92 D. Reidsma and H. van Welbergen

BML Realizer does not actually execute the BML behavior, but does provide
the behavior planner with appropiate BML feedback. We have also designed a
behavior planner that tests realizer implementations. This behavior planner ex-
ecutes test BML scripts on the realizer and inspects if the realizer provides the
appropiate feedback. Since this test behavior planner communicates with the
realizer through the generic BMLRealizerPort, it can not only test any configu-
ration of Elckerlyc, but also potentially test Realizers designed by other research
groups (by writing an adaptor from the BMLRealizerPort to their input and
output channels). Elckerlyc’s ability to add new modalities has allowed us to
hook it up with the Nabaztag rabbit (see also Section 4.4) and to steer this
rabbit with generic BML commands. The Nabaztag extension was achieved in a
matter of days and did not require any changes in the Elckerlyc’s source code.1

Elckerlyc’s extensibility is mainly achieved by a very flexible initialization
stage. In this initialization stage, a desired setup of the Elckerlyc Realizer is
constructed by combining and configuring different components that are pro-
vided by Elckerlyc’s code base or by custom extensions. We have designed an
XML configuration file format that describes such a configuration. Several de-
fault configurations are available, and new configurations are typically easily
achieved by slight modifications of an existing configuration.

References

1. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H.,
Thórisson, K.R., Vilhjálmsson, H.H.: Towards a Common Framework for Mul-
timodal Generation: The Behavior Markup Language. In: Gratch, J., Young, M.,
Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp.
205–217. Springer, Heidelberg (2006)

2. van Welbergen, H., Reidsma, D., Ruttkay, Z.M., Zwiers, J.: Elckerlyc: A BML
realizer for continuous, multimodal interaction with a virtual human. Journal on
Multimodal User Interfaces 3(4), 271–284 (2010)

3. Thiebaux, M., Marshall, A.N., Marsella, S., Kallmann, M.: Smartbody: Behavior
realization for embodied conversational agents. In: AAMAS, pp. 151–158 (2008)

4. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and
realization. Applied Artificial Intelligence 24(6), 510–529 (2010)

5. Mancini, M., Niewiadomski, R., Bevacqua, E., Pelachaud, C.: Greta: a SAIBA
compliant ECA system. In: Agents Conversationnels Animés (2008)

6. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-language services
implementation (2007)

7. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Mea-
surement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

8. Schröder, M.: The SEMAINE API: Towards a standards-based framework for
building emotion-oriented systems. In: Advances in Human-Computer Interaction
(319406) (2010)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Adisson-Wesley (1995)

10. Russell, K.B., Blumberg, B.M.: Behavior-friendly graphics. In: Computer Graphics
International, pp. 44–50. IEEE Computer Society (1999)

1 See http://hmi.ewi.utwente.nl/showcase/elckerlyc for screenshots and movies.

http://hmi.ewi.utwente.nl/showcase/elckerlyc

	Elckerlyc in Practice – On the Integration of a BML Realizer in Real Applications
	Introduction
	Requirements for a Modular and Extensible Realizer
	Related Work
	Integration with Existing Renderers.
	Available Behavior Types and Extensibility.
	Integrating the Realizer as a Component in an Application.


	Design of a Flexible and Extensible BML Realizer
	Ports, Pipes, and Adapters
	Gesture Binding and Other Bindings
	BML Elements and Plan Units
	New Modality Engines
	The Nabaztag Engine.

	Integration with Renderers

	Discussion
	References




