
K.S. Nikita et al. (Eds.): MobiHealth 2011, LNICST 83, pp. 300–304, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Data Synchronization Framework for Personal
Health Systems

Davide Capozzi and Giordano Lanzola

Department of Computer and Systems Science
University of Pavia

Via Ferrata 1, 27100 Pavia, Italy
{davide.capozzi,giordano.lanzola}@unipv.it

Abstract. This paper illustrates the design of a multi-platform synchronization
framework which is particularly useful for speeding up the implementation of
Personal Health Systems on mobile devices. Those devices turn out to be of
great help since in order to transfer any data available at the patient site to
the clinic and vice-versa a solid networking infrastructure and data exchange
protocol is needed. The framework we developed extends an open source
platform available on the market by empowering it with new features that better
decouple domain specific data from the underlying transport logic. In the last
part of the paper two prototypes exploiting the framework are described.

Keywords: Healthcare telemetry and telemedicine, Measurement and
monitoring technologies, Mobile devices for patient monitoring, Transmission
of patient data.

1 Introduction

The increasing aging of the population combined with many unhealthy lifestyles
being adopted nowadays and resulting in an augmented prevalence of obesity are
acting as a modern plague in most of the western countries. In fact they are
responsible for an increased incidence of chronic disorders such as coronary artery
disease, congestive heart failure or diabetes which account for the majority of the
medical expenses [1]. It is now clear that such a current trend cannot be sustained any
longer [2] and new and more effective ways of coping with chronic diseases should
be pursued in order to reduce long-run medical expenses and prevent the onset of
those complications which frequently result into specific treatments and
hospitalizations pressing on the health care budgets.

With respect to this concern, there is a growing interest about Personal Health
Systems (PHSs) in the technological communities which has been stirred up recently.
This term refers to devices made available by the joint achievements in micro-
electronics and nanosciences and exploiting the Information and Communication
Technologies (ICT) to provide applications supporting the personalization and
individualization of the treatment process [3].

 A Data Synchronization Framework for Personal Health Systems 301

2 Materials and Methods

Mobile phones, Personal Digital Assistants (PDAs), Smart-phones, and tablets
nowadays have such a great variety of technical features that allows to choose each
time the product fitting any given application at best, but it becomes a serious
drawback inasmuch the plain connectivity is of concern.

According to the models advocating the decoupling and separation of concerns
among the different components building up a system, we envisioned instead a
layered architecture where data exchange is supported by an underlying layer shared
among all platform and supporting their interoperation platforms [4].

Fig. 1. (a) The synchronization framework. (b) The Teleport Connector within the framework.

What we need is a synchronization framework that can easily be accessed from
different devices running different Operating Systems (OSs), store data on different
formats and provide some programming facilities to allow us customizing and
extending its basic functionalities. Figure 1(a) shows the idea of a web-based
synchronization framework that could be exploited as a transparent two-ways-data-
exchange layer by a PHS application. On the left there are two smartphones running
two different PHSs having each one its own Data Base (DB); each time an
application needs to be synchronized, it starts an HTTP connection towards the
remote server that exposes an HTTP Handler in its Web Layer. The majority of the
synchronization platforms available on the market adopt at this level an open
communication protocol named SyncML [5]. SyncML [6] is an open industry
initiative supported by hundreds of companies including Ericsson, IBM, Lotus,
Matsushita, Motorola, Nokia, Openwave, and Starfish. It seeks to provide an open
standard for data synchronization across different platforms and devices.

To minimize communication time, the standard assumes that each device maintains
information about modification flags for each of its records with respect to every
other device on the network. For this reason, in the architecture a Server Engine is
needed that takes the burden of managing stored records in terms of handling record
IDs, detecting and trying to resolve conflicts among records, as well as keeping trace
of record modifications. The extensibility of the platform is represented by connectors
plugged on the bottom of the server: each one for a different PHS application.
Through the connector, the Server Engine interacts each time with a different

(b)(a)

302 D. Capozzi and G. Lanzola

application DB, since its structure and the domain knowledge are enclosed in that
component. Last but not least, a pre/post processing function block is needed in the
architecture, in order to resolve any data format conflict between clients and server.

For the implementation of our synchronization framework addressing PHSs we
chose the open source Funambol platform [7], since it better captures our needs and
reflects the architectural features described above.

3 Results

The main goal of our synchronization framework is to decouple the transmission of
data between client and server from the management and the storage of data on both
sides. That important feature enables us to reuse the solution for any PHS application
that, in this way, exploits the synchronization framework for exchanging its data
transparently with a remote server anytime this is necessary, without the requirement
to be connected continuously to the internet.

Fig. 2. The UML architecture of the Teleport Connector

We implemented that feature exploiting the extendibility of the Funambol
platform, developing a generic connector named Teleport Connector (TC) that
interfaces the whole architecture as displayed in Figure 1(b). TC can be exploited
both on the client-side interfacing PHS applications and on the server-side connecting
to PHS remote DBs. This component responds to the tasks of encapsulating the
application data into a generic format, shared between client and server, sending them
through the HTTP connection, described in the paragraph above, and accessing the
application specific DB exploiting an XML Configuration file provided with the
application itself.

 A Data Synchronization Framework for Personal Health Systems 303

For the data encapsulation we designed generic POJOs (Plain Old Java Object)
that enclose data in a collection of key-value couples disregarding their types and thus
gaining generality. POJOs are the only data type that TC can manage. In this way the
TC could transmit and receive POJOs without being aware of what they contain.

In order to exploit the SyncML protocol for exchanging data, TC has been
equipped with the capability to encode a POJO into a plain-text document complying
with an XML based formalism, since XML can be natively managed by those mobile
platforms running a Java Virtual Machine, such as J2ME or Android. For any other
mobile platform we have provided a custom linear text encoding, independent of the
XML formalism.

Furthermore, the TC is able to access the application DB without containing any
wired knowledge about the domain specific data structure; this can be performed
through the parsing of an application specific XML configuration file that
encapsulates the definition of the data structure. Moreover, TC not only is totally
independent from application data but also from the physical/logical support where
information is stored. In order to save its generality, TC can’t be dependent on those
technologies, so that a data store abstraction layer has been introduced. Figure 2
shows in more details the last feature described.

On the topmost part of the figure the Funambol platform components (the server
on the left side and the client on the right) are displayed. From those the TC
architecture develops for both server and client, sharing the most part of the code
located in the Teleport package. On the client side, the data store abstraction layer is
represented by the component DataManager used directly from the Teleport package
to access data and, in the meantime, extended by many custom DataManagers. Each
particular DataManager, such as JDBCManager, RMSManager or FileManager, takes
the burden of interacting with a specific data store technology, such as respectively an
MS Access DB, an RMS Record Store or even simply a file. On the server side, since
the data store technology has been established to be a MySQL database,
we streamlined the architecture, so that just a JDBCManager is required to represent
the data store abstraction layer.

4 Conclusions

This paper described the design of a multi-platform synchronization layer which is
particularly useful for speeding up the implementation of PHSs. The synchronization
layer described has been utilized for the implementation of two separate applications
running on different devices. Since the overall focus of the paper is just on the
synchronization layer and its constraints and does not allow for an extensive description
of the applications, we just mention briefly each of those applications including a
reference to a publication where more detailed descriptions are available [8].

The first prototype is meant for managing uremic patients who are experiencing
renal failure as a major complication of diabetes and are thus undergoing Peritoneal
Dialysis (PD). Thus it is mandatory for those patients to strictly control blood
pressure and weight, and regularly keep informed their treating staff about any
variations. The application for acquiring data is implemented on a Smart-phone

304 D. Capozzi and G. Lanzola

running Symbian-Os and supporting the J2ME development platform. It has been
designed to acquire data directly from a blood pressure monitor and a scale exploiting
a Bluetooth wireless connection and uses the device display just for a minimal
interaction with its users which are likely to be elderly people.

The second prototype is meant instead to support in a medium sized randomized
controlled trial for patients undergoing an Artificial Pancreas (AP) therapy. The
requirements for the clinical trials see the patients undergoing an AP therapy at their
domiciles while the treating staff at the clinic should be able to follow in almost real-
time the evolution of the patient’s clinical state. AP units are available so far only as
research products and run on Personal Computers. Thus in that case decoupling the
synchronization layer from the application one has been most useful for adding
networking capabilities to the AP units without having to modify their code. With the
only knowledge that AP units saved their data to a local database implemented with
Microsoft Access, it was quite easy to establish a link with the server to ship those
data to the clinic. On the way back in this case is sent information concerning
directives for the AP unit and informational messages for the patient.

For both prototypes the synchronization server is running on a PC and the
underlying database is implemented using MySql Server.

References

1. Levit, K., Smith, C., Cowan, C., Sensenig, A., Catlin, A.: Trends - Health spending rebound
continues in 2002. Health Affairs 23(1), 147–159 (2002)

2. Fogel, R.W.: Forecasting the cost of US Health Care in 2040. Journal of Policy
Modeling 31, 482–488 (2009)

3. Maglaveras, N., Bonato, P., Tamura, T.: Special Section on Personal Health Systems. IEEE
Transactions on Information Tehcnology in Biomedicine 14(2), 360–363 (2010)

4. Lindholm, T., Kangasharju, J., Tarkoma, S.: Syxaw: Data Synchronization Middleware for
the Mobile Web. Mobile Networks & Applications 14(5), 661–676 (2009)

5. Agarwal, S., Starobinski, D., Trachtenberg, A.: On the scalability of data synchronization
protocols for PDAs and mobile devices. IEEE Network 16(4), 22–28 (2002)

6. SyncML Specifications, http://www.syncml.org/downloads.html
7. Fornari, F.: Funambol Mobile Open Source (Paperback), ch. 10. Packt Publishing (2009)
8. Capozzi, D., Lanzola, G.: Utilizing Information Technologies for Lifelong Monitoring in

Diabetes Patients. J. Diabetes Sci. Technol. 5(1), 55–62 (2011)

	A Data Synchronization Framework for PersonalHealth Systems
	Introduction
	Materials and Methods
	Results
	Conclusions
	References

