
K.S. Nikita et al. (Eds.): MobiHealth 2011, LNICST 83, pp. 225–232, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Mobile Reasoning System for Supporting
the Monitoring of Chronic Diseases

Aniello Minutolo1,2, Massimo Esposito1, and Giuseppe De Pietro1

1 Institute for High Performance Computing and Networking, ICAR-CNR
Via P. Castellino, 111-80131, Napoli, Italy

2 University of Naples "Parthenope" Department of Technology Naples, Italy
{minutolo.a,esposito.m,depietro.g}@na.icar.cnr.it

Abstract. Advances in health care technologies are radically impacting the
management of chronic diseases by providing a new long-term care option that
combines supportive systems for monitoring and assessing the patients' health
status with activities of daily living. In this respect, this paper presents a mobile
reasoning system which can be used to build knowledge-based Decision
Support Systems for monitoring and managing ubiquitously and seamlessly
chronic patients, specifically designed and developed as a light-weight solution
suitable for resource-limited mobile devices. The system is devised to offer
knowledge representation and reasoning facilities able to face and efficiently
reason on the continuous and real-time flow of data generated by the sensor
devices with the final aim of providing answers within a prescribed time and
given constraints on the processing power and resources.

Keywords: Decision Support, Mobile Inferential Reasoning, Ontologies.

1 Introduction

Nowadays, advances in health care technologies are radically impacting the
management of chronic diseases by providing a new long-term care option that
combines Decision Support Systems (DSS) for monitoring patients' health status with
activities of daily living so as to promote individual independence and well-being.

In particular, knowledge-based DSSs are more and more widely adopted in such
scenarios: they model medical knowledge and experts' know-how for inferential
reasoning in order to supply alarms as a response to a worsening of the patient’s
status, plus suggestions about the actions to do. Such a typology of DSSs, typically
associated with desktop systems, are recently undergoing a radical transformation in
order to face a set of new challenging scenarios, where information must be supplied,
received, and/or used anywhere for supporting individuals or organizations
seamlessly and ubiquitously in their decision-making tasks.

In this respect, mobile health DSSs for chronic disease monitoring are increasingly
appearing on smart phones or Personal Digital Assistant devices (PDAs), with the aim
of facilitating self care and communications with physicians by reasoning on data
gathered by sensor devices.

226 A. Minutolo, M. Esposito, and G. De Pietro

This has been facilitated by the spread of pervasive computing – a growth in small
sensors, wearable or handheld devices, and wireless networking technologies.
However, the focus has been twofold. At the lower layers, the attention has been on
getting data from the sensors and on creating architectures and frameworks that will
support the integration of their data. At the upper layers, efforts have typically
focused on using the sensed information to infer conclusions, e.g. a suggestion or an
action to do. This has taken several forms, ranging in complexity from simple
numerical threshold type systems to more advanced systems that seek to build rich
models of the domain described in semantic web languages and then reason over
them.

Mobile reasoning over domain knowledge bases generally involves sensed data
that are updated at a relatively low frequency – a person entering a room, a device
being turned on, etc., and, in this respect, some mobile reasoning systems have been
built to handle sensed data formalized by means of semantic web languages [1-3].

Unfortunately, such mobile reasoning approaches do not scale to real-time and
computation intensive applications, where sensed data are updated at a very high
frequency, e.g. mobile health DSSs where vital signal data are constantly generated
by sensors placed on the body.

In detail, on the one hand, they are not able to handle the huge volume of
dynamically changing facts and information, since the lack of operators for updating
and/or retracting the existing knowledge forces the adoption of the strategy to rebuild
the domain knowledge base in accordance with the incoming new data every time, so
generating a recurrent inference processing overhead.

On the other hand, they implement computationally heavy inferential procedures
neither characterized by a light-weight and efficient implementation suitable for
resource-limited mobile devices, nor optimized to provide inferences within a
prescribed time and given constraints on the processing power and resources, so
involving that the incoming data rate is much higher than the time taken by the
inferential procedure.

According to these considerations, this paper presents a mobile reasoning system
which can be used to build knowledge-based DSSs for ubiquitously and seamlessly
monitoring and managing chronic patients, specifically designed and developed to i)
support the definition, updating and retracting of medical knowledge by means of
existing ontology languages, such as OWL (Web Ontology Language)[4] and RDF
(Resource Description Framework)[5], and a proposed rule-based formalism
including non-monotonic operators; ii) provide an inferential reasoning algorithm
based on a lazy evaluation [6] to enable the generation of inferences within a
prescribed time and given constraints on the processing power and resources. so
reducing the space complexity and improving the time response.

2 Mobile Reasoning System

The proposed mobile reasoning system has been designed to support inferential
reasoning procedures in mobile DSSs with the final aim of monitoring the health
status of chronic patients. The main components of the system are shown in figure 1.

 A Mobile Reasoning System for Supporting the Monitoring of Chronic Diseases 227

The Working Memory (WM) is the repository in which both medical knowledge
and experts' know-how expressed in terms of OWL ontologies are stored.

In more detail, at the system start-up, the Knowledge Base Manager (KBM)
encodes the terminological knowledge describing the specific domain in well-defined
and semantically-rich OWL descriptions, expressed in terms of classes and properties,
and then rearranges and stores such descriptions into the WM as a collection of facts,
i.e. RDF triples expressed in the form of <subject,predicate,object>.

The KBM will dynamically update the WM by inserting assertional knowledge
consisting in new facts, represented by individuals (instances of concepts) with the
corresponding instances of properties.

 More specifically, starting from the patient data coming from sensing devices, a
set of individuals of the ontology concepts is instanced. Moreover, the values
associated to the input data are also associated to the corresponding properties of the
defined individuals. All the individuals are finally added to the WM as new facts. The
WM will be also updated with the inferred facts, i.e. the new facts generated at
the end of the reasoning process.

Knowledge
Base Manager

Production
Rules

Domain
Terminological

Knowledge

Rule
Memory

Working
Memory

Alpha
Memory

Lazy
Pattern Matcher

Sensing
Data

Rule ExecutorAlpha
MemoryAlpha

Memory

StackRule Activation
Stack

Rule Engine

Fig. 1. The main components of the Mobile Reasoning System

The Rule Memory (RM) is the repository where production rules (i.e. if-then rules)
are stored. The syntax used to formalize the rules has been defined in order to
represent, in a natural and understandable manner, procedural knowledge about
actions and suggestions to be generated for supporting clinical operators in the
management of chronic patients.

Starting from the terminological knowledge expressed in triples, a set of
production rules is built, each of them made by a conjunction of condition elements
(CE) in its left-hand side (LHS) and a set of actions in its right-hand side (RHS),
respectively.

228 A. Minutolo, M. Esposito, and G. De Pietro

name: antecedents -> consequents

where
 name = a string identifying the rule
 antecedents = bodyterm, bodyterm, …
 consequents = headterm, headterm, …

bodyterm ∈ { (sub,pre,obj) , not(sub,pre,obj) , functionToCall(arg1,arg2,…)}
headterm ∈ { (sub,pre,obj) , functionToCall(arg1,arg2,…)}

Fig. 2. The rule syntax

The proposed rule-based formalism, showed in figure 2, has been designed in order to
extend the expressiveness of ontology languages, allowing the explicit use of
non-monotonic operators enabling closed-world reasoning over the WM, such as
retraction, for updating an assertion according to new input data, and negation-as-failure,
for determining negative information in the case of not completely represented
knowledge.

Three kinds of term can be used in a CE, namely triple pattern, negated triple
pattern and function call. A triple pattern is defined as a generalization of a triple
object with the additional property that it can contain variables instead of only static
values. A negated triple pattern can be used only in the LHS of a rule and it will be
interpreted as the test of the absence in the WM of facts matching the triple pattern.
Function calls allow to invoke internal procedures able to evaluate logical conditions,
to compute arithmetic expressions, and to retract facts.

The Rule Engine (RE) is based on a forward chaining scheme, i.e. a data driven
method that can be described logically as repeated application of the generalized
modus ponens. In other words, available data are supplied as facts and used to
evaluate eligible rules and draw all possible new inferred facts. The most computation
intensive and resource-consuming part of the inferential reasoning is the matching
process, which determines the set of satisfied rules that can be executed given the
current set of facts, since it is a hard combinatorial problem.

In order to grant an efficient handling of memory and computational resources and
achieve good performance, a lazy pattern matching algorithm has been proposed,
specifically designed and implemented as a light-weight solution suitable for
resource-limited mobile devices.

The idea of the algorithm is to evaluate the so called rule activations, i.e. which
rules are satisfied and which data satisfy them, with the final aim of computing only
one rule activation in each cycle, based on the observation that only one of them is
fired anyway.

Differently, other matching algorithms [7, 8] first compute all the applicable rule
activations and then execute them according to a selection strategy, and, thus, are
characterized by an exponential worst-case complexity in terms of time and space.

 A Mobile Reasoning System for Supporting the Monitoring of Chronic Diseases 229

The lazy evaluation does not waste time in computing superfluous rule activations
which could be never executed and enables to fire the first eligible rule as soon as it
has been identified, so as to improve the performance in terms of average response
time. Moreover, by avoiding the computation of all possible rule activations, the
worst-case space complexity can be reduced to a polynomial bound.

Thus, in the case when applied to remote monitoring scenarios, the proposed lazy
algorithm is able of efficiently elaborating the huge volume of vital signal data, for
example generated by body sensors, thanks to its reduced space complexity, and,
contextually, of facing the real-time and computation intensive requirements by
granting better performance in terms of response time.

More in detail, the whole inferential process is described as follows. The Lazy
Pattern Matcher (LPM) operates on working memory elements (WMEs) expressed as
RDF triples characterized by a unique and incremental ID.

In order to determine eligible rule activations, the LPM builds memory structures,
named alpha memories, for explicitly storing information about the results of intra-
condition tests. Intra-condition tests apply to determine which WME satisfies or
violates a specific CE of a rule and store the results into the associated alpha memory.
Since the same CE can occur in many rules to be successively evaluated, an alpha
memory can be shared between different rules.

A non-negated CE usually contains variable references to be bound in order to
assume values according to the matching facts stored into its alpha memory. When
the same variable reference occurs multiple times in different CEs of a rule, the
consistent binding of that variable must be evaluated by means of inter-condition tests
that involve multiple CEs. If a variable occurs only once in the LHS, no test is
necessary.

Thus, for a rule, the combination of facts stored into non-negated alpha memories
which satisfies the inter-condition tests, does not violate any negated CE and verifies
the conditions specified in any function call represents a rule activation.

To support the research of eligible activations for each rule, i.e. the inspection and
combination of facts stored in the alpha memories, trying to find a match for the
whole rule, the LPM maintains a rule activation stack. When a WME satisfying the
intra-condition test of a non-negated CE is found, a new element is pushed onto the
stack by the LPM, which contains both the IDs of the last recent facts inserted into
every non-negated CE and a reference to that specific CE (Dominant Reference).

Each stack element enables to enumerate a subset of potential rule activations by
combining the facts stored into the non-negated alpha memories according to the DR
and the IDs stored into the current stack element.

After investigating all the available combinations associated to the current stack
element, another stack element is popped. When the stack is empty, no combination
of facts can be further tried, and, thus, no other rule activation can be found. The rule
activation research is computed only if the rule is active and its stack is not empty. A
rule is active when its non-negated alpha memories are not empty and its negated
alpha memories are empty.

230 A. Minutolo, M. Esposito, and G. De Pietro

As soon as an eligible rule activation is found, the research of other possible rule
activations is paused by storing a pointer to the interruption point into the stack, and,
then, the corresponding rule is executed by the Rule Executor.

Successively, if the WM is not changed at all, the research is resumed from the last
interruption point, i.e. by removing the next element from the top of the stack.
Otherwise, if the assertion or retraction of facts has been generated in the WM by the
executed rule or by new input data produced by the sensing devices, the LPM
recognizes the rules which can be involved by these changes and updates both the
alpha memories associated to their CEs and the related rule activation stacks. After
that, the LPM determines the new active rules with a non-empty stack, selects one of
them and restarts the research of its rule activations. The whole lazy matching
procedure is summarized in figure 3.

Pop from the
activation rule stack a
pointer to a subset of

facts to combine

Select an eligible rule

Execute the rule
activation found

Are there
further facts to

combine into the
current
subset?

Yes

No

start

end
NoYes

Push into the stack the
pointer to the

remaining facts to
combine

Update alpha memories
and rule activation

stacks

Is there an
eligible rule

activation into
the current

subset?

Is the stack
empty?

Yes No

Are there
active rules with

non-empty
stack?

No

Yes

Fig. 3. The main components of the Mobile Reasoning System

It is worth noting that the proposed lazy approach does not save the intermediate
results of inter-condition tests, but it recalculates them every time it is required. Other
pattern matching algorithms [7] save all partial results of inter-condition tests into so-
called beta memories in order to compute them only once and store them for later
reuse.

However, the time gained by using such additional memory should be weighed
against the inherent cost with respect to the specific application scenario. In
particular, applications for chronic patient monitoring, where input data are constantly
sent by sensor devices, require a continuous refresh of facts in the WM in terms of
assertions and retractions. Thus, beta memories should be frequently updated, so as to
make the storage of intermediate inter-condition tests' results useless, and, thus,
decrease both space and time performance. As a result, omitting the memory support
for inter-condition tests as proposed in the presented algorithm represents a significant
factor to improve space and time performance in real-time and intensive applications.

 A Mobile Reasoning System for Supporting the Monitoring of Chronic Diseases 231

3 Implementation and Results

The overall mobile reasoning system has been implemented for resource-limited
mobile devices by using Java 2 Platform, Micro Edition (J2ME) in accordance with
the Mobile Information Device Profile 2.0 (MIDP) and Connected Limited Device
Configuration 1.1 (CLDP).

As a proof of concept, it has been applied to the case study described in [9] for
monitoring cardiovascular diseases. In particular, to test the feasibility of the proposed
system, the medical knowledge defined in [9] and formalized in terms of ontologies
and rules has been used with the aim of detecting potentially abnormal situations.

Seven rules with an average number of antecedents equal to nine are stored into the
Rule Memory (for more details about the rules used refer to [9]). The monitored
parameters are: the heart rate, the estimated Standard Deviation Normal beat to
Normal beat (SDNN), the patient's posture and his/her physical activity.

In accordance with the consideration that the admissible measuring range for the
heart rate varies from 30 bpm (i.e. beat per minute) to 240 bpm, the heart rate can
change its value up to a maximum of four times per second. This involves that the
system has to reason on a variable number of heart rate measures per second, varying
from 0 to 4. As a result, the system has been tested supposing the heart rate value is
updated at a frequency equal to 1Hz and, also, the other parameters change their
values at the same frequency.

Taking into account such considerations, five different measures for each
parameter have been inserted into the Working Memory, where the different
parameters are supposed to have been simultaneously acquired at each measurement.
The five measures have been built ad hoc in order to activate rules reporting an
abnormal situations only in three out of five cases.

The system has been deployed and tested on two mobile smart phones with
comparable hardware features, namely Nokia N8 and HTC Legend, in order to
evaluate its behaviour and effectiveness with respect to two different java compliant
platforms, i.e. Symbian and Android.

In particular, with respect to both the Nokia N8 and HTC Legend, the overall
reasoning time is approximately equal to 56 ms, whereas the response time required
to detect and execute the first rule activation, i.e. the first abnormal situation, is more
or less equal to 30 ms. So, the response time is sensibly less than the overall reasoning
time, which can be reasonably equated to the response time of non-lazy approaches,
where a response is generated only at the end of the whole reasoning process.

As a consequence, independently of the mobile device used, the proposed system
is shown to be proficiently applicable to the presented case study regarding the
cardiac monitoring. Indeed, on the one hand, it meets the real-time performance
demand, since its response time is strongly less than the updating frequency of the
monitored parameters. On the other hand, its response time is reasonably supposed to
outperform the performance which could obtained by using classical approaches, even
if this cannot be actually verified since, currently, the code of previous works
supporting mobile reasoning are not accessible.

232 A. Minutolo, M. Esposito, and G. De Pietro

4 Conclusions

In this paper a mobile reasoning system able to build knowledge-based DSSs for
monitoring and managing ubiquitously and seamlessly chronic patients has been
presented. The system offers knowledge representation and reasoning facilities to face
and efficiently reason on the continuous and real-time flow of data generated by the
sensor devices.

The core of the reasoning system is a lazy pattern matching algorithm, specifically
designed and implemented as a light-weight solution for granting the efficient
handling of memory and computational resources and achieve good performance
especially in real-time and intensive applications.

The proposed mobile reasoning system has been implemented for resource-limited
mobile devices by using Java 2 Platform, Micro Edition and deployed on two mobile
devices, namely Nokia N8 and HTC Legend, with comparable hardware features, in
order to evaluate the library's behaviour and effectiveness with respect to two
different java compliant platforms, i.e. Symbian and Android.

As a proof of concept, it has been applied to the case study described in [9] for
monitoring cardiovascular diseases, showing its effectiveness to meet the real-time
performance demand of that scenario.

Next step of the research activities will be to minutely compare the mobile
reasoning system with respect to other existing one, in terms of performance
evaluation and experimental assessment, and to apply it to other mobile health
scenarios where patients affected by chronic pathologies have to be monitored.

References

1. Sinner, A., Kleemann, T.: KRHyper - In Your Pocket. In: Nieuwenhuis, R. (ed.) CADE
2005. LNCS (LNAI), vol. 3632, pp. 452–457. Springer, Heidelberg (2005)

2. Ali, S., Kiefer, S.: μOR – A Micro OWL DL Reasoner for Ambient Intelligent Devices. In:
Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 305–316. Springer,
Heidelberg (2009)

3. Kim, T., Park, I., Hyun, S.J., Lee, D.: MiRE4OWL: Mobile Rule Engine for OWL.
Accepted for publication at the 2nd IEEE International Workshop on Middleware
Engineering, ME 2010 (2010)

4. Patel-Schneider, P., Hayes, P., Horrocks, I., et al.: OWL web ontology language semantics
and abstract syntax. W3C Recommendation 10 (2004),
http://www.w3.org/TR/owl-semantics/

5. Resource Description Framework, http://www.w3.org/rdf/
6. Weert, P.V.: Efficient Lazy Evaluation of Rule-Based Programs. IEEE Transactions on

Knowledge and Data Engineering 22(11), 1521–1534 (2010)
7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match

problem. Artificial Intelligence 19, 17–37 (1982)
8. Miranker, D.P.: TREAT: A New and Efficient Match Algorithm for AI Production

Systems. PhD dissertation, Columbia Univ. (1987)
9. Minutolo, A., Sannino, G., Esposito, M., De Pietro, G.: A rule-based mHealth system for

cardiac monitoring. In: The 2010 IEEE EMBS Conference on Biomedical Engineering
(IECBES 2010), Kuala Lumpur, Malaysia, November 30-December 2, pp. 144–149 (2010)

	A Mobile Reasoning System for Supportingthe Monitoring of Chronic Diseases
	Introduction
	Mobile Reasoning System
	Implementation and Results
	Conclusions
	References

