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Abstract. In this paper we use a gossip algorithm to obtain the pro-
jection of the observed signal into a subspace of lower dimension. Gossip
algorithms allow distributed, fast and efficient computations on a Wire-
less Sensor Network and they can be properly modified to evaluate the
sought projection. By combining computation coding with gossip algo-
rithms we proposed a novel strategy that leads to important saving on
convergence time as well as exponentially decreasing energy consump-
tion, as the size of the network increases.

Keywords: Wireless Sensor Networks, Computational Codes, Signal
Subspace Projection, Neighborhood Gossip.

1 Introduction

The fast spreading of wireless sensor networks has recently encouraged
researchers to design and develop fast and efficient algorithms for such networks.
The most common approach for computation and information exchange in wire-
less sensor networks has been done by using a class of decentralized algorithms
known as Randomized Gossip Algorithms [1]. Wireless sensor networks are char-
acterized for having very particular properties, of which we can highlight the
limited computation power and energy resources. Besides, such networks usually
do not have a centralized entity that synchronizes communication and therefore
the knowledge that nodes have about the topology of the entire network is very
limited.

In order to be more precise, consider a network composed of N sensors dis-
tributed randomly (uniformly) within the unit area circle. Sensors are assigned
a limited transmission power PT per source symbol. Therefore, they can com-
municate reliably with a certain number of neighbors within their coverage area,
which will be the set of sensors located to a distance less than d (that depends
on PT ). Let Nd(i) ⊂ {1, . . . , N} denote the local neighborhood of node i, i.e.,
the set of nodes within distance d of node i.
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Fig. 1. Sensor network with N nodes. The gray circle is the local neighborhood of the
active node, which is the set of sensors within distance d of the active node.

Randomized gossip algorithms have been mainly used for computing the aver-
age in an arbitrarily connected network of nodes as in figure 1 in a decentralized
fashion. These algorithms are proven to be fast, efficient and to have a low com-
putational cost and their operating basics are as follows: In the tth time slot,
a sensor awakens at random and randomly chooses another sensor within its
neighborhood, setting their values equal to the average of their current values.
As t → ∞ the entire network will converge to the desired average. For a proof
and for further details refer to the work of Boyd et al. [1].

In a recent work, Nazer et al. [2][3] have used a new coding technique, known
as computation coding [4], which together with a modification of a randomized
gossip algorithm, leads to both time and energy savings in computing the av-
erage. Nazer’s algorithm, called neighborhood gossip, is based on the following
modifications of Boyd’s algorithm: A node wakes up randomly in the tth gos-
sip round and it requires all of the nodes within its neighborhood to transmit
their values using a computation code that is designed so that the central node
receives only the average of the values. The central node uses the received in-
formation and its own value to compute the average of the entire neighborhood,
broadcasting the updated value to all nodes in its neighborhood. That way, the
entire neighborhood gets the average in a single gossip round.

In this work, we are interested in using the random gossip technique to solve
a much more general problem than averaging. We are looking for the projection
of the observation vector into a subspace. Barbarossa was the first to propose a
decentralized technique to perform the projection minimizing convergence time
in [5]. We will use computation coding in order to achieve both time and energy
savings with respect to Barbarossa’s technique.

Computing the projection of the observed signal into a subspace of a known
dimension is very useful for reducing the measurement noise. In general, the
observation of a single sensor may be unreliable due to noise or malfunctioning.
But, if the environment we are monitoring is smooth, the projection into a
subspace will improve the reliability of the observation thanks to the interaction
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among nodes. Mathematically speaking, being smooth means that the signal
exhibits spatial correlation and therefore belongs to a subspace of dimension
smaller than the number of nodes.

Consider for instance that the network composed of N sensors is measuring a
signal that can be expressed in a Fourier basis of dimension r, r < N . Then, the
projection of the observed signal (which lies in a space of dimension N) into a
subspace of dimension r will lead to very important noise reduction. The goal of
the current work is to compute the projection achieving both time and energy
savings.

The remainder of the paper is organized as follows: Section 2 precisely de-
fines the framework of the current problem. In section 3 a valid strategy for
performing neighborhood gossip is concluded based on the general gossip algo-
rithm proposed by Boyd et al. Section 4 introduces Computation Coding and
states the conditions for the computation code to exist and to work properly
in our framework. Section 5 compares the gain of the algorithm when it uses
computation coding and finally, Section 6 concludes the paper.

2 Problem Statement

Given the random wireless sensor network introduced in section 1, we consider
that sensors do not have any geographic information available, although they
know the sensors within their local neighborhood. Sensors have an initial obser-
vation z � (z1, . . . , zN )T , which is a version of the useful signal vector ξ ∈ R

N

corrupted by some additive noise vector v ∈ R
N , that is,

z = ξ + v (1)

where, zi denotes the observation taken by sensor i ∈ {1, . . . , N}. Furthermore,
it will be assumed that the useful signal lies in some subspace of dimension
r < N . That is, ξ = Us for some s, where U is an N × r matrix representing a
basis of the r-dimensional useful signal subspace.

The least square estimator of the ξ is ̂ξ, which is given by the orthogonal
projection of the observed vector onto the subspace spanned by the columns of
U as shown in Figure 2. Without any loss of generality, we consider that the
columns of U are orthonormal and therefore, the projector can be written as

̂ξ = (̂ξ1, . . . , ̂ξN )� = UUT z (2)

Now the goal is to compute ̂ξi at each node of the network i ∈ {1, . . . , N} in
a decentralized fashion by performing neighborhood gossip using computation
codes, so that both time and energy savings can be achieved. For that purpose,
we seek to obtain the estimate ̂ξ iteratively by using the following recursive
dynamics

̂ξ[t+ 1] = Ŵξ[t], t = 0, 1, . . . W ∈ R
N×N (3)

where ̂ξ[t] denotes the value of the estimate at iteration t, ̂ξ[0] = z, and the
matrix W rules the transmissions between sensors at every iteration or time
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Fig. 2. Projection of the observed vector z into the target signal subspace. The goal is
to have the network compute ̂ξ.

instant t. There are multiple choices for W but we are particularly interested in a
sparse one, such that (3) can be performed using neighborhood gossip techniques.
Therefore, we set that wij = [W]ij �= 0 only if j ∈ Nd(i) or j = i. In words,
the only nonzero elements of W correspond to pairs of sensors that are within
a distance d. We will therefore say that W satisfies the topology constraint.

It is shown in [5] that, if the transmission power PT is high enough (and equal
for all the sensors), a symmetric and sparse matrix W exists, which satisfies
the topology constraint, minimizes the convergence time and makes the network
converge to ̂ξ, i.e.,

lim
t→∞

̂ξ[t] = lim
t→∞Wtz = UUT z = ̂ξ (4)

and therefore,
lim
t→∞Wt = UUT (5)

Necessary and sufficient conditions for (5) are given next [5]:

Proposition 1.- Given the dynamical system in (3) and the projection matrix

UUT , the vector ̂ξ = UUT z is globally asymptotically stable for any fixed z ∈
R

N , if and only if the following conditions are satisfied:

WUUT = UUT

UUTW = UUT

ρ(W−UUT ) < 1 (6)

where ρ(·) denotes the spectral radius operator. Under these three conditions, the

error vector e[t] � ̂ξ[t]− ̂ξ satisfies the following dynamics:

e[t+ 1] = (W−UUT )e[t], t = 0, 1, . . . (7)
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Intuitively, the previous proposition can be understood as follows:

– There should be a communication path between any two nodes with at most
N − 1 hops.

– The number of neighbors of each node should not be smaller than the di-
mension of the signal subspace r for generic subspaces.

In one word, the radius of the neighborhoods d (and so the transmission power
PT ) must be large enough to satisfy the convergence conditions.

Provided that the iteration in (3) minimizes the convergence time of the net-
work, the goal now is to reduce the energy and time of each local iteration. This
can be done using computation coding, which efficiently converts the wireless
channel into a set of reliable equations between users [4].

In order to describe the algorithm required for the distributed projection we
will rewrite (3) to clearly define the set of equations that should be transmitted
within the local neighborhoods:

̂ξi[t+ 1] =

N
∑

j=1

wij
̂ξj [t], i = 1, 2, . . . , N t = 0, 1, . . . (8)

Due to the sparsity of matrix W (given by the topology of the network and the
transmission power) most of its terms will be zero. Actually, the only non-zero
terms will be those referring to the local neighborhood and to the sensor itself,
and therefore, the previous expression reduces to

̂ξi[t+ 1] =
N
∑

j∈Nd(i)∪{i}
wij

̂ξj [t], i = 1, 2, . . . , N (9)

Notice that in order to perform the distributed projection, the ith sensor only
needs to know the ith column of W, which in turn means that sensor i only
needs to keep |Nd(i)|+ 1 values.

We now consider a wireless channel with finite bandwidth so that we can
model it as a discrete-time channel. Assuming transmissions occur within the
neighborhood, the received signal at time instant t ∈ N by node i is

yi[t] =
∑

j∈Nd(i)

hij [t]xj [t] + ni[t],

hij [t] = d
−α/2
ij ejθij [t] (10)

where dij is the distance between nodes i and j, α ∈ R+ is the power path loss
coefficient, θij [t] are the phases, and xj [t] is the signal transmitted by sensor
j at time t. The channel noise samples {ni[t]} are realizations of i.i.d circular
symmetric Gaussian random variables with variance σ2.

As already mentioned, the main goal of our technique is to reduce power
consumption. To that end, we propose the use of computation codes for reliable
communication among nodes, strategy that will lead to important power gains.
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Notice that in order to apply coding, one has to assume that each sensor has
an i.i.d sequence of observation (vector) instead of just a single observation, as
it has been assumed so far. The proposed strategy can be performed by using a
general gossip algorithm as in [1] and it follows on a similar strategy as the one
used in [2] and [3] for including computation codes1.

3 Neighborhood Gossip Algorithm

The most important aspect when computing (9) in a distributed fashion is to
try to maintain synchronized the number of iterations at the nodes, so that
convergence is guaranteed using as few gossip rounds as possible. In other words,
all the estimated quantities ̂ξj , j ∈ Nd(i), available at the nodes inside Nd(i)
should have been updated the same number of times t (i.e., all should be at

iteration t), before computing the next iteration t+1 of ̂ξi, at node i. This requires
a substantial change in the general averaging gossip algorithm proposed by Boyd
et al. in [1], and also in the neighborhood gossip algorithm with computation
codes introduced by Nazer et al. in [2] and [3]. The reason is that the goal of
these algorithms is to obtain a single parameter estimation at all the nodes of
the network, mainly the average of the observations, and the convergence to the
average does not require to keep the same number of updates for the nodes inside
a neighborhood. Therefore, none of those algorithms can be directly applied in
the current context.

Let us look at the gossip algorithm proposed in [2]. A node i wakes up ran-
domly and requires all the nodes within its neighborhood Nd(i) to transmit their
observations by using a computation code so that the decoded value at node i is
the average of the observations of all the nodes belonging to Nd(i). Then, node
i broadcasts the new computed average to all the nodes in Nd(i) so that these
nodes get in a fast way the new average value in a single iteration or gossip
round. This process is repeated until a good estimate of the average is obtained.
If one tries to apply this gossip algorithm into our problem, it will fail for two
reasons. First, the final broadcasting stage is clearly inapplicable in our problem
since we are not looking for a single parameter estimator (average) at all the
nodes, but rather for a set of N parameter estimators, one for each node of the
network. Second, the system dynamics given in (3) would be violated (i.e., syn-
chronization of iterations at the nodes would fail) whenever a node woke up more
times than others within a neighborhood. To better understand this problem let
us consider two sensors, s1 and s2 within a distance d. Assume that s1 starts
the tth gossip iteration: node s1 wakes up at random and requires s2 and the
rest of its neighborhood to send their observations. They will be sending their
observation that comes from gossip iteration t− 1. After receiving the messages,
s1 will update its current observation. Now consider that s2 wakes up and re-
quires their neighbors to send their observations too. All neighbors of node s2
will be transmitting their last estimation except node s1, which will be required

1 However, here the goal is to compute the projection, whereas in [2] [3], the goal was
to compute the average of the sensors.
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not to send its latest update but the previous one (observation referring to it-
eration t− 1). This fact requires that nodes keep track of previous observations
for each neighbor and then Boyd’s general gossip algorithm can be applied to
our problem.

According to [5], the convergence time τ0(W) of our strategy, defined as the
number of gossip rounds required for the error (7) to decrease by a factor 1/e for
the worst possible initial vector, given that all nodes have performed the same
amount of gossip rounds, is given by

τ0(W) � 1

ln
(

1
ρ(W−UUT )

) . (11)

The problem of finding the matrix W that minimizes the convergence time given
a particular network topology can be converted into a convex problem [5] and
solved by using classical Semidefinite Programming (SDP) tools [6].

4 Computation Coding

The most energy consuming stage is when all nodes in the local neighborhood
transmit their corresponding observations to the central node. The key here is
to realize that the central node does not need to know the observation of each
neighbor. Rather, it only needs to know the weighted sum of the observations.
Since the weighting process is already done in the source nodes, the central node
only requires the sum of the incoming messages. This can be done very efficiently
by using a code construction recently developed in [4] and known as computation
coding.

First, we will assume that sensors know the channels in their local neigh-
borhood from themselves to the central node. For node i, this is equivalent to
knowing the channel coefficients (dij , θij [t]) in (10) for every j ∈ Nd(i). Exploit-
ing this knowledge leads to a simplification of the multiple-access channel and
it can be considered to be the following simple multiple-access channel:

yi[t] =
∑

j∈Nd(i)

xj [t] + ni[t] (12)

Now that the channel behaves as a simple adder, we know that we can effi-
ciently and reliably compute sums by using computation coding to improve the
performance of the transmissions as in [3]. All nodes in the neighborhood of i
encode and send their values using identical linear codebooks. The transmitted
codewords will be added on the channel and node i will receive the sum of the
codewords. Since the codebook is linear, the sum of the codewords is also a code-
word and it is actually the codeword corresponding to the desired sum. Node
i has to simply add the received message to its observation weighted by the
coefficient wii to get its desired new observation.

This said, we are ready to state the following theorem from [3], which estab-
lishes the required condition for the computation code to exist.
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Proposition 2.- Choose ε > 0. Assume each node in a local neighborhood has a
length L bounded real-valued weighted observation vector, that is, ‖sij [t]‖2 ≤ LPT

∀i, j, t. For L large enough, there exists a coding scheme such that the receiving
node i can make an estimate ̂ξi[ti+1] of the sum ξi[ti+1] as in (9)that satisfies2:

P
(

‖ξi[ti + 1]− ̂ξi[ti + 1]‖2 ≥ PT

L
2−2B

)

< ε ∀i, ti (13)

so long as:

T log

(

1

|Nd(i)| +
PT

(maxj∈Nd(i) dij)
−α/2σ2

)

> B (14)

for some choice of T channel uses per observation symbol and precision B bits.

See [4] for a proof.
The computation code is based on using the same lattice code by all sensors,
which is chosen to simultaneously be a good channel and a good source code. The
transmitters within a neighborhood quantize their weighted observation vector
to the lattice and they transmit such quantization simultaneously. The receiver
decodes the sum and makes an estimate of it. Next, the transmitters send their
quantization errors using the same lattice code. This continues until the total
number of channel uses T is exhausted and the desired precision B is reached.

5 Performance Comparisons

We now compare the performance of the proposed strategy when it uses the best
possible separation scheme or when it uses a computation code. We will conclude
that we can achieve an exponentially increasing power gain by using computation
codes as the density of sensors in the network increases. To that end, we will
make use of two theorems from [4], which compute the achievable distortion for
sending a Gaussian sum over a Gaussian MAC. Notice that distortion here is
again measured by the mean-squared error criterion,

D = max
i,ti

(

1

L
‖ξi[ti + 1]− ̂ξi[ti + 1]‖2

)

. (15)

Proposition 3.- For T channel uses per observation symbol, T ∈ Z+, the fol-
lowing distortion is achievable for sending a Gaussian sum (of M transmitters)
over a Gaussian MAC with noise variance σ2 so long as PT > M−1

M σ2:

D = Mσ2
S

(

σ2

σ2 +MPT

)(

Mσ2

σ2 +MPT

)T−1

, (16)

where σ2
S is the variance of the Gaussian sources.

On the other hand, we have an interesting result for separation-based schemes.

2 Notice that ξi[ti +1] refers to the actual sum of the observations and ̂ξi[ti +1] refers
to the value that node i gets after T channel uses.



Distributed Projection for Wireless Sensor Networks 117

Proposition 4.- The best achievable distortion for a separation-based scheme
for sending a Gaussian sum (of M transmitters) over a Gaussian MAC with
noise variance σ2 is given by:

D = Mσ2
S

(

σ2

σ2 +MPT

)
T
M

, (17)

where σ2
S is the variance of the Gaussian sources and now the number of channel

uses per observation symbol T might not be an integer. See [4] for the proofs.

Since computation coding is optimal for symmetric linear MACs [4], the dis-
tortion given in proposition 3 is achievable using computation codes. Although
we cannot guarantee that the messages of the sensors follow a Gaussian dis-
tribution, we will consider it as the worst case result. Therefore, based on the
previous propositions, we can compute the number of channel uses per source
symbol that computation codes and the best separation-based scheme need to
achieve the given distortion D. Consider that node i wakes up and requires all
the nodes within its neighborhood Nd(i) to transmit their observations. The
number of channel uses per symbol is then given by:

TCOMP (i) =
log

(

σ2
S

D

)

log
(

1
|Nd(i)| +

PT

σ2

) . (18)

TSEP (i) =
|Nd(i)| log

(

D
|Nd(i)|σ2

S

)

log
(

σ2

σ2+|Nd(i)|PT

) (19)

If we consider that all channel uses require the same energy and since we know that
both schemes will converge in the same number of gossip rounds, the energy ratio
will be given by the difference in the number of channel uses per source symbol.

Nevertheless, both quantities depend on the number of transmitters, i.e. the
neighborhood of the current active node Nd(i), and that quantity is in general
a random variable which we will model next.

Consider a circular region of unitary area (radius 1/
√
π) and distribute N sen-

sors uniformly on it, so that we have N sensors per unit square. The distribution
of the distances of the nodes to the center of the circle R will be:

fR(r) = 2πr 0 < r <
1√
π

(20)

Now assume without loss of generality that our target node i is on the center
of the circle and has a coverage area given by d < 1/

√
π. The probability of a

sensor falling within the coverage area of sensor i is then given by integrating
(20) between 0 and d, which yields Pd = πd2. Therefore, the number of neighbors
M of node i is given by the set of nodes that fall within its coverage area, which
is distributed as

PM (m) =

(

N

m

)

(

πd2
)m (

1− πd2
)N−m

(21)
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We only have to finally compute the average of the channel uses per symbol,
which are given by:

TCOMP =

N
∑

m=1

(

N

m

) log
(

σ2
S

D

)

log
(

1
m + PT

σ2

)

(

πd2
)m (

1− πd2
)N−m

(22)

TSEP =

N
∑

m=1

(

N

m

) m log
(

D
mσ2

S

)

log
(

σ2

σ2+mPT

)

(

πd2
)m (

1− πd2
)N−m

(23)

And therefore the average gain is given by

g =
TCOMP

TSEP

=

∑N
m=1

(

N
m

)
log

(
σ2
S
D

)

log
(

1
m+

PT
σ2

) (

πd2
)m (

1− πd2
)N−m

∑N
m=1

(

N
m

)
m log

(
D

mσ2
S

)

log
(

σ2

σ2+mPT

) (πd2)
m
(1− πd2)

N−m

(24)

so long as PT ≥ σ2 and d < 1/
√
π.

Figure 3 shows the shape of the gain when the density of nodes increases. In
general terms, the gain is very little dependent on the distortion but it grows
exponentially as the density of sensors increases.
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Fig. 3. Energy gain of the projection algorithm with computation codes with respect to
the best possible separation-based scheme. d = 0.2, σ2 = 1, σ2

S = 1, PT = 3, D = 10−5.
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6 Conclusion

The main goal of the current paper has been to modify a general gossip algorithm
by introducing computation coding in order to achieve both time and energy
savings in a projection problem. The results that lead to the goal are summarized
in the following list:

– The problem of finding the projection of the observed signal into a subspace
can be solved in a distributed fashion by solving an SDP problem.

– A general gossip algorithm has been modified to allow the use of computation
coding.

– Combining computation coding with a gossip algorithm to perform the pro-
jection leads to exponentially increasing power savings when the number of
nodes increases.
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