
A Distributed Framework

for Organizing an Internet of Things

Jamie Walters1, Theo Kanter1, and Enrico Savioli2

1 Mid Sweden University - Sundsvall 85170, Sweden
{jamie.walters,theo.kanter}@miun.se
2 University of Bologna - Bologna, Italy

enrico.savioli@studio.unibo.it

Abstract. Applications on a future Internet of Things require the pro-
visioning of current, relevant and accurate context information to end-
points. Context information existing globally require organization into
object-oriented models available locally in APIs as current, relevant and
accurate views. Moreover, such applications require support for the
highly dynamic interactions influencing continual changes in global con-
text information. Existing approaches, such as the web services, are un-
able to provide this support partly due to the presupposed existence
of a network service brokering context information, relying on DNS; or
adopting a presence model for context which does not adequately scale.
To this end, we propose a distributed framework for the interconnection
of end-points and co-located agent entities, whereby agents are provided
with local views of a relevant subset of global context information. We
show how to achieve relevant local current views of global context infor-
mation via ranking in an object-oriented context model. The distributed
approach realizes the provisioning of context information in real-time,
i.e., with predictable time bounds. Finally, we demonstrate the feasibil-
ity of the approach in a prototype based on P-Grid.

Keywords: mediasense, dcxp, p-grid, context proximity, sensor rank-
ing, context metrics, context distance, sensor ranking.

1 Introduction

The increasing interest in the provisioning of applications and services that de-
liver experiences based on context mandates the continual research into method-
ologies, architectures and support for delivering the context information required.
Constraints on service delivery with respects to real-time availability underpins
any such solution. A future connected things infrastructure with an installed
device base exceeding billions [1], requires support for a wide range of context
centric experiences ranging from personalized and seamless media access, to intel-
ligent commuting and environmental monitoring. This incorporate devices such
as mobile phones, personal computers or IPTV boxes; all merging towards the
paradigm of everywhere computing [2]; the seamlessly connected new world. As
users navigate a vast and seemingly endless connected things infrastructure, it

J. Del Ser et al. (Eds.): MOBILIGHT 2011, LNICST 81, pp. 231–247, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

232 J. Walters, T. Kanter, and E. Savioli

becomes increasingly important to be provisioned with the relevant subsets of
information required in order to be enabled with an experience relative to the
users’ current situation.

1.1 Scenario

John is constantly on the move both for business or pleasure. Within a future
cityscape, he encounters multiple information points which maybe used to inform
him of the state of his surroundings. Embedded into a digital ecosystem, he is
capable of deriving enough information in support of the services wishing to effect
changes or deliver him a unique context-based user experience. Such information
include temperature, humidity and location as well more complex sources such as
audiovisual devices, network connections or traffic conditions. With his smart-
phone, John is able to connect to and derive representations of context from
these points in order to support his applications.

1.2 Analysis

Applications and services wishing to respond relevant to John’s current context
require this information to be organized and made available in globally accessible
end-points. Approaches such as IMS [3] or Senseweb [4] enables the required sup-
port, brokering context information via web service portals on the Internet They
are, however dependent on DNS as a means of locating service portals, users and
applications. Issues with DNS availability due to DoS attacks and configuration
errors raises questions about its continued suitability and prompting research
into Distributed Hash Table (DHT) based overlays such as Chord [5], Pastry [6]
and Tapestry [7] as possible replacements [8].

To this end, early work surrounding the MediaSense architecture implemented
the DCXP protocol [9], a Chord based approach capable of provisioning John’s
context information in support of his dependent applications and services. The
DCXP approach produced the ranges in response times deemed adequate enough
to support real-time context dependent services. Furthermore, it proved that dis-
tributed systems were more capable of achieving this than approaches building
on mobile or web services. Other approaches such as [10] explore the option of
building context provisioning solutions using DHTs. However, while a DHT pro-
vides for a more scalable and resilient approach, it relies on deterministic hashing
algorithms for achieving the distribution, indexing and locating of information.

Consequently, this places a limit on their ability to utilize self-organization
towards realising a more homogeneous distribution of information located on
the overlay. With regards to the persisting of context information, an additional
disadvantage of DHTs is their inability to support queries of a range of values,
critical in scenarios where John might be trying to locate a service in some ap-
proximate area or over a series of context values. While solutions such as [11]
have sought to address this problem, this is not done natively, mandating the
implementation of additional layers of complexity on the existing overlay. DHT-
based implementations such as Chord are limited to a searching complexity of

A Distributed Framework for Organizing an Internet of Things 233

O(logN) [12]. However solutions seeking to provision John with current and rel-
evant information mandates investigations into alternatives capable of realising
improved response times.

We are further mandated to organize John’s context information in subsets
representative of the dynamic state of the sensor information to which he has
access. As John changes state in real-time, such as entering a building or vehicle,
he will encounter new sensors or sensor information. This requires that a schema
of available context information be maintained and kept current; an evolving
meta model as suggested in [13].

In approaching such a possible solution, the use of distributed relational
databases such as in [14] and making use of the advanced research in database
distribution would not be applicable. This, as such a distribution assumes com-
munication reliability in order to maintain database integrity across wide area
networks which cannot be guaranteed in heterogeneous mobile scenarios [15],
[16]. This is also undermined by the fact that relational databases are highly
inefficient for supporting real-time data manipulation, evolution and querying.

Current metric approaches such as Internet search engines consider the theory
of connected things, however relative to static document content. A document’s
connectivity determines its relevance. This concept of ranking has been explored
and used both in a centralized [17] as well as distributed [18] solutions. However,
centralized solutions such as Google index only a tiny portion, less than 10 bil-
lion of the estimated 550 billion pages, on the relatively static Internet [19]. Any
attempt to apply such a centralized solution to the ranking of sensors in an In-
ternet of Things would be undermined by its inability to scale well. Distributed
solutions based on the PageRank [20] concept would not scale well to accommo-
date highly dynamic document sets. Current real-time searches are realized by
targeting known content providers, an approach that could not scale to accom-
modate the vast and mostly ad-hoc nature of a connect things infrastructure.

In this paper, we present an alternative approach that permits users to browse
and locate relevant information in a vast and dynamic Internet of Things. So-
lutions capable of providing broad access to context information and enabling
the derivation of context-based metrics. Such metrics include a sensor ranking
and context proximity metric detailed further in Section 3. We therefore revisit
the MediaSense Framework in an attempt to provide the approach required to
support such user activities within real-time. Key to this is our new approach
to the overlay structure, substituting Chord with a more resilient and robust
P-Grid overlay.

For the remainder of this paper, Section 2 details the revised architecture;
Section 3 presents an overview of the metrics while Section 4 summarizes our
conclusion and future work.

2 The MediaSense Framework

In response to the shortfalls discussed in Section 1, the MediaSense framework
seeks to create a solution towards supporting an Internet of Things. A solution

234 J. Walters, T. Kanter, and E. Savioli

Fig. 1. The MediaSense Framework

in which presentities [21] are regarded as the focal point, enabling support for
their dependent applications and services. This from the information gleaned
from their interactions and associations within such a digital ecosystem.

Early work on the MediaSense framework realized an architecture for the
distributed provisioning of user sensor information within real time constraints,
providing the foundation for further work towards supporting the browsing of
the dynamic data and interactions existing on an Internet of Things.

Our revised solution entails multiple layers of abstraction, enforcing layer logic
independence. As a completely decentralized solution, nodes are permitted to
freely participate, and realize the components required to supports its functions.
Information Points, such as sensors, actuators or even an audio stream, can be
registered by a node and be made available for usage at any layer across the
solution. This is used to support an application layer exposed to applications
and service providers for accessing the framework’s functionalities. This masks
the complexity of lower layers and their interactions, enabling users to focus on
developing context objects, applications or services; having them transparently
shared across the network with relative ease.

This components are illustrated in Figure 1 and are detailed in the remainder
of this chapter.

2.1 The Overlay

The ability to provision context-centric user experiences from distributed informa-
tion mandates an underpinning distributed overlay. Our previous work was sup-
ported by a Chord based [5] implementation used for maintaining the
backbone communications as well as providing an indexing mechanism for
information that must be persisted amongst participating nodes, also called

A Distributed Framework for Organizing an Internet of Things 235

Context User Agents (CUAs). As with typical peer-to-peer protocol implemen-
tations, the nodes participating within the overlay act as entry points for applica-
tions and services wishing partake in the provisioning of sensor information across
the overlay.

Citing issues with DHT based overlays as discussed in Section 1, we have
substituted Chord with P-Grid [22] as the overlay of choice.

Fig. 2. The P-Grid Distributed Tree Structure

P-Grid. In an effort to increase the functionality of the architecture, we saw
the need to move away from a DHT based implementation to overlay structures
offering improved resilience, distribution and self organization. P-Grid, as the
overlay of choice, shares a common behavior to DHT based implementation with
respect to being able to index and locate information. P-Grid, however realizes
a distributed binary tree, illustrated in Figure 2.

The key space is partitioned among all the nodes and organized into a tree
structure with each node’s location determined by the binary bit string represent-
ing the set of values for which the node is responsible. With this, it preserves
the ordering on data and natively enables the resolution of both specific key,
substring and range queries without any pre-existing knowledge. This is achiev-
able with at most the same message complexity of most DHTs and has proven
performance of 0.5logN versus logN for a Chord based implementation.

The non-deterministic distribution of keys, offers improved resilience in the
dynamic environments which are expected to exist in a future Internet of Things
as it permits a more flexible self-organization in response to a very dynamic set
of information. This is complemented with redundancy for fault tolerance; mul-
tiple nodes are assigned to the same key partition and nodes hold references to
multiple partition holders. As a relatively future proof overlay, it readily permits
future extensions and modifications.

While the overlay permits users to make sensor distributed information avail-
able his is not sufficient to support the interconnected and evolving Internet of
Things. It is instead necessary to exploit the overlay as a building block and to
rely on a protocol that focuses on data dissemination across interested nodes.

236 J. Walters, T. Kanter, and E. Savioli

2.2 Distributed Content Exchange Protocol(DCXP) Layer

The DCXP layer primarily deals with the realization of such a protocol. One that
permits users to publish and access context information in a structured manner,
enabling the enforcement of some access controls. Residing immediately on top
of the overlay, DCXP is an application-level protocol designed with the goal of
enabling nodes to share and move context information between peers. As with
the early implementations of the MediaSense architecture, this layer implements
the core protocol employed in the provisioning of context information. These are
summarized in Table 1.

One key departure is that the protocol is no longer used to maintain the
overlay structure. With this task managed solely by the P-Grid overlay, network
composition and state is abstracted from the protocol layer. The functionality of
the protocol is now resigned to realising a distributed publish/subscribe interface
to the resources available on the overlay. To this end, we introduce two new
primitives: TRANSFER and SET.

The TRANSFER primitive provides for the ability to relocate context re-
sources in support of applications and services.This is used by the object layer
discussed later in Section 2.4. When a node requires a sensor resource that is
not locally available, it makes a TRANSFER request, the object is then copied
and used locally, reducing network messaging overhead, and the considerable
demands that can be placed on nodes responsible for a context resource. Such
an action could be achieved autonomously or in response to the application
requirements.

The SET primitive enables interaction with actuators in end points com-
pleting the sensor/actuator pair, allowing applications to influence context in
response to user preferences and context information.

The publish/subscribe functionality of the DCXP protocol is realized through
a group of components namely, the Context User Agent, the Context Storage
and the use of a Universal Context Identifier. These are discussed further in
Section 2.2.

The resulting overlay, built using P-Grid, is used solely for maintaining the
connection between nodes, and persisting the data registered by applications and
services residing at the nodes. Such nodes, may not need to actively participate
in the overlay, as would be the case with mobile devices over heterogeneous and
sometimes unreliable connections.

Context User Agent - CUA. A computer wishing to participate within the
context provisioning overlay is only required to implement an instance of the
CUA. The CUA permits the seamless exchange of context information among
sources and sinks, as well as the interaction with the sensors and actuators. Each
CUA corresponds to a node on the virtual distributed tree described in section
2. Each CUA further contains some persistence in the form of object oriented
databases (OODB) along with an API for creating applications and services
consuming and responding to sensor information. It further provides the entry
point for registering and resolving a UCI or a query across the CS.

A Distributed Framework for Organizing an Internet of Things 237

Table 1. The Primitives of the Distributed eXchange Protocol

REGISTER UCI Registers a UCI along with the node which is responsible for it.

RESOLVE UCI Resolves a UCI to the node which is responsible for it.

GET Fetches the current context value from the node responsible for a
UCI. The reply is sent using a NOTIFY.

SET Changes the current status of an actuator in an end point.

SUBSCRIBE Makes a subscription request to the node responsible for a UCI, The
node then sends a NOTIFY message containing the current context
value, either at regular intervals or when the value changes.

NOTIFY Notifies an interested node of the current context value associated
with a specified UCI.

TRANSFER Requests the manager of a resource to transfer responsibility to
another node. This might be full responsibility or partial, where the
requester re-creates a copy of the resource permitting improved real
time performance.

Universal Context Identifier - UCI. All resources on the overlay is persisted
using the universal context identifier (UCI) naming scheme. The UCI naming
schema provides a URI inspired naming schema with the following syntax:

dcxp://user[:password]@domain[/path[?options]]

where dcxp is the new URI scheme name and domain is a Fully Qualified Do-
main Name (FQDN) relating to where the CI is located. The user and password
arguments are optionally used as a means of authorization. The path adheres to
the context information namespace hierarchy, permitting the organization and
sorting of the items in a logical sense while options facilitates further modifiers
in the form of parameter=value pairs.

An example of a fully qualified UCI adhering to this would be:

dcxp://andeen.mccarthy@miun.se/weather/temp?unit=celsius

Resources are registered with the Context Storage component residing in the
overlay.

Context Storage - CS. Previous implementations, enabled a Context Storage
mechanism residing on top of the overlay. With this approach, enabling more
useful searches such as range queries involved additional layers of complexity
as discussed in Section 1. In order to exploit these native characteristics of the
overlay, the CS is now built into the overlay. The key role of the CS remains that
of resolving UCIs to physical end point addresses of the responsible nodes, be-
having similarly to a dynamic DNS service. Here the substring and range queries
enable the locating of resources without needing to know the fully qualified UCI.

Additionally, the CS stores the current value associated with a resource.
Where a resource consists of multiple dimensions such as GPS coordinates,

238 J. Walters, T. Kanter, and E. Savioli

each attribute dimension is stored separately. We separate dimensions to fur-
ther enable independent queries over any value constituting a context informa-
tion source. An end point is then free to reconstitute and compare the entire
n-dimensional value or any valid subset. We further benefit from the overlay’s
order preservation and range query properties, permitting the acquisition of use-
ful data in support of context metrics or similarity functions.

2.3 Persistence

The CS along with the DCXP protocol enables distributed access to only cur-
rent context information. Any new values reported in connection to a UCI or
context dimension supersedes the current value. This prevents applications from
using expired or stale data. Historical information was previously persisted to
a centralized relational database by the nodes. The dynamic nature of context
information mandates the storage of historical information both on values and
the actual context objects. However storing versions of information as different
entries on the overlay, would undermine its performance as a direct result of the
vast number of attributes persisted at each node; this would be increased by a
factor equal to the number of versions.

We therefore solve this problem by using an additional layer; the persistence
layer. This consists of a collection of localized Object Oriented Databases residing
at each CUA. Each node stores the set of objects that are created locally by the
application and services co-located with the CUA. They further store a collection
of objects that are being used by these applications and services but originate
at a remote node within the overlay. We also persist all observed values for
each context dimension permitting temporal views of data evolution, trend and
pattern discovery.

Before an object is persisted locally, an attempt is made to persist it on the
overlay. If this is successful, then the object being stored is guaranteed to be
globally unique and is then stored locally with its UCI on the overlay. If this
is not successful, the UCI is being stored already exists and the persistence
operation fails. This ensures that locally persisted objects are always globally
unique. All objects that are being used by applications and services local to the
CUA are stored locally, these contribute to some local schema (Section 2.5) being
used at the node.

2.4 Object Layer

The lower layers of the framework utilize only context attributes in the realiza-
tion of the required functionalities. These are persisted as primitive values on the
CS and made accessible through the publish/subscribe interface. Applications
residing above the API, however require context objects with which to realize
support for users and services.

The Object Layer resolves this gap by permitting the composition of context
attributes into context objects. Such as a the latitude and longitude of a GPS
sensor being exposed as a 2D location object attached to a presentity. There is no

A Distributed Framework for Organizing an Internet of Things 239

requirement for an object to recompose all the underlying values of a sensor or
for all the values to originate from the same sensor. Such composition is opened
to implementation on the object layer. Application developers further work only
with objects without needing to consider the UCI or location of the primitive
sensor attributes and values.

An application requiring use of an object, makes a TRANSFER request. This
retrieves a description of the object and constructs it locally and made avail-
able to the application or service. When an object is created or retrieved, the
object layer constructs the object from the attributes it describes and realizes
a subscription to all the sensors contributing to its composition. An attempt to
retrieve a value would result in a request for the most up-to-date value stored in
the CI, for both local or remote objects. An attempt to modify a value would be
forwarded to the CI in order to have the value updated. It the object does not
reside at the CUA attempting to modify its value, this fails as the modification
must be done local to the owner of the object.

Additionally, an object initialized on a remote node, realizes a subscription to
the object’s home node. If the object is modifies, all nodes with an instance of
the object are notified and they may update the object as required. This provides
for an always up to date copy of a sensor object on the object layer.

Objects relevant to a presentity are grouped together and presented as a
schema made available to applications through the API.

2.5 Schema Layer

In support of localized object views, we introduce the concept of a Context
Schema [23], defined as:

The collection of information points associated with and contributing to a
presentity’s current context

where an Information Point is defined as:

Any source providing information about the context of an entity or any sink
capable of accepting an input effecting changes to an entity’s context

Within the schema layer, such a schema is attached to a presentity and encapsu-
lates all the information points and the relationships related to a presentity. An
application or service with a requirement to deliver some user-context centric
experience subscribes to the current schema description; it realizes a collection
of information objects underpinned by a publish/subscribe interface to the end
points described by the schema. As a presentity traverses a connected things
infrastructure it discovers new entities and consequently updates its schema to
reflect this. As a result, all subscribing end points receive an updated schema
and can adjust their services to accommodate this.

This addresses the scenario where a context network being highly dynamic,
rapidly evolves, mandating the need for an historical representation of inter-
actions. This permits us to examine the behavior of entities on an Internet of
Things, deriving metrics representative of the interactions among these entities.

240 J. Walters, T. Kanter, and E. Savioli

3 Context Metrics

The support of applications on an Internet of Things, mandates the provisioning
of current, relevant and accurate context information to end-points. Such infor-
mation must be derived and represented as a local subset of the global context
information domain. With this, users and applications residing at endpoints are
capable of having access to relevant information within some predictable window,
explore and build dynamic context centric relationships in response to changes
in state and context. In this chapter we discuss two context metrics with respects
to the implementation detailed in Section 2. However, while these metrics may
be implemented on any solutions capable of providing the required data, our
architecture provides the most optimal support in a distributed environment.

Firstly, we need to identify similarities among entities providing a base for
discovering new entities; and secondly, the need to be able to identify important
and useful sources of context information, providing entities with the information
needed to evaluate the reliability of context information sources as well as the
resulting relationships established over this information.

3.1 Context Proximity

One metric we consider desirable in browsing a network of information, is a con-
text proximity metric, a measure of the distance between presentities considering
all expressions of context as illustrated in Figure 3. With this, we can create dy-
namic user-based context-centric clusters of information points and presentities
that are capable of enabling applications and services to provide user experiences
based on current context.

In Figure 3, P1 while connected to S2, derives an implicit but existing relation
to P2 via S1. The implication being that their connection suggests that P1 and
P2 share, to some extent a similar context. If S1 and S2 are expressing the same
context indicator type, i.e. they are two information points of the same type
such as a temperature sensor, then P1 shares a context similar to that of P2 by
a function of the difference between S1 and S2; their sensor value proximity.

With this assumption, we explore our context architecture for context
information sources that lay within XS1; the context proximity limit of P1.

Fig. 3. Context Proximity

A Distributed Framework for Organizing an Internet of Things 241

We envision that applications will be able to define limits of XS1 such as: find
all people within 3km with a temperature less than 5 ◦C difference permitting us
to obtain parameters needed to derive the entity sets. Since our solution must
remain fully distributed, we located initial nodes by issuing a search using the
the range querying function of the underlying P-Grid overlay. This returns a list
of entities with respect to the query and constructs a running query at each peer
with the following constraints:

1. The peer is responsible for a sensor fitting the criteria of the search
2. The peer is responsible for a sensor Si with a range such that the set of

sensors fulfilling the query from S1 would be a subset of a query from Si.

Each peer is then required to:

1. Forward the sensors matching the standing query to S1

2. Forward the query from S1 to any node it encounters that matches 1 & 2
above.

This results in a group sensors being returned where for each group G:

G = {S : S ∈ D : (|VS1 − VSi | ≤ X)} (1)

here, VS1 is the current value of S1 and VSi is the current value of Si within a
domain D.

This is a dynamic set of information points with respect to P1 its context di-
mension S1, that continually evolves to reflect the addition or removal of sensors
with respect to their current values as nodes respond to the query.

We consider the fact that not all instances of Si lie within the same proximity
to S1. This implies that S1 shares a closer context with some members of G and
subsequently those members must be given a higher preference with regards to
any context dependent application or services wishing to find context information
points in support of delivering some optimal user experience. Noting the varying
scales for each sensor, we normalize the euclidean distances with respect to their
scales and the distance from S1 such that:

RSi = f(Si) = (1− |VSi − VS1 | ·XS1

−1) where 0 ≤ RSi ≤ 1 (2)

A value of 0 being at the edge and 1 being identical to XS1 . This value is useful
for applying weighting to the edges connecting S1 to Si and subsequently the
edges connecting to P1.

Figure 4 illustrates a possible resulting set of such implicit connections with
some degree of context similarity owing to the fact that their underlying sensors
are within close proximity. By deriving the degree of this closeness, we can obtain
a set of presentities within proximity. Consider P1 and P2 connected to sets of
sensors such that:

242 J. Walters, T. Kanter, and E. Savioli

Fig. 4. Determining Presentity Proximity

P1 = {Gw, Gx, Gy, Gz} and P2 = {Gw, Gx, Gy, Gm}

Based on this, we determine PS, the presentity similarity as Jaccard similarity
of the set of sensors shared by P1 and P2:

PS(P1, P2) =
|P1 ∩ P2|
|P1 ∪ P2|=

|Gw, Gx, Gy|
|Gw, Gx, Gy, Gm, Gz | (3)

This permits the comparison of values that cannot easily be measured discretely
such as favorite color, mood, etc. In these expressions of context, we are unable
to perform discrete distance measurements, however we can provide mechanisms
for grouping together similar values which might equate to a user saying: I like
red, but pink, and purple are also acceptable alternatives. Therefore if a presentity
was comprised entirely of non-discrete values, we could still derive a measure-
ment of distance based on the grouping of these values and finding the degree
of similarity between the presentities. An end point could define the dimensions
of context considered when calculating similarity, such that for an application
only interested distance, temperature and humidity, where P2 had only two di-
mensions:

PS(P1, P2) =
|Gw, Gx|

|Gw, Gx, Gy| (4)

Further to this, we consider the equation in 2 and adjust the value derived in
equation 4 to reflect the distance between the underlying expressions of context
supporting the presentities. This is adjusted by a factor of the average of the

A Distributed Framework for Organizing an Internet of Things 243

rank of all the connections between P1 and P2. Therefore, we state the distance
between two presentities, PR to be:

PR =

⎧
⎪⎪⎨

⎪⎪⎩

PS ·
∑k

n=0 RSn

k
, i=0

PS ·
∑k

n=0 RSn · PSn
∑k

n=0 PSn

, i>0
(5)

where i is the number of dimension restrictions, P , indicated by the application
or service. When applying such restrictions, all dimensions must be accounted
for. Each unaccounted for dimension will be ignored, effectively given a priority
of 0. We provide for this as we consider that an application or service will be
able to indicate context dimension priorities, eg. find all persons within a context
proximity of 0.7, prioritize by distance, then temperature or find all persons
within 5km, prioritize by distance then temperature. The resulting is a more
relevant subset of presentities and information sources accumulated in an end
point close to a presentity, application or service.

3.2 Sensor Ranking

While traversing an Internet of Things, users will be excepted to encounter
masses of information sources such as sensors. A supporting solution should be
able to provide application developers and users with as much information as
possible in order to select the most relevant and recommended sources available.

Our ranking algorithm consists of two main components, illustrated in Figure
5. Firstly we need to determine the local ranking value for s with respects to Pi.
We then need to aggregate the global ranking value for s.

Localized Ranking. In approaching this problem, we adapt a modified version
of the Inverse Document Frequency algorithm [24]. This is shown in Equation
(6) with a sensor s, and a presentity P . SR is the sensor ranking of the sensor
s, R is the corpus, the total collection of schemata relative to presentity P with
r being all the schemata relevant to P containing a reference to sensor s.

SRs
(P) = log

|R|
{r : s ∈ r} (6)

This provides us with a representative metric as to the importance of sensor
s relative to P . We consider further, that there exists scenarios where some
presentities will be less dynamic or mobile with respect to s. Such an example
might be a sensor located in a store; the employees working in the store will by
default almost always utilize the sensors that are local to the store accounting
for a disproportionately higher value for SR: In such scenarios, taking:

log
|R|

{r : si ∈ r} (7)

244 J. Walters, T. Kanter, and E. Savioli

Fig. 5. Determining Sensor Ranking

considers more dynamic presentities traversing an Internet of Things. Such as
a person that travels around the city interacting with more sensors and subse-
quently creating more context schemata in fulfillment of service delivery. This
is represented by larger ratio of R to {r : si ∈ r}. Such presentities we argue,
indicate a more accurate ranking for s, relative to the wider sensor ecosystem.

We could also calculate a ranking for sensors with respect to some time dura-
tion of interest, t, by limiting the schemata used in calculation to those created
within t.

Global Aggregation. The second component of our approach is a global ag-
gregation of all the local ranking values SR assigned to s. To achieve this, we
calculate the Global Ranking GR by finding the sum of all SR of s such that:

GRs =

n∑

k=0

SR
(P)
k (8)

This value is continually calculated as new schemata referencing s are created.
We further take into consideration the owner of s, the presentity or domain where
it resides or to which it belongs. This we regard as the domain D and assign it
a value equal to the average ranking of all the sensors belonging to D. This we
call DR, the ranking of D. This value is important to us as it would permit us
to identify more connected and important spaces such as domains, buildings or
just a collection of deployed sensors. We calculate DR as:

DR =

∑n
k=0 SR

(P)
k

k
(9)

This ranking value can be made available on the overlay, supporting range queries
across ranking values and readily accessible. No centralization is required for
ranking to occur and new values are updated in real time. The resulting values
can be used as indicators of relevancy or importance of sensors on an Internet
of Things.

A Distributed Framework for Organizing an Internet of Things 245

4 Conclusion

Users, applications and services on an Internet of Things demand sensor infor-
mation in support of realising context-centric user experiences. Such information
must be dynamically organized and provisioned as accurate and relevant sub-
sets of global information in end-points. Additionally, such provisioning must
be liberated from the assumption network services enabling the brokering of
information or presence models that do no scale well.

In response to this, we presented further work on the MediaSense framework,
detailing its re-implementation towards a more robust support for the dynamic
properties inherent in provisioning context information among heterogeneous
end-points. As the new overlay of choice, P-Grid realizes a more unstructured be-
havior over DHT solutions. It achieves this by implementing a non-deterministic
key-space organized as a distributed binary tree. This, while preserving the or-
dering of values and allowing us the ability to perform more complex range
queries than DHT based solutions.

The ability to perform such queries along with the self-organization behavior
of the overlay permits us implement algorithms for deriving metrics ranking
entities both personally and globally. Unlike cloud solutions such as Google [17]
which are updated at regular intervals, this permit the ranking of resources
as they become available. As nodes are added, they respond to any relevant
standing queries created by the existing querying nodes. A node recalculates
the proximity and ranking of sensors from this continually updated and relevant
subset. A We further exploit this overlay to persist ranking values for entities
providing a global access to an entity’s reputation.

Future work on towards this includes deriving a large sample set capable of
generating values for testing and bench marking the performance of the solu-
tion. The creation of a simulator for our solution is still required in order to
verify scalablity and performance within a large scale deployment. The solution
further requires the implementation of mobile nodes enabling performance mea-
surements reflective of its usage in a real world scenario. This would include
creating applications on mobile phones or computers. Other work includes the
ability to conduct more knowledge discovery by exploiting the properties of the
overlay and further work on extending and improving both algorithms.

References

1. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and Challenges for
Realising the Internet of Things. In: Cluster of European Research Projects on the
Internet of Things (CERP-IoT) (March 2010)

2. Lee, J., Song, J., Kim, H., Choi, J., Yun, M.: A User-Centered Approach for Ubiq-
uitous Service Evaluation: An Evaluation Metrics Focused on Human-System In-
teraction Capability. In: Lee, S., Choo, H., Ha, S., Shin, I.C. (eds.) APCHI 2008.
LNCS, vol. 5068, pp. 21–29. Springer, Heidelberg (2008)

3. Gonzalo, C.: 3G IP Multimedia Subsystem (IMS): Merging the Internet and the
Cellular World, p. 381 (2005)

246 J. Walters, T. Kanter, and E. Savioli

4. Kansal, A., Nath, S., Liu, J., Zhao, F.: SenseWeb: An Infrastructure for Shared
Sensing. IEEE Multimedia 14(4), 8–13 (2007)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, vol. 31, pp. 149–160. ACM (2001)

6. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. Design (2001)

7. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1), 41–53 (2004)

8. Pappas, V., Massey, D., Terzis, A.: A comparative study of the DNS design with
DHT-based alternatives. The Proceedings of IEEE, 1–13 (April 2006)

9. Kanter, T., Pettersson, S., Forsstrom, S., Kardeby, V., Norling, R., Walters, J., Os-
terberg, P.: Distributed context support for ubiquitous mobile awareness services.
In: 2009 Fourth International Conference on Communications and Networking in
China, pp. 1–5. IEEE (August 2009)

10. Baloch, R.A., Crespi, N.: Addressing context dependency using profile context in
overlay networks. In: 2010 7th IEEE Consumer Communications and Networking
Conference (CCNC), pp. 1–5. IEEE (January 2010)

11. Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Range Queries over DHTs. IRB-TR-
03-009 Intel Corporation (2003)

12. Ding, G., Bhargava, B.: Peer-to-peer file-sharing over mobile ad hoc networks. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, 2004, pp. 104–108. IEEE (2004)

13. Kanter, T.G.: Going wireless, enabling an adaptive and extensible environment.
Mobile Networks and Applications 8(1), 37 (2003)

14. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin,
C., Yu, A.: Mariposa: a wide-area distributed database system. The VLDB Journal
The International Journal on Very Large Data Bases 5(1), 48–63 (1996)

15. Barbara, D.: Mobile computing and databases-a survey. IEEE Transactions on
Knowledge and Data Engineering 11(1), 108–117 (1999)

16. Ulusoy, O.: Transaction processing in distributed active real-time database systems.
Journal of Systems and Software 42(3), 247–262 (1998)

17. Google (2010), http://www.google.com
18. Zhu, Y., Ye, S., Li, X.: Distributed PageRank computation based on iterative

aggregation-disaggregation methods. In: Proceedings of the 14th ACM Interna-
tional Conference on Information and Knowledge Management, pp. 578–585. ACM,
New York (2005)

19. Li, J., Loo, B., Hellerstein, J., Kaashoek, M., Karger, D., Morris, R.: On the Fea-
sibility of Peer-to-Peer Web Indexing and Search. In: Kaashoek, M.F., Stoica, I.
(eds.) IPTPS 2003. LNCS, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

20. Sankaralingam, K., Sethumadhavan, S., Browne, J.C.: Distributed pagerank for
p2p systems. In: Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing, pp. 58–68. IEEE (2003)

21. Plaice, J., Kropf, P.G., Schulthess, P., Slonim, J.: DCW 2002. LNCS, vol. 2468,
pp. 345–392. Springer, Heidelberg (2002)

http://www.google.com

A Distributed Framework for Organizing an Internet of Things 247

22. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid. ACM SIGMOD Record 32(3), 29 (2003)

23. Walters, J., Kanter, T., Norling, R.: Distributed Context Models in Support of
Ubiquitous Mobile Awareness Services. In: Par, G., Morrow, P. (eds.) S-CUBE
2010. LNICST, vol. 57, pp. 121–134. Springer, Heidelberg (2011)

24. Robertson, S.: Understanding inverse document frequency: on theoretical argu-
ments for IDF. Journal of Documentation 60(5), 503–520 (2004)

	A Distributed Frameworkfor Organizing an Internet of Things

	Introduction
	Scenario
	Analysis

	The MediaSense Framework
	The Overlay
	Distributed Content Exchange Protocol(DCXP) Layer
	Persistence
	Object Layer
	Schema Layer

	Context Metrics
	Context Proximity
	Sensor Ranking

	Conclusion
	References

