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Abstract. We propose a stochastic filtering algorithm capable of inte-
grating radio signal strength (RSS) data coming from a wireless sensor
network (WSN) and location data coming from the global positioning
system (GPS) in order to provide seamless tracking of a target that
moves over mixed indoor and outdoor scenarios. We adopt the sequen-
tial Monte Carlo (SMC) methodology (also known as particle filtering)
as a general framework, but also exploit the conventional Kalman filter in
order to reduce the variance of the Monte Carlo estimates and to design
an efficient importance sampling scheme when GPS data are available.
The superior performance of the proposed technique, when compared
to outdoor GPS-only trackers, is demonstrated using experimental data.
Synthetic observations are also generated in order to study, by way of
simulations, the performance in mixed indoor/outdoor environments.

Keywords: Bayesian filtering, indoor/outdoor tracking, Kalman filter,
particle filter, switching models.

1 Introduction

The existing outdoor and indoor systems for target positioning and/or tracking
have evolved in rather different ways. The global positioning system (GPS) is the
most common technology in outdoor scenarios. It provides broad coverage, essen-
tially ubiquitous except for a few “tough” environments, such as urban canyons
[11], yet it has a poor accuracy, in the order of 10 meters [8,16]. Positioning
based on cellular networks yields a similar precision and the coverage, even if
not global [15], can include urban areas where GPS fails. Combinations of both
technologies [15] are attractive but do not resolve the accuracy problem. Dur-
ing recent years, localization systems based on wireless sensor networks (WSNs)
have gained momentum, specially for indoor applications [15,12]. In outdoors en-
vironments, WSNs providing radio signal strength (RSS), time of arrival (ToA)
or angle of arrival (AoA) data can potentially beat GPS and cellular networks
in terms of accuracy, but they are ad hoc systems to be deployed only in small
areas [15].
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Another major difference between positioning in outdoor and indoor environ-
ments is the need to model very different kind of signals. Let us focus hereafter
in systems that use RSS observations, although similar arguments could be put
forward for ToA and AoA measurements. In an “open” outdoor area, with no
obstacles, it is relatively easy to extract range information (i.e., estimate the dis-
tance between the transmitter and the receiver of the signal) which can then be
used for positioning. Unfortunately, such information is much harder to extract
in indoor environments, due to the multipath propagation of the radio signals
[15]. As a consequence the kind of models that are needed outdoors, with a di-
rect line of sight (LOS) between the transmitter and receiver, and indoors, with
strong multipath and non LOS transmission, can be very different.

In order to deal with the nonlinearities inherent to RSS (but also AoA and
ToA) observations, sequential Monte Carlo (SMC) methods, also known as parti-
cle filters (PFs) [9,6,5], have been proposed as tools for positioning and tracking,
both outdoors and (specially) indoors [10]. These methods rely on the simula-
tion of candidate positions and tracks for the target of interest, which are later
weighted and combined using a statistical procedure, and differ substantially
from the (much simpler) Kalman filtering methods that are often used with
GPS data [14].

In this paper, we tackle the design of a tracking algorithm that can work
both indoors and outdoors, using GPS and/or RSS data collected from a WSN.
The basic methodology that we adopt is particle filtering, which enables us to
deal with variety of different models (representing various indoor and outdoor
scenarios) both for the observations and for the target motion, possibly switch-
ing among them using the general scheme of [1]. However, we also exploit the
availability of GPS data and the ability to process them using Kalman filter-
ing in order to (a) simplify the complexity of the tracker (when GPS alone is
available) and (b) design efficient particle filtering algorithms for the online fu-
sion of GPS and RSS observations. The superior performance of the resulting
methods, when compared to outdoor GPS-only trackers, is demonstrated using
experimental data. Synthetic observations are also generated in order to study,
by way of simulations, the performance in mixed indoor/outdoor environments.

The rest of the paper is organized as follows. In Section 2 we describe three
environment-specific tracking models. The proposed algorithms are introduced
in Section 3. In Section 4 we describe the experimental setup used to collect GPS
and RSS data in an outdoor environment and we illustrate the performance of
the proposed tracker, both with synthetic and experimental data.

2 System Model

2.1 Outdoor Linear Model

The dynamics of the target can be described using a linear and Gaussian state-
space system [10]. Let x4,t = [r�t v

�
t ]

� ∈ R
4 be the state of the system. The state
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vector contains the position, rt ∈ R
2 and the velocity, vt ∈ R

2, of the object
to be tracked in a 2-dimensional plane and the subscript t ∈ N denotes discrete
time. The state of the dynamic system evolves according to the stochastic model

⎡
⎢⎢⎣
r1,t
r2,t
v1,t
v2,t

⎤
⎥⎥⎦

︸ ︷︷ ︸
x4,t

=

⎡
⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣
r1,t−1

r2,t−1

v1,t−1

v2,t−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
x4,t−1

+

⎡
⎢⎢⎣

1
2T

2 0
0 1

2T
2

T 0
0 T

⎤
⎥⎥⎦

︸ ︷︷ ︸
Q

[
u1,t

u2,t

]

︸ ︷︷ ︸
ut

, (1)

where A is a transition matrix that depends on the period T , x4,t−1 is the state
vector of the previous time instant and ut is a 2× 1 real Gaussian vector of zero
mean and diagonal covariance matrix, σ2

uI2. As a result, the process noise is a
4×1 real Gaussian vector, Qut, with zero mean and covariance matrix σ2

uQQ�,
which represents the effect of unknown accelerations. This model is often termed
constant velocity model [10].

More often, tracking in a purely outdoor scenario can be carried out using
GPS data. The GPS observations give the position of the object in geodetic
coordinates (latitude, longitude and altitude) and are easily converted to carte-
sian local coordinates. Thus, mathematically, we model the GPS observations
as a linear function of the state, x4,t ∈ R

4, with an added noise term εt, which
accounts for errors in the measurements

[
y1,t
y2,t

]

︸ ︷︷ ︸
yt

=

[
1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
B

⎡
⎢⎢⎣
r1,t
r2,t
v1,t
v2,t

⎤
⎥⎥⎦

︸ ︷︷ ︸
x4,t

+εt.
(2)

Note that εt is modelled as Gaussian noise vector of zero mean and known
covariance matrix εt ∼ N(εt; 0, Σε). When experimental data are available, the
covariance parameter, Σε, can be adjusted from the sample (empirical) variance.

2.2 Indoor Non-linear System Model

For an indoor environment we seek a more flexible system model capable of
capturing rapidly changing movements and capable of modeling measurements
with a high variance. On one hand, the movements which we are going to track
are closer to maneuvers than to a linear motion. On the other hand, we assume
that the observations available for tracking the target are RSS measurements
collected by a sensor network. Unfortunately, the severe multipath propagation
effects in indoor scenarios make the modeling of RSS data a challenging task.

Let ωt ∈ R be the change, in radians, of the angle of the velocity at time t+1,
and redefine the state vector as x5,t = [ωt, rt,vt]

�, that evolves according to
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ωt ∼ p(ωt|ωt−1)
⎡
⎢⎢⎣
r1,t
r2,t
v1,t
v2,t

⎤
⎥⎥⎦

︸ ︷︷ ︸
x4,t

=

⎡
⎢⎢⎢⎣

1 0 sin(ωt−1T )
ωt−1

− cos(ωt−1T )−1
ωt−1

0 1 1−cos(ωt−1T )
ωt−1

sin(ωt−1T )
ωt−1

0 0 cos(ωt−1T ) − sin(ωt−1T )
0 0 sin(ωt−1T ) cos(ωt−1T )

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A(ωt−1)

⎡
⎢⎢⎣
r1,t−1

r2,t−1

v1,t−1

v2,t−1

⎤
⎥⎥⎦

︸ ︷︷ ︸
x4,t−1

+Qut, (3)

where the transition matrix A(ωt−1) is now a function of the angle ωt−1 as well
as the period T and the conditional probability density function (pdf) p(ωt|ωt−1)
is known. If we select different distributions for ωt, we can create different motion
models. Note also that in the extreme case where ωt = 0 for all t, (3) becomes
the constant velocity model (1).

Let us assume that, the objective can move according to one out of Lmodels of
motion, identified by the indices {1, 2, . . . , L}. Each one of the motion models cor-
responds to a different transition pdf for the Markovian process {ωt}t∈N. Thus,
to identify the different densities, we introduce a new state variable, denoted at.
This is a discrete random indicator, at ∈ {1, . . . , L}, so that at−1 = l implies
that ωt is generated according to the l-th model. Therefore we need to write
ωt ∼ p(ωt|ωt−1, at−1) to make the dependence explicit. The probability mass
function (pmf) p(at|at−1) is part of the model and therefore is assumed known.
This type of dynamic model description, where the are various sub-models to
describe different type of motion, is often denoted interacting multiple models
(IMM) [10]. Incorporating the indicator at to the state, we obtain a 6×1 vector,
x6,t = [at, ωt, rt,vt]

� which evolves in time according to the equations

at ∼ p(at|at−1), ωt ∼ p(ωt|ωt−1, at−1), x4,t = A(ωt−1)x4,t−1 +Qut. (4)

For the observation model, we assume that at time t we obtain J RSS mea-
surements. The datum obtained from sensor j at time t is denoted as yj,t. The
relationship between the received observation, yj,t, and the position of the tar-
get, rt, depends on the environment in which the measurement is taken and can
change with time [13]. In order to model this uncertainty in the observations
we are going to use an interacting multiple model (IMM) approach the same as
for the dynamic model. Specifically, we represent the observation yj,t using one
out of K different models that describe the different environments. Finally, we
model the observations as

yj,t = fmj,t(rt) + εmj,t , (5)

where mj,t ∈ {1, ...,K} is a random index with a known probability mass func-
tion (pmf), p(mj,t), which identifies the observation model at time t for each
sensor j, fmj,t is the function that describes the propagation conditions in model
mj,t, and εmj,t ∼ N(εmj ; 0, σ

2
mj,t

) is Gaussian noise with zero mean and a known

variance σ2
mj,t

, which is also associated with the model mj,t. The form of the

functions {f1, f2, . . . , fK} and variances {σ2
1 , σ

2
2 , . . . , σ

2
K} should be determined
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from a bank of empirical observations collected in the scenarios in which the
tracking will be performed. In [1] we give full details of the functions and vari-
ances obtained when the RSS is measured using a network of ZigBee models. We
assume the same indoor environment and hardware setup in the present paper.

We write the measurement-model indicators together in a J × 1 vector
mt = [m1,t, . . . ,mJ,t]

�, hence the full target state has J + 6 components,
xJ+6,t = [mt, at, ωt, rt,vt]

�. The observations are put together in a J × 1 vector
yt = [y1,t, . . . , yJ,t]

�. The indices in mt are assumed independent, but not neces-
sarily identically distributed. The probability mass functions p(mj,t), j = 1, . . . , J
are assumed known and independent of time.

2.3 Outdoor Nonlinear Model

In this section we describe an outdoor system model that includes ZigBee obser-
vations as well as GPS observations. The dynamic model is the same as described
in Section 2.1.

The observation vector is composed of J measurements received from ZigBee
sensors and S GPS measurements, that is

yt = [y1,t, . . . , yJ,t, yJ+1,t, . . . , yS+J,t]. (6)

The GPS observation model is the same as described in Section 2.1.
The outdoor ZigBee observation models we propose are based on the log

distance path-loss model described in [13]

yj,t = fj(rt) + εj = Lj,0 + γj10 log10

(
dj,0
dj,t

)
+ εj , (7)

where dj,t is the distance between sensor j and the target at time instant t,
dj,0 is a reference distance for sensor j, Lj,0 is the path loss corresponding to
the reference distance, γj is the path loss exponent and εj ∼ N(εj ; 0, σ

2
εj ) has a

normal distribution with zero mean and variance σ2
εj . The parameters Lj,0, γj ,

dj,0 and σ2
εj should be adjusted using experimental data.

In particular, assume that we collect k RSS measurements for a sensor-to-
target distance di and this is repeated for l different distances, d1, . . . , dl. Then,
the parameters L0 and γ are selected as the solution to the optimization problem

(L0,j , γj) = argmin
L0,γ

=

{
l∑

i=1

k∑
n=1

(
yn,i − L0 − γ10 log10

(
d0
di

))2
}
,

where yn,i is the n-th observation measured at distance di in the experiments,
k is the number of measurements we have at distance di and l is the number of
distances at which we have measurements.

The variance parameter is fitted as

σ̂2
ε,j =

1

l

1

k

l∑
i=1

k∑
n=1

(
yn,i − L0,j − γj10 log10

(
d0
di

))2

.

Note that L0,j , γj and σ2
ε,j are adjusted for each sensor separately.
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3 Tracking Algorithms

3.1 Kalman Filter

When both the dynamic and observation models are linear and Gaussian, the
density p(xt|y1:t), t = 1, 2, . . . is also Gaussian and can be exactly computed
using the Kalman filter [14]. Specifically if we assume

Specifically, p(xt|y1:t) is Gaussian if we assume that

– ut y εt are independent and have known Gaussian distributions,
– the dynamic model is a linear function of xt−1 and ut, and
– the observation model is a linear function of xt and εt.

Obviously these requirements are satisfied by the outdoor linear model of
Section 2.1.

Assume that at time t = 0 the prior distribution of xt is Gaussian with mean
x̂0|0 and covariance matrix P0|0 denoted x0 ∼ N(x0; x̂0|0,P0|0). The Kalman
filter consists on the set of recursive equations [14]

x̂t|t−1 = Ax̂t−1|t−1

Pt|t−1 = Qu,t−1 +APt−1|t−1A
�

x̂t|t = x̂t|t−1 +Kt(yt −Bx̂t|t−1)

Pt|t = Pt|t−1 −KtStK
�
t

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8)

where Qu,t = σ2
uQQ� is the covariance matrix of the process noise,

St = Bt−1Pt|t−1B
�
t−1 +Qv,t (9)

is the covariance matrix of the innovation νt = yt −Btx̂t|t−1, Qv,t = Σε is the
covariance matrix of the observation noise and

Kt = Pt|t−1B
�
t S

−1
t (10)

is the Kalman gain. The recursive application of these equations gives us the
mean and covariance matrix of the posterior probability distribution function
p(xt|y1:t), namely p(xt|y1:t) = N(xt; x̂t|t,Pt|t).

Table 1 summarizes the Kalman filter algorithm for outdoor tracking using
GPS observation data.

3.2 Particle Filter for the Indoor Nonlinear Model

Sequential Monte Carlo approximation. From a Bayesian point of view,
the smoothing pdf

p(r0:t, ω0:t, a0:t|y1:t) =
∑
m0:t

∫

v0:t

p(xJ+4,0:t|y1:t)dv0:t (11)
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Table 1. Kalman filter for online tracking in outdoor environments using GPS data

1. Initialization, at t = 0:
– Assign a mean vector x̂0 and a covariance matrix P0 to the first time instant

t = 0, all taken from the prior distribution p(x0; x̂0,P0).
2. Recursive step, for t > 0:

– Obtain a new GPS observation yt.
– Apply the recursive formulae (8), (9) and (10) to obtain p(xt|y1:t) =

N(xt; x̂t|t, P̂t|t).

contains all relevant statistical information for the estimation of r0:t. The elimi-
nation of v0:t and m0:t by marginalization is often termed Rao-Blackwellization
and reduces the estimation variance [7,3]. Unfortunately, the density of (11) can-
not be obtained analytically and we have to resort to numerical approximation
techniques. Our approach, is to build a point-mass approximation of the distri-
bution with density p(r0:t, ω0:t, a0:t|y1:t), consisting of M random samples in the

space of {r0:t, ω0:t, a0:t}, denoted {r(i)0:t, ω
(i)
0:t, a

(i)
0:t}Mi=1, and associated importance

weights, {w(i)
t }Mi=1. Each pair

{(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
, w

(i)
t

}
is called a particle and we

can use them to build the random measure

pM (r0:t, ω0:t, a0:t|y1:t) =
M∑
i=1

δi(r0:t, ω0:t, a0:t)w
(i)
t , (12)

where δi is a unit delta measure located at
(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
and the weights

are assumed normalized, i.e.,
∑M

i=1 w
(i)
t = 1. If the approximation is properly

constructed, meaning that the moments of pM (r0:t, ω0:t, a0:t|y1:t) converge to
those of p(r0:t, ω0:t, a0:t|y1:t) in some adequate sense [4], then it is straightforward
to use (12) in order to approximate any estimators of r0:t or rt. In particular,
since

pM (rt|y1:t) =
∑
a0:t

∫

ω0:t

∫

r0:t−1

pM (r0:t, ω0:t, a0:t|y1:t)dr0:t−1dω0:t =

M∑
i=1

δi(rt)w
(i)
t ,

(13)

where δi is the delta unit measure located at r
(i)
t , we readily calculate the (ap-

proximate) minimum mean square error (MMSE) estimate of rt as

r̂mmse
t =

∫
rtpM (rt|y1:t)drt =

M∑
i=1

r
(i)
t w

(i)
t . (14)

The generation of samples and the computation of weights is carried out by
means of the sequential importance sampling (SIS) principle [7]. Specifically, we
can decompose teh smoothing pdf using a Bayess theorem
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p(r0:t, ω0:t, a0:t|y1:t) ∝ p(yt|rt)p(rt|r0:t−1, ω0:t−1)p(at|at−1)

× p(ωt|ωt−1, at−1)p(r0:t−1, ω0:t−1, a0:t−1|y1:t−1), (15)

and, if we draw the particles using the transition pdf’s

a
(i)
t ∼ p(at|a(i)t−1)

ω
(i)
t ∼ p(ωt|ω(i)

t−1, a
(i)
t−1)

r
(i)
t ∼ p(rt|r(i)0:t−1, ω

(i)
0:t−1,y1:t−1) (16)

then the importance weight becomes

w
(i)
t ∝ w

(i)
t−1p(yt|r(i)t ). (17)

Eqs. (16) and (17) together yield a sequential IS (SIS) type of algorithm for the
construction of pM (r0:t, ω0:t, a0:t|y1:t) [7].

It is well known, however, that the sequential application of (16) and (17) with
a finite number of samples,M < ∞, quickly leads to a degenerate set of particles
[7]. Indeed, the variance of the weights increases stochastically with time and,
after a few time steps, one single particle tends to accumulate all the weight
and the approximation pM (r0:t, ω0:t, a0:t|y1:t) becomes useless. This difficulty is
commonly overcome by adding a resampling step [7,2] which, intuitively, consists
in stochastically discarding the particles with low weights while the particles with
higher weights are replicated. Although several resampling schemes exist (and all
of them can be plugged into the tracking algorithm without any added difficulty),
in this paper we adopt the conceptually simple multinomial resampling method
[7,4]. A resampling step can be taken every time the approximate effective sample
size [7] M̂eff = 1

∑
M
i=1 w

(i)2

t

falls below a user-defined threshold. Since M̂eff ≤ M ,

typical threshold values are λM for some 0 < λ < 1.

Evaluation of the weights. In order to ensure that the weights of (17) can
be computed, we must be able to draw from p(rt|r0:t−1, ω0:t−1) and to evalu-
ate the factors p(at|at−1), p(ωt|ωt−1, at−1) and p(yt|rt). The transition densities
p(at|at−1) and p(ωt|ωt−1, at−1) are part of the model, hence known by assump-
tion. The prior density of the position at time t, p(rt|r0:t−1, ω0:t−1), is Gaussian

and can be obtained in closed form for each particle. Indeed, given r
(i)
0:t−1 and

ω
(i)
0:t−1, the system

⎡
⎢⎢⎣

v1,t
v2,t

r
(i)
1,t

r
(i)
2,t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(ω
(i)
t−1T ) − sin(ω

(i)
t−1T ) 0 0

sin(ω
(i)
t−1T ) cos(ω

(i)
t−1T ) 0 0

sin(ω
(i)
t−1T )

ω
(i)
t−1

− cos(ω
(i)
t−1T )−1

ω
(i)
t−1

1 0

1−cos(ω
(i)
t−1T )

ω
(i)
t−1

sin(ω
(i)
t−1T )

ω
(i)
t−1

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

v1,t−1

v2,t−1

r
(i)
1,t−1

r
(i)
2,t−1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
T 0 0 0
0 T 0 0
0 0 1

2T
2 0

0 0 0 1
2T

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u3,t

u4,t

u1,t

u2,t

⎤
⎥⎥⎦

(18)
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is linear and Gaussian, with known parameters, and all posterior pdf’s, including

p(rt|r(i)0:t−1, ω
(i)
0:t−1), are Gaussian and can be computed exactly using a Kalman

filter [3,10]. In the sequel, we denote

p(rt|r(i)0:t−1, ω
(i)
0:t−1) = N(rt; r

(i)
t|t−1,Σ

(i)

t|t−1). (19)

The pdf p(yt|rt) is usually referred to as the likelihood of rt. If we write p(yj,t|rt)
as a marginal of the joint density p(yj,t,mj,t|rt), then it is straightforward to
obtain the expression

p(yt|rt) =
J∏

j=1

p(yj,t|rt) =
J∏

j=1

∑
mj,t

p(yj,t|rt,mj,t)p(mj,t), (20)

(note that the observations are conditionally independent given the position rt)
where both

p(yj,t|rt,mj,t) = N(yj,t; fmj,t(rt), σ
2
mj,t

) (21)

and p(mj,t) are known from the model, for all j = 1, ..., J .
Table 2 summarizes the proposed SIS algorithm for the system model de-

scribed in Section 2.2.

Table 2. SIS for indoor tracking with RSS data

1. Initialization, at t = 0:
– For i = 1, . . . ,M , sample r0, v0, ω0 and a0 from the priors p(r0), p(v0), p(ω0)

and p(a0). Initialize weights to w
(i)
0 = 1

M
.

2. Recursive step, for t > 0:
– For i = 1, . . . ,M , sample a

(i)
t ∼ p(at|a(i)

t−1), ω
(i)
t ∼ p(ωt|ω(i)

t−1, a
(i)
t−1) and ob-

tain r
(i)
t from the distribution p(rt|r(i)0:t−1, a

(i)
0:t−1, ω

(i)
0:t−1) = N(rt; r

(i)

t|t−1
,Σ

(i)

t|t−1
)

obtained with the Kalman filter.
– For i = 1, . . . ,M , update weights, w

(i)
t ∝ w

(i)
t−1p(yt|r(i)t )

– Compute the particle effective size M̂eff = 1/
∑M

k=1 w
(k)2

t . If M̂eff < λM

perform resampling and set w
(i)
t = 1

M
∀i.

3.3 Particle Filter for the Outdoor Nonlinear Model

The algorithm that we are going to use for outdoor tracking with GPS and RSS
data is a particle filter similar to the one used for indoor tracking. The main
difference is the use of a different proposal pdf for the generation of particles
and the subsequent change in the computation of the weights. Recall that the
state vector for our nonlinear outdoor model is defined as x4,t = [r�t v

�
t ]

� and,
as a consequence, the probability density function of interest is

p(r0:t|y1:t) =

∫

v0:t

p(x0:t|y1:t)dv0:t ,

where the velocity is integrated to reduce the variance in the estimation.
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In order to obtain an efficient proposal pdf, we note that even though the
complete vector of observations is not linear, the part of the vector that corre-
sponds to the GPS observations is linear, therefore if we take only this part of
the vector we can construct a posterior Gaussian pdf of rt given partial data.
To be specific, if we define the vector of GPS observations as

yS,t = rt + εS,t,

then we can derive an analytic expression for the posterior density p(rt|r0:t−1,yS,t),
namely

p(rt|r0:t−1,yS,t) ∝ p(yS,t|rt)p(rt|r0:t−1) =

1

2π|Σt|t−1| 12 |Σε| 12
exp{−1

2
[(yS,t − rt)

�Σ−1
ε (yS,t − rt) +

(rt − rt|t−1)
�Σ−1

t|t−1(rt − rt|t−1)]}, (22)

where Σε is the covariance matrix of yS,t and p(rt|r0:t−1) = N(rt|rt|t−1,Σt|t−1).
Equations 22 can be written in a more compact form if we use the equality

(y −Br)�V(y −Br) + (r− ra)
�U(r − ra) = (r− rp)

�C(r− rp) +

+(y�Vy + r�a Ura)− (B�Vy +Ura)
�C−1(B�Vy +Ura) (23)

where all vectors have compatible dimensions, C = B�VB + U and rp =
C−1(B�Vy + Ura). if we identify y = yS,t, V = Σ−1

ε , B = I, r = rt,

U = Σ−1
t|t−1, ra = rt|t−1, Σ̃t = C−1 and r̃t = rp, then we can see that sub-

stitution of (23) into (22) gives a Gaussian density

p(rt|r0:t−1,yt) ∝ 1

2π|Σ̃−1|1/2 exp{−1

2

[
(rt − r̃t)

�Σ̃−1
t (rt − r̃t)

]
}.

Therefore, the proposed pdf that incorporates GPS observations can be charac-
terized as a Gaussian density, N(rt; r̃t, Σ̃t), where the vector of means and the
covariance matrix are computed as

Σ̃−1
t = Σ−1

ε +Σ−1
t|t−1 and r̃t = Σ̃t(Σ

−1
ε yS,t +Σ−1

t|t−1rt|t−1), (24)

respectively. The weight update equation becomes

w
(i)
t ∝ w

(i)
t−1

p(yt|r(i)t )p(r
(i)
t |r(i)0:t−1)

N(rt; r̃
(i)
t , Σ̃

(i)
t )

. (25)

Note that the pdf p(yt|rt) incorporates both GPS and RSS data as

p(yt|rt) =
J+S∏
n=1

p(yn,t|rt) =
S∏

s=1

p(ys,t|rt)
J∏

j=1

p(yj,t|rt), (26)

where both p(ys,t|rt) = N(ys,t; rt, σ
2
vI2) and p(yj,t|rt) = N(yj,t; fj(rt), σ

2
εj ) are

known, for j = 1, . . . , J y s = 1, . . . , S.
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Table 3 shows a summary of the SIS algorithm for the nonlinear outdoor
model.

Table 3. SIS algorithm with a more efficient proposal function for tracking in an
outdoor environment with GPS and RSS data

1. Initialization, at t = 0:
– For i = 1, . . . ,M , sample r0 and v0 from the prior functions p(r0) and p(v0).

Initialize weights w
(i)
0 = 1

M
.

2. Recursive step, for t > 0:
– For i = 1, . . . ,M , compute the vector of means r

(i)

t|t−1
and the covariance

matrices Σ
(i)
t|t−1 with the Kalman filter.

– With the current GPS observation, yS,t, compute the vector of means r̃
(i)
t and

the covariance matrices Σ̃
(i)
t of the proposal pdf as defined in (24).

– For i = 1, . . . ,M , draw r
(i)
t from the distribution p(rt|r(i)0:t−1,yS,t) =

N(rt; r̃
(i)
t ,Σ

(i)
t ).

– For i = 1, . . . ,M , update the weights, w
(i)
t ∝ w

(i)
t−1

p(yt|r(i)t )p(r
(i)
t |r(i)0:t−1)

N(rt ;r̃
(i)
t ,Σ̃t)

with

the complete vector of observations of the current time instant yt.

– Compute the effective sample size M̂eff = 1/
∑M

k=1 w
(k)2

t . If M̂eff < λM

resample and set w
(i)
t = 1

M
∀i.

3.4 Switching between Algorithms

As the targets move from an indoor environment to an outdoor environment, or
vice versa, we have to switch between different tracking algorithms. There are
essentially three cases. If the target moves form indoors to outdoors, or outdoors
to indoors, but RSS data are available in both environments, then the tracking
algorithms are particle filters and it is straightforward to go from one to another.

In order to switch from an outdoor environment with GPS data alone to an
indoor environment with RSS data, we have to generate a collection of parti-
cles from the Gaussian distribution computed by the Kalman filter immediately
before the transition, which plays the role of a prior pdf for the particle filter.
Specifically if p(xt−1|y1:t−1) = N(xt−1; x̂t−1|t−1,Pt−1|t−1) then we can draw M
samples with equal weights,

x
(i)
t−1 ∼ N(xt;xt−1|t−1,Pt−1|t−1), w

(i)
t−1 =

1

M
i = 1, . . . ,M, (27)

from which the positions of the particles, r
(i)
t−1, i = 1, . . . ,M , are extracted.
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The prior p(vt−1|y1:t−1) is a Gaussian marginal ofN(xt−1; x̂t−1|t−1,Pt−1|t−1)
that is straightforward to compute.

x̂t−1|t−1 =

M∑
i=1

w
(i)
t−1x

(i)
t−1

Pt−1|t−1 =

M∑
i=1

w
(i)
t−1(x

(i)
t−1 − x̂t−1|t−1)(x

(i)
t−1 − x̂t−1|t−1)

�. (28)

where x
(i)
t = [r

(i)
t

�
v
(i)
t

�
]� and v

(i)
t is the mean of p(vt|r(i)0:t) which is obtained

from a Kalman filter for the i-th particle (this is the same Kalman filter that is

used to compute p(rt|r(i)0:t−1, ω
(i)
0:t−1).

The algorithms require of a variable that will indicate them the available
technology at each instant t. To do so, we introduce a new variable Kt ∈ {0, 1, 2}
that can take 3 values: Kt = 0 indicates that we only have ZIgbee observations
and that we must use particle filters for indoor tracking, Kt = 1 indicates us
that we only have GPS observations available and that we must use the Kalman
filter, and lastly Kt = 2 indicates that we have GPS and ZigBee observations
and we therefore use the data fusion particle filter for outdoor.

4 Experimental Setup and Results

4.1 Experimental Setup

We have developed two kind of hardware nodes using standard parts. For the col-
lection of RSS data, we have set up J= 8 anchors, acting as ZigBee transmitters,
built using Arduino boards and XBee (series 1) modules (IEEE 802.15.4 com-
pliant). The mobile device, that acts as a target, uses an Arduino Mega board,
a XBee (series 1) module, and adds an small OEM GPS receiver. The antennas
for 2.4 GHz band were all equal, 2 dBi monopole omnidirectional antennas. For
the GPS receiver we used a RHCP external antenna. Each node was mounted
inside a plastic enclosure and attached to a 2 m long non-metal pole. This was
done to minimize the interferences caused by the person who carries the device.
Figure 1 shows the setup of the mobile device. The anchors look really similar,
with a smaller Arduino inside and without the GPS receiver (and its antenna).

The ZigBee and GPS measurements were taken in an outdoor scenario, in the
middle of a clear area (without walls or trees) of about 600m2. We deployed an 8
ZigBee node network (anchors) covering a 6× 10 m area and, on the other hand,
another mobile node, with ZigBee and GPS receivers. This mobile node acted as
a gateway, receiving both the ZigBee packets (from the 8 anchors) and the GPS
signal every 1 s. The measurement were tagged by this node and sent to a small
laptop using the USB port, where they were stored for future off line process.

In order to test the performance of the proposed algorithms and to be able to
build realistic observation models we collected a large number of RSS and GPS
observations in the mentioned area. The GPS observations are modelled as the
position of the target with an added Gaussian noise. Therefore once known the
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Fig. 1. Mobile device setup, with ZigBee and GPS receivers

true position where the GPS data are being taken, xn,real, we may translate the
GPS global coordinates onto ENU coordinates (east north up) [14] and we may
compute the covariance matrix applying a maximum likelihood criteria

Σε =
1

N

N∑
n=1

(xn − xn,real)(xn − xn,real)
�, (29)

where N is the total number of GPS observations taken in the experiment, n is
the index of a unique observation and xn,real is the true position where the n-th
observation has been taken. The resulting covariance matrix is

Σε =

[
7.5 −0.58

−0.58 11.3

]
. (30)

For the modeling of the ZigBee observation functions we have followed the crite-
ria described in 2.2 to fit the real data taken in the experiments. Figure 2 shows
experimental data taken from sensors 1 and 8 and the log-distance path loss
models adjusted to them. Note we have fitted one model for each sensor.

The details of the hardware and experiments performed for the indoor model
construction can be found in [1].
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Fig. 2. Real ZigBee outdoor measurements taken in an outdoor environment for Sen-
sors 1 and 8 and the observation functions adjusted to them



182 K. Achutegui et al.

4.2 Results

In order to illustrate the performance of the outdoor algorithms we have taken
experimental data of 8 ZigBee sensors and experimental GPS data from a moving
target following three specific trajectories (see Figures 3, 4 and 5).

Figures 3, 4 and 5 show a tracking example of the two outdoor algorithms:
the Kalman filter with GPS data alone and SIS algorithm. The figures in the
left show the estimation of the target trajectory with the Kalman filter and the
GPS observations and the figures in the right show the estimated trajectories
with the SIS filter that uses GPS and RSS data. The true trajectory is drawn
with a dark colored line, the estimated trajectory is drawn in a light colored line
and the ZigBee nodes are depicted with squares.
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Fig. 3. Outdoor tracking example using ZigBee and GPS real data. The figure in the
left uses GPS only for the estimation (via de Kalman filter) and the figure in the right
uses both GPS and ZigBee data (vis de SIS algorithm).
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Fig. 4. Outdoor tracking example using ZigBee and GPS real data. The figure in the
left uses GPS only for the estimation (via de Kalman filter) and the figure in the right
uses both GPS and ZigBee data (vis de SIS algorithm).

As we can observe the trajectories with GPS data have a greater error and the
improvement we obtain by incorporating RSS data is high. This is as expected,
because the precision that the civil GPS system can obtain is from 5 to 10 meters
and depends on open sky conditions [16,8]. The area in which we perform the
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Fig. 5. Outdoor tracking example using ZigBee and GPS real data. The figure in the
left uses GPS only for the estimation and the figure in the right uses both GPS and
ZigBee real data.

tracking is, therefore, too small for the precision that the technology provides.
The ZigBee technology, on the other hand, has a much lower range but achieves
a greater precision.

In order to illustrate the performance of the tracking scheme we have gen-
erated synthetic trajectories that switch between environments (from indoor to
outdoor) and we have synthetically generated observations that switch between
technologies (from indoor ZigBee to outdoor ZigBee with GPS, to outdoor with
GPS only).

We have simulated a scenario consisting of an indoor room of dimension 6×10
meters, linked to a 2 meter long and 2 meters wide corridor that leads on to an
outdoor environment, which is also an area of 6 × 10 meters. This is shown in
Figure 6. In the 6 × 10 meters area on the right and in the corridor we assume
we are in an indoor environment. In the 6× 10 meter area of the left we assume
we are in an outdoor environment.

A random trajectory that switches between environments, generated accord-
ing to the corresponding dynamic models, has been randomly generated for ex-
emplification. At each time instant t, we check the position of the target in the
previous time instant, rt−1, and the new position, rt, is generated according to
the environment-specific dynamic model. In order to generate the observations
that switch between technologies we also check where the target is at every time
instant, and we generate the observations according to the environment-specific
model. On the other hand, as we have two observation models for the outdoor
environment (GPS only and GPS and ZigBee) we have introduced a new random
variable which in outdoor environments chooses the available technology. When
Kt = 1 we assume we only have GPS technology available and when Kt = 2 we
assume we have the two technologies and we, therefore, simulate both types of
observations. We have also associated a transition probability for the technol-
ogy selection variable so that we do not change technologies too fast, that is,
p(Kt = i|Kt−1 = i) = 0.95, i = 1, 2.
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Figure 6 shows a tracking example in this mixed scenario. The dark line is
the true trajectory, the light line is the estimated trajectory and the squares are
the ZigBee nodes. The beginning of the simulation is situated in the right indoor
room, and the simulation lasts 300 seconds. The observation period is T = 0.4
seconds. In the first 200 seconds the target moves in an indoor environment
and we have used the indoor specific algorithm. From the 200-th second, the
target has moved on to the corridor and then on to the outdoor environment. In
the corridor we assume we have both GPS and outdoor ZigBee measurements
available. Then, in the left outdoor environment we have allowed variable Kt to
choose which technology is available in each time instant.
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Fig. 6. Example of tracking a simulated trajectory using different technologies in dif-
ferent time instants and commuting between environment and technology specific al-
gorithms. The beginning of the trajectory is situated in the right indoor room and the
trajectory end in an outdoor environment (in the left area). For the indoor environ-
ment we have used ZigBee measurements to perform the tracking and for the outdoor
environment we have used for some instant GPS measurements only and others GPS
and ZigBee outdoor measurements.

4.3 Conclusions

We have introduced a target tracking algorithm for mixed indoor and outdoor
scenarios based on the particle filtering methodology and a class of generalized in-
teracting multiple-model state-space systems. The resulting method enables the
fusion of GPS and RSS data in such a way that a target moving between indoor
and outdoor environments, and therefore switching between different available
data (GPS alone, RSS alone or both), can be seamlessly tracked. Within the par-
ticle filter, we use Kalman filtering techniques to reduce the variance of Monte
Carlo estimates and to design efficient importance sampling schemes when GPS
data are available. The performance improvement, compared to outdoor track-
ers that use only GPS data, is demonstrated using experimental data. Computer
simulation results are presented to illustrate the application of the method in
mixed indoor/outdoor scenarios.
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