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Abstract. Real-time, indoor user localization, although limited to the
current user position, is of great practical importance in many Ambient
Assisted Living (AAL) applications. Moreover, an accurate prediction of
the user next position (even with a short advice) may open a number
of new AAL applications that could timely provide the right services in
the right place even before the user request them. However, the prob-
lem of forecasting the user position is complicated due to the intrinsic
difficulty of localization in indoor environments, and to the fact that dif-
ferent paths of the user may intersect at a given point, but they may
end in different places. We tackle with this problem by modeling the lo-
calization information stream obtained from a Wireless Sensor Network
(WSN) using Recurrent Neural Networks implemented as efficient Echo
State Networks (ESNs), within the Reservoir Computing paradigm. In
particular, we have set up an experimental test-bed in which the WSN
produces localization information of a user that moves along a number
of different paths, and in which the ESN collects localization information
to predict a future position of the user at some given mark points. Our
results show that, with an appropriate configuration of the ESN, the sys-
tem reaches a good accuracy of the prediction also with a small WSN,
and that the accuracy scales well with the WSN size. Furthermore, the
accuracy is also reasonably robust to variations in the deployment of the
sensors. For these reasons our solution can be configured to meet the
desired trade-off between cost and accuracy.

Keywords: Movement Forecasting, Sensor Stream Analysis, Received
Signal Strength, Echo State Networks, Wireless Sensor Networks, Am-
bient Assisted Living.

1 Introduction

Wireless Sensor Networks (WSN) [7] are a recent development for unattended
monitoring, which resulted particularly useful in many different application fields.
In a typical deployment, a WSN is composed by a number of wireless sensors:
small micro-systems that embed a radio transceiver and a set of transducers
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suitable to monitor different environmental parameters. In many applications
sensors are battery powered. One of the most promising application is Ambi-
ent Assisted Living (AAL) [12], an innovation funding program issued by the
European Commission. AAL seeks for solutions integrating different technolo-
gies suitable for the improvement of the quality of life of elders and disabled in
the environments where these people live (primarily in their houses) and work.
In AAL spaces WSN play an important role as they are generally the primary
source of context information about the user. For example WSN can monitor
physiological parameter of the user, the environmental conditions and his/her
movements and activities [34]. In most cases, raw data acquired by the WSN
is given in input to software components that refine this information and that
forecast the behavior or needs of the user in order to supply the user with ap-
propriate services. In this paper we consider a scenario related to forecasting of
user movements. In this scenario the user is localized in real time by a WSN
(composed by low cost, low power sensors such as those of mote class [I]), and
localization information is used to predict (with a short advance) whether the
user will enter in a room or not, in order to timely supply the user with some
services available in the room where the user is entering in. To this purpose the
user wears a sensor, whose position is computed by a number of static sensors
(also called anchors) deployed in the house. The sensor on the user and the en-
vironmental sensors exchange packets in order to compute the Received Signal
Strength (RSS) for each packet, and use this information to evaluate the position
of the user in real time. Although simple, this approach faces two main prob-
lems. The first is that indoor user localization is not sufficient by itself, since the
current user position is not sufficient to predict the future behavior of the user.
The second is that RSS measurements in indoor environments are rather noisy
and this fact makes localization information imprecise. This latter problem is
due both to multipath effects of indoor environments, and to the fact that the
body of the user affects the radio signal propagation with irregular patterns,
depending on the orientation of the user, orientation of the antenna etc. Over-
all, the considered scenario requires an approach which is adaptive, efficient and
robust to the input noise. For this reasons, we take into consideration Machine
Learning models in general, and neural networks in particular. More specifically,
we exploit Recurrent Neural Networks (RNNs) [22], a class of dynamical neu-
ral network models that can work directly on the streams of RSS produced by
the environmental sensors rather than on a localization information. The RNN
takes into account also past measurements that reflect the history of previous
movements, in order to overcome the fact that the current user position does not
provide enough information. In particular, we consider the Reservoir Computing
(RC) [26,37] approach for modeling RNNs. Featured by extreme efficiency, RC
models represent ideal candidates for approaching the problem in the consid-
ered scenario. Efficiency of the learning model used is in fact a critical factor,
in particular in view of its deployment within the sensors themselves. In this
work we present the results of a set of experiments in a real indoor environment
aimed at producing a sufficiently large dataset to be used for the learning and
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evaluation of the RC model, and we evaluate our solution in terms of predictive
classification accuracy and cost. In particular, we evaluate the cost in terms of
the number of anchors that are necessary to achieve the desired accuracy and
in terms of independence from the actual deployment of the anchors (that we
evaluate by comparing the accuracy of the predictions depending on the position
of the anchors) which has a direct impact on deployment costs. In our experi-
ments we show that our approach provides optimal accuracy with 4 anchors, but
it can already provide a good accuracy even with a single anchor. Furthermore
our approach scales with the number of anchors, hence it can be easily tuned in
order to attain the desired trade-off between accuracy and cost of the solution.

2 Related Work

In the past years, many developed indoor positioning systems extract the location-
dependent parameters such as time of arrival, time difference of arrival and angle
of arrival [35] from the received radio signal transmitted by the mobile station.
Such a measurement needs to be estimated accurately and it requires line of
sight (LOS) between the transmitter and the receiver. Furthermore, it requires
specialized and expensive hardware integrated into the existing equipments. Due
to the high implementation cost, the indoor positioning system based on the use
of RSS thus gets more and more interests. Since the deployments of WLAN in-
frastructures are widespread and the RSS sensor function is available in every
802.11 interface, the RSS-based positioning system is obviously a more cost-
effective solution.

The model-based positioning approach is one of the most widely used technol-
ogy seen in the literature since it expresses the radio frequency signal attenuation
using a path loss model [8/[0]. From an observed RSS, these methods triangu-
late the person based on a distance calculation from multiple access points.
However, the relationship between position and RSS relationship is highly com-
plex due to multipath, metal reflection, and interference noise. Thus, the RSS
propagation may not be adequately captured by a fixed invariant model. In
contrast to model-based positioning, fingerprinting based RSS approaches are
used [6],23L31,[39]. Fingerprints are generated during an offline training phase,
where RSS data is collected at a set of marked training locations. The most
challenging aspect of the fingerprinting based method is to formulate a distance
calculation that can measure similarity between the observed RSS and the known
RSS fingerprints. Various Machine Learning techniques can be applied to the lo-
cation estimation problem [21]. Probabilistic method [28], k-nearest-neighbor [6],
neural networks [29], and Support Vector Machines [23] are exploited in pop-
ular positioning techniques based on the location fingerprinting. Euclidean dis-
tance based calculation has been used in [20] to measure the minimum distance
between the observed RSS and the mean of the fingerprints collected at each
training point. RADAR [6] uses a k-nearest-neighbors method in order to find
the closest match between fingerprints and RSS observation. Recently, research
efforts have concentrated on developing a better distance measure that can take
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into account the variability of the RSS training vectors. These methods esti-
mate probability density for the training RSS and then compute likelihood/a
posteriori estimates during the tracking phase using the observed RSS and the
estimated densities [39]. User localization is then performed using a maximum-
likelihood (ML) or maximum a posteriori (MAP) estimate of position. All these
location determination methods do not solve the problem to forecast the user be-
haviors leveraging on empirical RSS measures. The Machine Learning approach
can take advantage of training RSS data to capture characteristics of interest of
their unknown underlying probability distribution. In this paper we consider the
Echo State Network (ESN) [I7,[18] model within the RC paradigm for model-
ing of RNNs. ESNs are dynamical neural networks used for sequence processing
tasks. One of the main characteristics of ESNs is the efficiency of the approach.
Learning is indeed restricted to a simple linear output tool, while the dynami-
cal part of the network (the reservoir) is left untrained after initialization. The
contractive reservoir dynamics provides a fading memory of past inputs, allow-
ing the network to intrinsically discriminate among different input histories [17]
in a suffix-based fashion [I3|[14,[36], even in the absence of training. Despite
the extreme efficiency of the approach, ESNs have been successfully applied to
many common tasks in the area of sequence processing, often outperforming
other state-of-the-art learning models for sequence domains (e.g. [I7,[18]). In
particular, in the last years ESN models have shown good potentialities in a
range of tasks related to autonomous systems modeling. Examples of such tasks
include event detection and localization in autonomous robot navigation [4l[5],
multiple robot behavior modeling and switching [3,38], robot behavior acquisi-
tion [I6] and robot control [30]. However, such applications are mostly focused
on modeling robot behaviors and often use artificial data obtained by simula-
tors (e.g. [BHBL38]). In this paper we apply the ESN approach to a real-world
scenario for user indoor movements forecasting, characterized by real and noisy
RSS input data, paving the way for potential applications in the field of AAL.

3 Experimental Setup

We carried out a measurement campaign on the first floor of the the ISTT insti-
tute of CNR in the Pisa Research Area, in Italy. The environment is composed
of 2 rooms (namely Room 1 and Room 2), which are typical office environments
with overall dimensions of approximately 12 m by 5 m divided by an hallway.
The rooms contain typical office furniture: desks, chairs, cabinets, monitors that
are asymmetrically arranged. This is a harsh environment for wireless commu-
nications because of multi-path reflections due to walls and interference due
to electronic devices. For the experiments we used a sensor network of 5 IRIS
nodes [I] (4 sensors, in the following anchors, and one sensor placed on the
user, hereafter mobile), embedding a Chipcon AT86RF230 radio subsystem that
implements the IEEE 802.15.4 standard. The experiments consisted in a set of
measures between anchors and mobile. Figure [I] shows the anchors deployed in
the environment as well as the movements of the user. The height of the anchors
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Fig. 1. Test-bed environment where the measurements have been done. The positions
of the anchors, and the 6 user movements are shown.

was 1.5 m from the ground and the mobile was worn on the chest. The measure-
ments were carried out in empty rooms to facilitate a constant speed of the user
of about 1 m/s. Each measure collected about 200 RSS samples (integer values
ranging from 0 to 100), where every sample was obtained by sending a beacon
packet from the anchors to the mobile at regular intervals, 10 times per second,
using the full transmission power of the IRIS. During the measures the user per-
forms two types of movements: straight and curved, for a total of 6 paths (2 of
which straight) that are shown in Fig. [l with arrows numbered from 1 to 6. The
straight movement runs from Room 1 to Room 2 or viceversa (paths 1 and 5 in
Fig.[) for 50 times in total. The curved movement is executed 25 times in Room
1 and 25 times in Room 2 (paths 2, 3, 4 and 6 in Fig. ). Each path produces a
trace of RSS measurements that begins from the corresponding arrow and that
is marked when the user reaches a point (denoted with M in Fig. [I) located at
60 cm from the door. Overall, the experiment produced about 5000 RSS samples
from each of the 4 anchors. The marker M is the same for all the movements,
therefore the different path can not be only distinguished from the RSS values
collected in M. The scenario and the collected RSS measures described so far can
naturally lead to the definition of a binary classification task on time series for
movements forecasting. The RSS samples from the four anchors are organized in
100 input sequences, corresponding to the conducted measures until the marker
(M) is reached. The RSS traces can be freely downloaded in [2]. Each single
trace is stored in a separate file that contains one row for each RSS measure-
ment. Each row has 4 columns corresponding to: anchor ID, sequence number of
the beacon packet, RSS value, and the boolean marker (1 if that measurement is
done in point M, 0 otherwise). The resulting input sequences have length varying
between 16 and 101. A target classification label is then associated to each input
sequence, namely +1 for entering movements (paths 1 and 5 in Fig. [[) and —1
for non-entering ones (paths 2,3,4 and 6 in Fig. [T)). The constructed dataset is
therefore balanced, i.e. the number of sequences with positive classification is
equal to the number of sequences with negative classification.
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3.1 Slow Fading Analysis

The wireless channel is affected by multipath fading that causes fluctuations in the
receiver signals amplitude and phase. The sum of the signals can be constructive or
destructive. This phenomenon, together with the shadowing effect, may strongly
limit the performance of wireless communication systems and makes the RSS val-
ues unstable. Most of the recent research works in wireless sensor networks, mod-
eled wireless channel with Rayleigh fading channel model [IT125], which is suitable
channel model for wireless communications in urban areas where dense and large
buildings act as rich scatterers. In indoor environments Nakagami or Ricean fad-
ing channel model works well, because it contains both non-LOS and LOS com-
ponents. But Nakagami-m distribution function, proposed by Nakagami [27], is
a more versatile statistical representation that can model a variety of fading sce-
narios including those modeled by Rayleigh and one-sided Gaussian distributions.
Furthermore, in [33] the authors demonstrated that Nakagami-m distribution is
more flexible and fits more accurately with experimental data for many propa-
gation channels than the other distributions. We observe that the received signal
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Fig. 2. Distribution of received power level from the anchor A4 and Nakagami-m dis-
tribution with ¢ = 0.58 and w = 17.22

envelope is modulated by a slow fading process that produce an oscillation of RSS
with respect its mean. This is due to multipath effects caused by scattering of
the radio waves on office furniture. In order to verify this hypothesis, we look for
the signature of multipath fading, by considering the distribution of the received
power. The fading distribution approximates a Nakagami-m distribution around
the mean received power. The Nakagami-m distribution has two parameters: a
shape parameter m and a controlling spread w. w and m, lie in the range from 17 to
50 and from 0.5 to 0.8 for most of the measurements, respectively. The distribution
observed on measured data (Fig.[2 shows an example for the same measurement
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Fig. 3. Nakagami parameters of the different user paths

as above and for the anchor A4) are consistent with what is observed in [33]. As
far as the dependence of the fading statistics on measurement parameters is con-
cerned, we observe that the power spectrum is similar for all the measurements.
In fact, m and w are similar for all the measurements. For the arc movements, the
Nakagami parameters are more widely spread, as shown in Fig. [}l with respect to
the straight ones. As highlighted in Fig.Blall the paths produce similar RSS traces,
making it hard to forecasting the user behavior. Despite the similar RSS distribu-
tions, in Section [{] we will show that the proposed system is able to forecast the
user behavior. It is also interesting to note that the traces collected in Room 1
can be modeled with m parameter values more close together with respect to the
traces collected in Room 2. Consequently, we expect that the proposed system will
mis-classify these paths more frequently.

4 Model

An ESN is a RNN with an input layer of Ny units, a large and sparsely connected
hidden reservoir layer of Ng recurrent non-linear units and a readout layer of
Ny feed-forward linear units (see Fig. ).

The untrained reservoir acts as a fized non-linear temporal expansion function,
implementing an encoding process of the input sequence into a state space where
the trained linear readout is applied. More formally, given an input sequence
s = [u(1),...,u(n)] over the input space RNV at each time step t = 1,...,n the
reservoir computes the following state transition function:

x(t) = f(Wiu(t) + Wx(t — 1)) (1)



158 C. Gallicchio et al.

0
O— (W 0 Y@
—0

Input Reservoir Readout

Fig. 4. The architecture of an ESN

where x(t) € RV® denotes the reservoir state (i.e. the output of the reservoir
units) at time step t, Wy, € RNrXNu g the input-to-reservoir weight matrix
(possibly including a bias term), W € RN7*Nr i the (sparse) recurrent reservoir
weight matrix and f is the component-wise applied activation function of the
reservoir units (we use f = tanh). A null initial state is used, i.e. x(0) = 0 € RV=,
For the case of sequence binary classification tasks, which is of interest for this
paper, the linear readout is applied only after the encoding process computed
by the reservoir is terminated, according to the equation:

y(s) = sgn(Woux(n)) (2)

where sgn is a sign threshold function returning 41 for non-negative arguments
and —1 otherwise, y(s) € {—1,+1} is the output classification computed for the
input sequence s and W,,; € RV *NR is the reservoir-to-output weight matrix
(possibly including a bias term).

In this paper we also consider leaky integrator ESNs (LI-ESNs) [19], in which
leaky integrator reservoir units are used. In this case, the state transition function
of equation [ is replaced by the following:

x(t) = (1 —a)x(t — 1) + af (Wiu(t) + Wx(t — 1)) (3)

where a € [0,1] is a leaking rate parameter, which is used to control the speed
of the reservoir dynamics, with small values of a resulting in reservoirs that
react slowly to the input [I9,26]. Compared to the standard ESN model, LI-
ESN applies an exponential moving average to the state values produced by the
reservoir units (i.e. x(¢)), resulting in a low-pass filter of the reservoir activations
that allows the network to better handle input signals that change slowly with
respect to the sampling frequency [BL26]. LI-ESN state dynamics are therefore
more suitable for representing the history of input signals. Note that for a =
1 equation Bl reduces to equation [l and standard ESNs are obtained. In the
following, we thereby use equation 3] to refer the reservoir computation for both
LI-ESN and ESN (with a = 1).

The reservoir is initialized to satisfy the so called Echo State Property (ESP)
[17]. The ESP simply states that the reservoir state of an ESN driven by a long
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input sequence does only depend on the input sequence itself. Dependencies on
the initial states are progressively forgotten after an initial transient (the reser-
voir provides an echo of the input signal). A sufficient and a necessary condition
for the reservoir initialization are given in [I7]. Usually, only the necessary con-
dition is used for reservoir initialization, whereas the sufficient condition is often
too restrictive [L0L17]. The necessary condition for the ESP is that the system
governing the reservoir dynamics of equation [ is locally asymptotically stable
around the zero state 0 € RV®. Setting W = (1 —a)I+aW, where a is the leak-
ing rate parameter of equation Bl the necessary condition is satisfied whenever
the following constraint holds:

p(W) <1 (4)

where p(W) is the spectral radius of W. In the following, for the ease of notation,
we simply use p to refer the spectral radius of matrix W. Matrices W, and W
are therefore randomly initialized from a uniform distribution, and then W is
scaled such that equation Ml holds. Values of p close to 1 are commonly used
in practice, leading to reservoir dynamics close to the edge of chaos [24], often
resulting in the best performance in applications (e.g. [I7]).

For sequence classification tasks, each training sequence is presented to the
reservoir a number of Nirqnsient cOnsecutive times, to account for the initial
transient. The final reservoir states corresponding to the training sequences are
collected in the columns of matrix X, while the vector y¢qrge: contains the cor-
responding target classifications. The linear readout is therefore trained to solve
the least squares linear regression problem

min W, X — Yiarget|3 (5)

Usually, Moore-Penrose pseudo-inversion of matrix X or ridge regression are
used to train the readout [26].

The most striking feature of ESNs is efficiency. Indeed, training is restricted
only to a linear output part and is very efficient, whereas the dynamic part of
the network is fixed and the cost of its encoding procedure scales linearly with
the length of the input for both training and test. In this regard, the ESN ap-
proach compares extremely well with competitive state-of-the-art learning mod-
els for sequence domains, including RNNs (in which the dynamic recurrent part
is trained, e.g. [22]), Hidden Markov Models (with the additional cost for the
inference also at test time, e.g. [32]) and Kernel Methods for sequences (whose
cost can scale quadratically or more with the length of the input, e.g. [I5]).

5 Computational Experiments

5.1 Experimental Settings

Accordingly to the classification task defined in Section[3] the ¢-th element u(t)
of an input sequence s consists in the ¢-th set of RSS samples from the different
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anchors considered in the corresponding measure, rescaled into the real interval
[-1,1]. Each input sequence was presented Niransient = 3 times to account
for the initial transient. For our purposes, we considered different experimental
settings in which the RSS from one or more of the four anchors is non-available.
Therefore, the dimension of each u(t) can vary from 1 to 4 depending on the
setting considered, i.e. on the number Ny ,chors Of anchors used.

In our experiments, we used reservoirs with Ng = 500 units and 10% of
connectivity, spectral radius p = 0.99 and input weights scaled in the interval
[—1,1]. For LI-ESNs, we used the leaking rate a = 0.1. A number of 10 indepen-
dent (random guessed) reservoirs was considered for each experiment (and the
results presented are averaged over the 10 guesses). The performances of ESNs
and LI-ESNs were evaluated by 5-fold cross validation, with stratification on the
movement types, resulting in a test set of 20 sequences for each fold. For model
selection, in each fold the training sequences were split into a training and a
(33%) validation set. To train the readout, we considered both pseudo-inversion
and ridge regression with regularization parameter A € {1073,107°,10~7}. The
readout regularization was chosen by model selection on the validation set.

5.2 Experimental Results

Number of Anchors. In this subsection we present the performance results ob-
tained by ESNs and LI-ESNs corresponding to the different experimental settings
considered, with a number of anchors Nynchors varying from 1 to 4. For every
value of Nypchors, the results are averaged (and standard deviations are com-
puted) over the possible configurations of the anchors. The accuracies on the test
set achieved by ESNs and LI-ESNs are graphically shown in Fig. B It is evident
that the performances of both ESNs and LI-ESNs scale gracefully (and almost
linearly) with the number of anchors used, i.e. with the cost of the WSN. The
accuracy of ESNs varies from 0.53 (for Nypchors = 1) t0 0.66 (for Nanchors = 4),
whereas the accuracy of LI-ESNs varies from 0.81 (for Nunchors = 1) to 0.96
(for Nanchors = 4). Thus, the performance of the LI-ESN model is excellent for
Nanchors = 4, scaling to acceptable values even for Ny,chors = 1. In this regard
it is also interesting that ESNs are consistently outperformed by LI-ESNs for
every value of Ngy,chors. This result enlightens the better suitability of LI-ESNs
for appropriately emphasizing the overall input history of the RSS signals con-
sidered with respect to the noise. The ROC plot in Fig. [0l provides a further
graphical comparison of the test performances of ESNs and LI-ESNs.

Tables [II, 2 [ and @ detail the mean accuracy, sensitivity and specificity of
ESNs and LI-ESNs, respectively, on the training and test sets, for increasing
Nanechors- For both ESNs and LI-ESNSs, sensitivity is slightly higher than speci-
ficity on the test set.

The nice scaling behavior of the performance with the decreasing number of
anchors used, thus with the decreasing cost of the WSN] is also apparent from
Tables Bl and B which provide the confusion matrices for ESNs and LI-ESNs,
respectively, averaged over all the test set folds, with 20 sequences each (10 with
positive target, 10 with negative target).
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Table 1. Mean training accuracy, sensitivity and specificity of ESNs, varying the
number of anchors considered

Nanchors Accuracy Sensitivity Specificity

1 0.96(£0.01) 0.96(£0.02) 0.97(=0.01)
2 1.00(£0.00) 1.00(=£0.00) 1.00(=0.00)
3 1.00(£0.00) 1.00(=0.00) 1.00(0.00)
4 1.00(£0.00) 1.00(£0.00) 1.00(0.00)

Table 2. Mean test accuracy, sensitivity and specificity of ESNs, varying the number
of anchors considered

Nanchors Accuracy Sensitivity Specificity

1 0.53(£0.05) 0.53(£0.05) 0.53(%0.06)
2 0.55(£0.04) 0.55(£0.06) 0.56(=-0.02)
3 0.59(£0.03) 0.59(£0.04) 0.58(=0.02)
4 0.66(£0.00) 0.69(+0.00) 0.63(+0.00)

The distribution of LI-ESN classification errors occurring in correspondence
of each of the path types (see Fig. [I) is provided in Table [ for the case of
Nanchors = 4. Interestingly, the classification errors mainly occur for input se-
quences which correspond to movements in the Room 1, i.e. paths 1, 2 and 3
in Fig. [l This actually confirms the coherence of the LI-ESN model with respect
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Table 3. Mean training accuracy, sensitivity and specificity of LI-ESNs, varying the
number of anchors considered

Nanchors Accuracy Sensitivity Specificity

1 0.92(£0.02) 0.97(£0.01) 0.87(£0.04)
2 0.99(£0.01) 1.00(£0.00) 0.98(+0.02)
3 1.00(%0.00) 1.00(£0.00) 1.00(0.00)
4 1.00(£0.00) 1.00(£0.00) 1.00(%0.00)

Table 4. Mean test accuracy, sensitivity and specificity of LI-ESNs, varying the number
of anchors considered

Nanchors Accuracy Sensitivity Specificity

1 0.81(40.02) 0.86(£0.04) 0.76(<0.02)
2 0.86(£0.04) 0.88(£0.05) 0.85(0.04)
3 0.92(£0.04) 0.93(£0.04) 0.90(£0.04)
4 0.96(£0.00) 0.98(-0.00) 0.93(0.00)

Table 5. Averaged confusion matrix on the test set (with 10 positive samples and 10
negative samples for each fold) for ESNs, varying the number of anchors considered

Nanchors True Positives True Negatives False Positives False Negatives
1 5.20(£0.52)  5.28(x0.57)  4.73(x0.57)  4.71(£0.52)

2 5.46(+£0.59)  5.60(+0.24)  4.40(+0.24)  4.54(+0.59)
3 5.90(+£0.42)  5.84(£0.22)  4.17(£0.22)  4.10(+0.42)
4 6.90(£0.00)  6.30(+0.00)  3.70(£0.00)  3.10(=£0.00)

Table 6. Averaged confusion matrix on the test set (with 10 positive samples and 10
negative samples for each fold) for LI-ESNs, varying the number of anchors considered

Nanchors True Positives True Negatives False Positives False Negatives
1 8.57(£0.40)  7.60(x0.15)  2.40(£0.15)  1.43(%0.40)

2 8.80(+£0.52)  8.47(+£0.43)  1.53(£0.43)  1.20(0.52)
3 9.31(+£0.45)  9.01(£0.40)  0.99(+£0.40)  0.69(+0.45)
4 9.84(+0.00)  9.26(£0.00)  0.74(£0.00)  0.16(=0.00)

to the RSS input signals. Indeed (see Section[d)), the movement paths in Room 1
are very similar and more hardly distinguishable among each other (in particular
paths 1 and 2, see Fig. 1)) than the path types in Room 2.

Actual Deployment of the Anchors. In this sub-section, we detail the per-
formance results of ESNs and LI-ESNs for each possible configuration of the
set of anchors used, with Ngpchors varying from 1 to 4. For each configuration
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Table 7. Distribution of test errors for LI-ESNs in the case Ngnchors = 4 (with a total
test error of 4%) occurring for each of the path types in Fig.[d]

Test Error (%)
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6
10.76% 51.86% 32.52% 1.43% 3.43% 0%
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Fig. 6. ROC plot of ESNs and LI-ESNs on the test set, varying the number of anchors
considered (indicated beside each point in the graph)

considered, the results are averaged (and the standard deviations are computed)
over the 10 reservoir guesses. Tables [ and [@ show the mean test accuracy, sen-
sitivity and specificity for ESNs and LI-ESNs, respectively, in correspondence
of every configuration of the anchors. Although the performances achieved in
correspondence of the different choices for the same value of Nypcnors are quite
similar, Tables B and [@ indicate that specific configurations can result in better
performances. Despite the fact that different combination of anchors could give
different performance was expected (since the disturbance and quality of signal
is clearly affected by the position of the anchors in the environment), we observe
from the tables that the accuracy of the prediction is reasonably robust to the
position of the available anchors, which means that the deployment of the an-
chors does not need to be extremely accurate (thus reducing deployment costs).
On the other hand, the results show clearly that it is better to distribute the
anchors as much as possible, e.g. in Table [l the worse results are obtained when
the available anchors are in the same room, while with two anchors displaced in
different rooms the system already achieves accuracy in the range 87% - 93%.
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Table 8. Mean test accuracy, sensitivity and specificity of ESNs for the possible
configurations of the considered anchors

Anchors Accuracy Sensitivity Specificity
Al 0.49(%0.06) 0.51(£0.10) 0.47(=£0.09)

A2 0.47(+0.05) 0.45(£0.08) 0.48(=£0.08)

A3 0.59(%0.06) 0.58(40.10) 0.61(=£0.07)

A4 0.57(£0.06) 0.57(£0.08) 0.56(=£0.10)

Al, A2 0.52(+0.06) 0.47(40.10) 0.56(=£0.08)
Al, A3 0.51(+£0.07) 0.50(£0.11) 0.52(=£0.08)
Al, A4 0.58(+0.07) 0.60(£0.08) 0.57(=£0.09)
A2 A3 0.61(+0.07) 0.62(£0.09) 0.60(=£0.08)
A2, A4 0.53(£0.06) 0.50(£0.11) 0.55(=£0.08)
A3, A4 0.58(+0.06) 0.60(£0.08) 0.56(=£0.10)
A1, A2, A3 0.57(£0.07) 0.57(£0.10) 0.56(+0.10)
A1, A2, A4 0.58(%0.06) 0.57(£0.08) 0.59(+0.08)
A1, A3, A4 0.57(£0.06) 0.56(£0.09) 0.57(%0.08)
A2, A3, A4 0.64(£0.06) 0.66(£0.08) 0.62(%0.08)
A1, A2, A3, A4 0.66(£0.07) 0.69(£0.10) 0.63(%0.09)

Table 9. Mean test accuracy, sensitivity and specificity of LI-ESNs for the possible
configurations of the considered anchors

Anchors Accuracy Sensitivity Specificity
Al 0.84(+0.01) 0.90(£0.01) 0.77(£0.01)

A2 0.80(%0.03) 0.85(£0.06) 0.75(=£0.03)

A3 0.81(+0.03) 0.88(+0.03) 0.74(=£0.02)

A4 0.78(%0.03) 0.79(£0.06) 0.78(=£0.03)
Al, A2 0.83(%0.03) 0.87(£0.06) 0.78(=£0.02)
Al, A3 0.87(+0.03) 0.89(40.04) 0.85(=£0.05)
Al, A4 0.88(£0.02) 0.91(£0.02) 0.85(£0.02)
A2, A3 0.89(+0.02) 0.89(£0.03) 0.88(=£0.03)
A2 A4 0.93(+0.01) 0.95(£0.02) 0.91(+£0.02)
A3, A4 0.79(%0.03) 0.78(£0.04) 0.80(=£0.05)
A1, A2, A3 0.87(£0.03) 0.89(£0.04) 0.86(+0.04)
A1, A2) A4 0.94(£0.03) 0.96(£0.04) 0.92(£0.03)
A1, A3, A4 0.88(%0.03) 0.89(+0.04) 0.87(%0.03)
A2, A3, A4 0.98(£0.02) 0.99(+0.01) 0.96(+0.03)
A1, A2, A3, A4 0.96(£0.03) 0.98(£0.03) 0.93(+0.03)

6 Conclusions

We have discussed the problem of forecasting the user movements in indoor
environments. This problem cannot be tackled with by using mere user local-
ization, since the information about the current position of the user does not
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necessary provide an indication about his future position. In our approach we
have combined localization information obtained by a wireless sensor network
of MicaZ sensors with a RNN (implemented as an ESN) that takes in input a
stream of RSS data produced by the sensors and signals when the user is about
to enter in/exit from a given room. The problem is also made complex due to
the intrinsic difficulty of localization in indoor environments, since presence of
walls and objects disturb the radio propagation and makes RSS data impre-
cise. We have considered a scenario in which a user enters in and exits from
two rooms according to different paths, which intersect in a marker point at
the time in which the ESN is requested to make the prediction. We also have
considered different numbers and combinations of anchors in order to investi-
gate the trade-off between the cost of the WSN, the cost of deployment (that is
dependent on the sensibility of the solution to the position of the anchors) and
accuracy of prediction. The results confirmed the potentiality of our appproach.
In particular we have observed that our solution obtains good precisions also
with a single anchor, and it scales gracefully with the number of anchors (with 4
anchors it reaches a test accuracy of 96%). Furthermore it is reasonably robust
to the position of the anchors, although the experiments gave a clear indication
that the anchors should be placed as distant from each other as possible, in
order to guarantee a better coverage. Concerning the ESN models considered,
results in Section have shown that LI-ESNs consistently lead to better per-
formances than standard ESNs for every experimental setting (i.e. for varying
the number and the deployment of the used anchors). The bias of in the LI-ESN
model, acting as a low-pass filter of the reservoir states, has therefore revealed
to be suitable for approaching the characteristics of the problem considered. LI-
ESNs have indeed shown a good ability to appropriately represent the history of
the noisy RSS input signals used in experiments. Standard ESNs, on the other
hand, would need a larger dataset and less noise in the input signals in order to
achieve better generalization performances. Moreover, the experimental results
have enlightened the coherence of the learning models used with respect to the
known difficulties of the problem. In fact, the great part of the classification
errors of LI-ESNs (for the 4 anchors setting) has occurred in correspondence of
movements in Room 1, where the possible path types are much more similar
among each other than the corresponding paths in Room 2. Finally, we observe
that the ESN-based solution is potentially suitable for its embedding in wireless
sensors of the mote class, due to its efficiency and low requirements of memory
and processing. This embedding is matter of ongoing work. Future work also
include the investigation of trade-off between accuracy and energy spent by the
sensors to produce localization information, and the extension of our approach
to environments of different nature (e.g. public buildings, building with different
composition of walls, room size etc.). As final remark, we stress that the dataset
used in our experiments is openly available for download in our website [2].
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