
Capacity Region of the Two-Way Multi-antenna

Relay Channel with Analog Tx-Rx Beamforming

Cristian Lameiro, Alfredo Nazábal, Fouad Gholam,
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Abstract. In this paper we study the multiple-input multiple-output
two-way relay channel (MIMO-TWRC) when the nodes use analog beam-
forming. Following the amplify-and-forward (AF) strategy, the problem
consists of finding the transmit and receive beamformers of the nodes and
the relay, and the power allocated to each one, that achieve the bound-
ary of the capacity region. We express the optimal node beamformers in
terms of the relay beamformers, and show that the capacity region can
be efficiently characterized using convex optimization techniques. Nu-
merical examples are provided to illustrate the results of this paper, and
to compare the capacity region achieved by analog beamforming against
the conventional MIMO schemes that operate at the baseband.

Keywords: two-way relay channel, analog beamforming, convex opti-
mization, capacity region.

1 Introduction

Analog beamforming has crescent interest due to the reduced cost, power
consumption and system size in comparison to conventional multiple-input
multiple-output (MIMO) schemes that apply beamforming in the digital domain
[1]. Conventional MIMO systems require a radio-frequency (RF) chain for each
antenna in order to process each data stream at baseband. On the other hand,
applying beamforming in the RF domain (what we call hereafter RF-MIMO)
entails acquiring and processing a single data stream, and thus the cost and
power consumption are significantly reduced [2].

The RF-MIMO architecture is shown in Fig. 1. The transmitter (the receiver
operates analogously) applies a set of complex weights, w[n], which represent
the gain factors and phase shifts at each antenna, and focus the energy beam in
the proper direction. For point-to-point links, the design of the optimal Tx-Rx
beamformers for multicarrier transmissions has been thoroughly considered in
[2]-[4]. In [5], we proposed an optimal transmission strategy for the two-user RF-
MIMO broadcast channel, and extended it to the K-user case and the multiple
access channel.

On another front, cooperative and multihop communications have been a
research topic of interest in recent years, due to the coverage extension that
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Fig. 1. RF-MIMO transceiver. A single data stream is processed, and thus the cost
and power consumption are significantly reduced.

they provide. The two-way relay channel (TWRC) is one of the most basic
multihop communication systems. The simplest TWRC consists of two source
nodes that exchange information through an assisting relay node. We follow the
coding strategy called amplify-and-forward (AF), also adopted in [6], [7]. Hence,
only two phases are needed for the exchange of a whole data frame: a multiple
access (MAC) phase and a broadcast (BC) phase.

Currently, the TWRC is receiving a great interest and there are many works
on optimal transmission strategies and optimal beamforming for the multi-
antenna case [6]-[9]. Authors in [6] consider the TWRC with amplify-and-forward
(TWRC-AF) strategy when the source nodes are single antenna terminals and
the relay uses conventional beamforming. They compute the optimal beamform-
ing strategy at the relay node via convex optimization techniques with fixed
powers, i.e., no power optimization is carried out. In [7], Wang and Zhang
study the conventional MIMO-TWRC and propose a suboptimal method to
compute the beamforming matrices. To the best of our knowledge, the MIMO-
TWRC when the nodes use analog beamforming has not been considered yet in
the literature. In this paper, we characterize the capacity region of the multi-
antenna TWRC-AF, when all nodes use analog beamforming; what we call
RF-TWRC. We show that the optimal beamforming strategy and the power
allocation problem can be solved through efficient convex optimization
techniques.
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(a) MAC phase

(b) BC phase

Fig. 2. Two-way relay channel with amplify-and-forward strategy and two-phase pro-
tocol. In the MAC phase, the source nodes send their messages to the relay node; while
in the BC phase, the relay node retransmits a linear composition of the received signal.

1.1 Notation

Bold upper and lower case letters denote matrices and vectors respectively; light-
faced lower case letters denote scalar quantities. We use AH , A∗ and AT to
denote Hermitian, conjugate and transpose of A, respectively; Tr (A) denotes
the trace of A, and rank (A) denotes the rank of A. For vectors, ‖a‖ denotes
the Euclidean norm of a; and for complex scalars, |a| denotes the absolute value

of a. The optimal solution of an optimization problem is indicated by (·)(∗).

2 System Model

We consider the TWRC depicted in Fig. 2, where two source nodes equipped
with NS antennas1 establish a bidirectional communication through a relay node
with NR antennas. The two multi-antenna nodes and the relay perform beam-
forming in the RF domain, what it is called analog beamforming. We use the
two-phase TWRC protocol which was also adopted in [6], [7]; and assume per-
fect channel state information at every node. In the MAC phase, both source
nodes transmit simultaneously to the relay node. Due to the restrictions of the
RF-MIMO architecture, the nodes are able to transmit a single data stream.
Then, assuming flat-fading channels, the signal received at the relay node can
be written as

yR = H1v1
√
p1s1 +H2v2

√
p2s2 + rR , (1)

where (v1,v2) ∈ CNS×1 are the unit-norm analog transmit beamformers of nodes
1 and 2, respectively; (H1,H2) ∈ C

NR×NS are the channel matrices; and s1 and
s2 are the symbols transmitted by nodes 1 and 2, respectively, which are assumed
to be distributed as CN(0, 1); p1 and p2 are the transmit powers of each source

1 The extension to source nodes with different number of antennas is straightforward.
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node; and rR ∼ CN(0, σ2I) represents the noise at the relay node. Note that, in
contrast to [6], we consider multiple antennas at the nodes and the relay. In the
BC phase, the relay node performs the amplify-and-forward strategy to linearly
process the received signal (1). The analog beamforming matrix is

B = vRu
H
R (2)

where uR and vR are the NR×1 receive and transmit beamformers, respectively.
Notice that, unlike [6], the RF-MIMO architecture imposes a rank-one constraint
in the relay beamforming matrix (2).

Without loss of generality, we can assume ‖vR‖2 = 1 and ‖vi‖2 = 1, i = 1, 2.
Thus, the transmit power of the relay node is given by

pR(p1, p2,uR,v1,v2) = pef1 + pef2 + σ2 ‖uR‖2 (3)

where we have defined the effective power of source node i (i = 1, 2), pefi , as

pefi = pi
∣
∣uH

RHivi

∣
∣
2
, i = 1, 2 . (4)

If channel reciprocity holds2, i.e., the channels of source nodes 1 and 2 in the
BC phase are HT

1 and HT
2 , respectively; the signal received by the source nodes,

after suppressing the self-interference, is

y1 = uH
1 HT

1 vR
√
pef2s2 + r̃1 , (5)

y2 = uH
2 HT

2 vR
√
pef1s1 + r̃2 ,

where ui ∈ C
Ns×1 and r̃i ∼ CN

(

0, σ2
[

1 + ‖uR‖2
∣
∣uH

i HT
i vR

∣
∣
2
])

are the unit-

norm analog receive beamformer and the equivalent noise at node i. Thus, the
achievable bidirectional rate pairs, denoted by R12 (link from node 1 to node 2,
through the relay node) and R21 (link from node 2 to node 1, through the relay
node), are given by

R12 ≤ 1

2
log2

⎡

⎣1 +
pef1

∣
∣uH

2 HT
2 vR

∣
∣
2

σ2
(

1 + ‖uR‖2
∣
∣uH

2 HT
2 vR

∣
∣
2
)

⎤

⎦ , (6)

R21 ≤ 1

2
log2

⎡

⎣1 +
pef2

∣
∣uH

1 HT
1 vR

∣
∣
2

σ2
(

1 + ‖uR‖2
∣
∣uH

1 HT
1 vR

∣
∣
2
)

⎤

⎦ . (7)

In the next section, we derive the optimal beamforming vectors to be applied at
the source nodes and define the capacity region of the MIMO RF-TWRC. Finally,
we propose an iterative algorithm based on convex optimization techniques to
compute the boundary of the capacity region.

2 This assumption is made only for simplicity. The results hold also if different transmit
and receive channels are considered.
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3 Capacity Region

3.1 Optimal Node Beamformers and Parametrization

For a fixed transmit beamforming at the relay node, vR, the BC phase reduces
to a single-input multiple-output (SIMO) channel. Thus, the optimal strategy
for both nodes is matched filtering with respect to their channels or maximum
ratio combining (MRC) [10]. Therefore, the unit-norm optimal analog receive
beamformers are

ui =
HT

i vR
∥
∥HT

i vR

∥
∥
, i = 1, 2 . (8)

Similarly, for a fixed receive beamforming at the relay node, uR, the MAC phase
reduces to a multiple-input single-output (MISO) channel. In order to achieve
the boundary of the capacity region, each source node must control its effective
power, pefi (i = 1, 2). According to (4), this power control can be done by varying
either the source node power or its transmit beamformer, vi. Hence, if the source
nodes perform maximum ratio transmission (MRT) [10], the effective power can
be controlled solely by the source node power, pi. Thus, MRT is always optimal.
The MRT beamformers of the source nodes are given by

vi =
HH

i uR
∥
∥HH

i uR

∥
∥
, i = 1, 2 . (9)

In summary, the optimal Tx-Rx node beamformers can be written in terms of
the Tx-Rx relay beamformers. Notice that, (8) and (9) implies that a feedback
channel must exist between the nodes and the relay. According to that, the node
beamformers can be computed at the relay node, and then sent them back to
the nodes. With the optimal node beamformers, the rates in (6) and (7) can be
rewritten as

R12 ≤ 1

2
log2

⎡

⎣1 +
pef1

∥
∥HT

2 vR

∥
∥
2

σ2
(

1 + ‖uR‖2
∥
∥HT

2 vR

∥
∥
2
)

⎤

⎦ , (10)

R21 ≤ 1

2
log2

⎡

⎣1 +
pef2

∥
∥HT

1 vR

∥
∥
2

σ2
(

1 + ‖uR‖2
∥
∥HT

1 vR

∥
∥
2
)

⎤

⎦ , (11)

where now pefi = pi
∥
∥HH

i uR

∥
∥
2
(i = 1, 2). Including the power constraints at the

nodes and the relay, we can now define the capacity of the RF-TWRC as

C (P1, P2, PR) �
⋃

p1≤P1,p2≤P2

⎡

⎣
⋃

‖vR‖2=1,pR(p1,p2,uR)≤PR

{R12, R21}
⎤

⎦ , (12)

where R12 and R21 are defined in (10) and (11), respectively. It is easy to see
that the optimal relay beamforming vectors must lie in the subspace spanned by
the columns of the channel matrices, i.e.,
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uR ∈ span (H) , (13)

vR ∈ span (H∗) ,

where H = [H1,H2]. Here, span (A) denotes the subspace spanned by the
columns of A. Hence, taking the singular value decomposition (SVD) of H,
we can express the beamformers and the channel matrices in terms of a unitary
basis as follows

uR = Uar , (14)

vR = U∗at ,
H1 = UG1 ,

H2 = UG2 ,

where U ∈ CNR×min(NR,2NS) is an orthogonal basis for the column range of H.
Vectors {ar, at} ∈ Cmin(NR,2NS)×1 are the coefficients of the linear expansion of

the beamformers in terms of the basis U. As U is unitary, ‖vR‖2 = 1 implies

‖at‖2 = 1. Note that, with this parametrization, the number of complex variables
of uR and vR can be reduced from NR to 2NS if NR > 2NS.

With the parametrization given in (14), the rates achieved by the nodes are
now given by

R12 ≤ 1

2
log2

⎡

⎣1 +
pef1

∥
∥GT

2 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

2 at
∥
∥
2
)

⎤

⎦ , (15)

R21 ≤ 1

2
log2

⎡

⎣1 +
pef2

∥
∥GT

1 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

1 at
∥
∥
2
)

⎤

⎦ , (16)

where now pefi = pi
∥
∥GH

i ar
∥
∥
2
(i = 1, 2). The capacity region is now given by

C (P1, P2, PR) �
⋃

p1≤P1,p2≤P2

⎡

⎣
⋃

‖at‖2=1,pR(p1,p2,ar)≤PR

{R12, R21}
⎤

⎦ , (17)

with R12 and R21 defined in (15) and (16), respectively.

3.2 Computing the Capacity Region

The capacity region in (17) can be characterized by solving a weighted sum-rate
maximization problem (WSRmax). This approach assigns different weights to
the source nodes in order to establish a priority between them. Hence, varying
the weights, every point on the capacity boundary can be computed. However,
the WSRmax problem is non-convex and it is very difficult to solve [11].

The authors of [12] proposed an alternative method to compute the boundary
rate-tuples of the capacity region called rate profile, that was also applied in
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[6] to the single-antenna TWRC. Applying this idea, the rate at each node can

be expressed as a portion of the sum rate, i.e., [R12, R21]
T

= Rsum [τ, 1− τ ]
T
,

where [τ, 1− τ ]
T
is the rate profile vector. Thus, for a fixed value of τ between

0 and 1, we can compute a boundary point of the capacity region by solving the
following optimization problem

maximize
p1,p2,at,ar,Rsum

Rsum , (18)

subject to :
1

2
log2

⎡

⎣1 +
p1

∥
∥GH

1 ar
∥
∥
2 ∥
∥GT

2 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

2 at
∥
∥
2
)

⎤

⎦ ≥ τRsum ,

1

2
log2

⎡

⎣1 +
p2

∥
∥GH

2 ar
∥
∥
2 ∥
∥GT

1 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

1 at
∥
∥
2
)

⎤

⎦ ≥ (1− τ)Rsum ,

p1
∥
∥GH

1 ar
∥
∥
2
+ p2

∥
∥GH

2 ar
∥
∥
2
+ σ2 ‖ar‖2 ≤ PR ,

p1 ≤ P1 ,

p2 ≤ P2 .

SinceR12 and R21 grow monotonically with the signal-to-noise plus interference
ratio (SINR), we can express the rate profile in terms of a SINR profile. Hence,
for a fixed value of Rsum, the rate constraints in (18) are equivalent to target
SINRs at the nodes, and thus the optimization problem (18) with fixed Rsum is
equivalent to a power minimization problem with SINR constraints as follows

minimize
p1,p2,at,ar

p1
∥
∥GH

1 ar
∥
∥
2
+ p2

∥
∥GH

2 ar
∥
∥
2
+ σ2 ‖ar‖2 , (19)

subject to :
p2

∥
∥GH

2 ar
∥
∥
2 ∥
∥GT

1 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

1 at
∥
∥
2
) ≥ αγsum ,

p1
∥
∥GH

1 ar
∥
∥
2 ∥
∥GT

2 at
∥
∥
2

σ2
(

1 + ‖ar‖2
∥
∥GT

2 at
∥
∥
2
) ≥ (1− α) γsum ,

p1 ≤ P1 ,

p2 ≤ P2 ,

for some 0 ≤ α ≤ 1. For a given γsum, the solution of the above problem provides

a feasible point of the capacity region if and only if p
(∗)
R ≤ PR, where p

(∗)
R is the

optimal power value. It turns out that the boundary of the capacity region can
be obtained by a bisection method over γsum, solving problem (19) in each step,
as indicated in algorithm 1.

Algorithm 1:

– Initialize γmin
sum = 0, γmax

sum = γUB
sum.

– Repeat
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1. γsum = 1
2

(

γmin
sum + γmax

sum

)

.
2. Solve problem (19).
(a) If the problem is feasible, γmin

sum = γsum.
(b) Otherwise, γmax

sum = γsum.
– Until

(

γmax
sum − γmin

sum

) ≤ ε

A reasonable value of γUB
sum can be obtained through the SINR upper bound

derived in [6]. This upper bound is obtained considering the optimal beamform-
ing of both links independently. In the analog beamforming case, the optimal
strategy at the relay node is transmitting and receiving through the principal
eigenvectors of the channels. Hence, a SINR upper bound for the RF-TWRC is

γUB
sum = PRσ

2
1σ

2
2

(
p2

PRσ2
1 + P2σ2

2 +
1
2

+
p1

PRσ2
2 + P1σ2

1 +
1
2

)

, (20)

where σi is the strongest singular value of Gi, i = 1, 2.
The optimization problem (19) is non-convex, but a solution can be found

through a relaxed semidefinite programm (SDP), as we show in the next sub-
section.

3.3 Semidefinite Relaxation

Defining the Hermitian matrices Ar and At as

Ar = ara
H
r , (21)

At = ata
H
t ,

the optimization problem (19) can be written as

minimize
p1,p2,At,Ar

p1Tr (R1Ar) + p2Tr (R2Ar) + σ2Tr (Ar) , (22)

subject to : p2Tr (R2Ar)− (1− α) γsumσ
2Tr (Ar) ≥ (1− α) γsumσ

2

Tr (R∗
1At)

,

p1Tr (R1Ar)− αγsumσ
2Tr (Ar) ≥ αγsumσ

2

Tr (R∗
2At)

,

Tr (At) = 1 ,

At � 0 ,

Ar � 0 ,

rank (At) = 1 ,

rank (Ar) = 1 ,

p1 ≤ P1 ,

p2 ≤ P2 ,

where Ri = GiG
H
i . The above problem can be shown to be still non-convex

due to several reasons. First, the cross products between Ar and the power
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variables (p1 and p2) make the first two constraints non-convex. However, we
can get through it by optimizing the effective powers instead. Thus, problem
(22) is equivalent to

minimize
pef1

,pef2
,At,Ar

pef1 + pef2 + σ2Tr (Ar) , (23)

subject to : pef2 − (1− α) γsumσ
2Tr (Ar) ≥ (1− α) γsumσ

2

Tr (R∗
1At)

,

pef1 − αγsumσ
2Tr (Ar) ≥ αγsumσ

2

Tr (R∗
2At)

,

Tr (At) = 1 ,

At � 0 ,

Ar � 0 ,

rank (At) = 1 ,

rank (Ar) = 1 ,

pef1 ≤ P1Tr (R1Ar) ,

pef2 ≤ P2Tr (R2Ar) .

Note that the last two inequalities are the power constraints of the source nodes,
according to the definition of the effective powers in (4). On the other hand, the
rank-one constraints are non-convex, although we can find a solution relaxing
these two constraints, what is called in the literature a relaxed SDP, as we show
in the following.

minimize
pef1

,pef2
,At,Ar

pef1 + pef2 + σ2Tr (Ar) , (24)

subject to : pef2 − (1− α) γsumσ
2Tr (Ar) ≥ (1− α) γsumσ

2

Tr (R∗
1At)

,

pef1 − αγsumσ
2Tr (Ar) ≥ αγsumσ

2

Tr (R∗
2At)

,

Tr (At) = 1 ,

At � 0 ,

Ar � 0 ,

pef1 ≤ P1Tr (R1Ar) ,

pef2 ≤ P2Tr (R2Ar) .

The above problem is convex and can be efficiently solved using convex opti-
mization methods. Moreover, as we show in the Appendix following the lines in

[13], [14]; when the rank of the optimal beamforming matrices, A
(∗)
t and A

(∗)
r ,

is greater than one, we are able to find an optimal rank-one solution. Thus, the
solution of (24) is also the optimal solution of the original problem (19). Given

the solution of (24), the optimal power assigned to each source node, p
(∗)
1 and

p
(∗)
2 , are given by
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p
(∗)
1 =

p
(∗)
ef1

Tr
(

R1A
(∗)
r

) , (25)

p
(∗)
2 =

p
(∗)
ef2

Tr
(

R2A
(∗)
r

) .

Note that, in contrast to [6], we are able to optimize the power of each source
node and thus characterize completely the capacity region of the RF-TWRC,
without resorting to an exhaustive search on the transmit powers.

4 Numerical Examples

In this section, we present some examples to illustrate the results of this paper,
and to compare the achievable rates of the analog beamforming architecture
with those achieved by conventional MIMO schemes. The elements of H1 and
H2 are i.i.d. zero-mean circular complex Gaussian random variables with unit
variance. We consider equal power constraints for the nodes and the relay, i.e.,
PR = P1 = P2 = P , and define the signal-to-noise ratio as SNR = 10 log10

P
σ2 .

Without loss of generality, we take σ2 = 1. To get the boundary of the capacity
region, we follow Algorithm 1 varying α between 0 and 1.

4.1 Conventional MIMO vs. Analog Beamforming

In this subsection we compare the achievable rate region when the nodes use
analog beamforming against the conventional (baseband) MIMO beamforming.
The capacity region with conventional MIMO is obtained through the algorithm
proposed in [6]. This algorithm does not allow power optimization and requires
the source nodes to be single antenna terminals. Thus, we focus on the following
scenario: Ns = 1, NR = 4 and fixed powers.

For convenience of the analysis, we consider one channel realization of h1

normalized by its own norm. Channel vector h2 is obtained such that ‖h2‖ = 1

and
∣
∣hH

1 h2

∣
∣
2
= ρ, where ρ, 0 ≤ ρ ≤ 1, is the squared cosine of the angle formed

between h1 and h2.
Fig. 3(a) and Fig. 3(b) show the achievable rate region of both schemes for

ρ = 0.1 and ρ = 0.5, respectively. The SNR is equal to 10 dB and the relay
node is equipped with 4 antennas. As ρ increases, the channel vectors tend to be
collinear and the gap between analog and conventional beamforming goes to 0.

4.2 Capacity Region of RF-TWRC

In this subsection we consider multi-antenna nodes and optimize the power trans-
mitted by the source nodes. In Fig. 4 we show the capacity region of a RF-TWRC
channel, when NR = 4 and NS = 2; and in Fig. 5 we show the power used by
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(a) ρ = 0.1

(b) ρ = 0.5

Fig. 3. Comparison between the achievable rates of conventional MIMO and RF-MIMO
schemes when Ns = 1 and NR = 4, for different values of ρ. The capacity of conven-
tional MIMO-TWRC has been computed using the algorithm proposed in [6]. As ρ
increases (i.e., more collinear channels), the gap between both regions tends to 0.
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Fig. 4. Capacity region of the 4x2 RF-TWRC with a SNR of 10 dB. The dashed line
depicts the achievable region of the SISO case with and without power optimization.

the source nodes. The SNR has a value of 10 dB and the energies of the channels
are equal to unity. We observe that there are some points of the boundary that
are achieved when the source nodes do not transmit at maximum power. This
result can be easily explained in terms of the transmit power of the relay node,
pR. From (3), pR is a function of the effective powers of both source nodes. As
the relay node has a power constraint, PR, the greater is the effective power
of a node, the lower is the effective power of the other. To better understand
this idea, consider one of the extreme points of the capacity boundary. If we fix
α = 0, i.e., full priority is assigned to node 1, then the optimal power of node 1,

p
(∗)
1 , is equal to 0; while the optimal power of node 2, p

(∗)
2 , is maximized. As α

increases, p
(∗)
1 increases too, until it reaches its maximum value. Thus, maximum

power transmission is optimal only in a subset of the capacity boundary.
Fig. 4 also shows the capacity region of the single antenna (SISO) case using

the first antenna of each terminal, with and without power optimization (in
the later case, both nodes always transmit at maximum power). We clearly
observe the enlargement of the capacity region when the nodes are multi-antenna
terminals performing analog beamforming. Moreover, optimizing the power of
the source nodes noticeably improves the capacity region of the SISO-TWRC.

Similarly to the previous subsection, we also study the impact of the collinear-
ity between the channels, that can be measured through the squared cosine of
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Fig. 5. Power allocation of the 4x2 RF-TWRC with a SNR of 10 dB. Note that only
a subset of the boundary rate-tuples are achieved when both nodes are simultaneously
transmitting at maximum power. Moreover, there is at least one node transmitting at
maximum power at each boundary point.

the angle formed between them, ρ, that we compute using the Matlab function
subspace(). For the convenience of the analysis, we normalize each channel by
its own 2-norm. Fig. 6 shows the capacity of the RF-TWRC for different values
of ρ, when NR = 4, NS = 2 and the SNR is 10 dB. As in the single-antenna case,
the capacity region increases when the angle between the channels decreases.

4.3 Sum-Rate vs. SNR Analysis

In this subsection we evaluate the sum-rate capacity versus the SNR of the RF-
TWRC through Monte Carlo simulation (specifically, we average the results of
100 channel realizations) and compare it with the conventional MIMO-TWRC
and the SISO case, when the first antenna of each terminal is used. The sum-
rate capacity is computed using exhaustive search over α, and we follow the
algorithm proposed in [6] for the conventional MIMO-TWRC. Thus, we consider
single antenna nodes, i.e., NS = 1, and no power optimization, i.e, p1 = p2 = P .
Fig. 7 shows the sum-rate capacity when the relay is equipped with NR = 4
antennas. We observe that the RF-TWRC and the conventional MIMO-TWRC
perform closely, as well as the enlargement in the sum-rate capacity with respect
to the SISO case.
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Fig. 6. Capacity region of the 4x2 RF-TWRC with a SNR of 10 dB, and different
values of ρ. As ρ increases, the channels tend to be collinear and the capacity region
increases.

Fig. 7. Sum-rate capacity through Monte Carlo simulation (specifically, we average the
results of 100 channel realizations) for the TWRC channel with NR = 4 and NS = 1,
when no power optimization is performed.



Analog Beamforming in the Two-Way Multi-antenna Relay Channel 15

5 Conclusions

RF-MIMO transceivers that apply beamforming in the analog domain are of
practical interest due to the reduced system size, cost and power consumption
in comparison with the conventional MIMO architectures. In this paper we have
studied a basic TWRC-AF, when the two nodes and the relay are RF-MIMO
terminals. Our main contribution has been to show that the optimal beamform-
ing vectors and the power allocation can be efficiently computed using convex
optimization techniques, through an iterative algorithm based on a bisection
method. We have also shown that the capacity gap between analog beamform-
ing and conventional MIMO schemes, when the source nodes are single antenna
terminals and no power optimization is performed, goes towards 0 as the corre-
lation coefficient between the channels increases.

A Appendix I

Suppose that the optimal solution of (24), A
(∗)
r , has rank r > 1. If there exists

an equivalent rank-one solution, the following must hold

Tr
(

R1Ãr

)

= Tr
(

R1A
(∗)
r

)

, (26)

Tr
(

R2Ãr

)

= Tr
(

R2A
(∗)
r

)

,

Tr
(

Ãr

)

= Tr
(

A(∗)
r

)

,

where Ãr is a rank-one matrix. Through the matrix decomposition theorem for
Hermitian matrices [13], [14]; given the Hermitian matrices R1 and R2, there

exists a decomposition of A
(∗)
r , A

(∗)
r =

∑r
k=1 a

(k)
r

(

a
(k)
r

)H

, such that,

Tr
(

R1Ã
(k)
r

)

= Tr
(

R1A
(∗)
r

)

, (27)

Tr
(

R2Ã
(k)
r

)

= Tr
(

R2A
(∗)
r

)

,

for all k = 1, . . . , r; where Ã
(k)
r = ra

(k)
r

(

a
(k)
r

)H

is a rank-one matrix. Thus, there

exist r rank-one matrices that satisfy the first two conditions in (26). Taking into

account that the trace of A
(∗)
r and Ã

(k)
r are, respectively, given by

Tr
(

A(∗)
r

)

=

r∑

k=1

∥
∥
∥a(k)r

∥
∥
∥

2

, (28)

Tr
(

Ã(k)
r

)

= r
∥
∥
∥a(k)r

∥
∥
∥

2

,

and assuming without loss of generality,
∥
∥
∥a

(1)
r

∥
∥
∥

2

≥
∥
∥
∥a

(2)
r

∥
∥
∥

2

≥ . . . ≥
∥
∥
∥a

(r)
r

∥
∥
∥

2

; it

follows that
Tr

(

A(∗)
r

)

≥ Tr
(

Ã(r)
r

)

. (29)
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On the other hand, as A
(∗)
r is an optimal solution of (24), the following must

hold
Tr

(

A(∗)
r

)

≤ Tr
(

Ã(r)
r

)

. (30)

Thus, to satisfy (29) and (30), both traces must be equal, i.e.,

Tr
(

A(∗)
r

)

= Tr
(

Ã(r)
r

)

. (31)

Therefore, the rank-one matrix Ã
(r)
r is also optimal and equivalent to A

(∗)
r .

Similarly, suppose that the optimal solution of (24), A
(∗)
t , has rank r > 1. If

there exists an equivalent rank-one solution, the following must hold

Tr
(

R∗
1Ãt

)

= Tr
(

R∗
1A

(∗)
t

)

, (32)

Tr
(

R∗
2Ãt

)

= Tr
(

R∗
2A

(∗)
t

)

,

Tr
(

Ãt

)

= Tr
(

A
(∗)
t

)

,

where Ãt is a rank-one matrix. The above conditions are equivalent to (26),
and the same arguments can be invoked to prove the existence of an optimal
rank-one matrix.
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