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Abstract. The purpose of this paper is to predict people's future locations or 
when they will be at given locations. These predictions support proactive, 
context-aware and social applications. Markov models have been shown to be 
effective predictors of someone's next location [1]. This paper incorporates 
temporal information in order to predict future locations or the times when 
someone will be at a given location. Previous models use sequences of location 
symbols and apply Markov-based algorithms to predict the next location 
symbol. In our model, we embed temporal information within the sequence of 
location symbols.  To predict a future location, we use the temporal information 
as the previous state (or context) in the Markov model to predict the location 
that is most likely at that given time. To predict when someone will be at a 
location, we use the location as the context and predict the time(s) the person 
will be at that location. The model produces up to 91% accuracy for predicting 
locations, and less than 10% accuracy for predicting times.  We show that 
prediction of location and prediction of time are two very different problems, 
because the number of predictions produced by the Markov model differ greatly 
between the two variables. A heuristic algorithm is proposed which 
incorporates  additional context to improve predictions of future times to 43%.  

Keywords: location-prediction; time-prediction.  

1 Introduction  

One of the goals of ubiquitous computing is context-awareness, enabling our devices 
to become our invisible assistants instead of one more device to be managed.  Our 
proactive devices need to “infer the intent of the user” [2].  Knowing the location of a 
device (and therefore the location of the owner) contributes to knowing the context 
and the activity of the user.  The ability to predict the location of the user can support 
context-aware applications such as assistive devices, reminder systems, social 
networking applications, and recommender systems.   

The ability to predict when someone will be at a given location can also support 
context-awareness.  This knowledge can help friends rendezvous or coworkers meet.  
It can detect anomalies, for example, sending an alert after discovering that someone 
did not arrive when expected.  Collaboration between co-workers can be coordinated 
when one knows the temporal routines of the other. 



 When Will You Be at the Office? Predicting Future Locations and Times 157 

 

This paper examines how to predict future locations, such as where someone will be at 
a given time.  In addition, we examine how to predict future times, such as when 
someone will be at a given location.  We embed temporal information into location 
sequences and begin by using a Markov model to predict symbols in the sequence.  We 
then improve upon the Markov temporal predictions with a heuristic model which uses 
more context than is available in the Markov model.  

Our experiments were run on data collected from PDAs which were toted by freshman 
on the UCSD campus in 2002 [3].  We parsed the data using two levels of temporal 
granularity: 1-minute timestamps and 10-minute timestamps.  One-minute timestamps 
reflect movement, while the 10-minute granularity focuses on our significant locations or 
destinations. The experimental results show that a first-order Markov model with fallback 
can predict future locations with an accuracy of up to 91% for the 10-minute timestamps 
and 85% for the 1-minute timeslots. 

Predictions of future times, such as when someone will be at a given location, are not 
as successful.  Experimental results with the same data return a prediction accuracy of 
less than 10% unless the model tests against all of the predictions returned, both good and 
bad, which often (85% of the time) covers the entire 24-hour day.  A heuristic algorithm 
is then used which can incorporate further context, such as a time and/or location that 
was observed earlier in the day.  The heuristic algorithm improves the prediction of 
future times up to 43% accuracy.    

The remainder of this paper is organized as follows.  Section 2 discusses several 
applications for location and time predictions.  Section 3 reviews related work in 
predicting next locations and/or future times.  Section 4 reviews the Markov Model.  
Section 5 contains the details of the data, the experiments using both the Markov model 
and the heuristic model, and the results.  Section 6 summarizes and concludes the paper. 

2 Applications 

Location prediction can inform many types of proactive, context-aware applications.  For 
a single user, location prediction can provide reminders and recommendations.  When 
predictions are shared with others, social networking can be enhanced, assistive support 
can be given, resources can be reserved and advertising can be targeted.  This section 
discusses each of these applications in further detail. 

For a single user, location prediction can be used for reminders and recommendations.  
A simple example is a reminder to pack up library books in the morning on a day you are 
expected to go past the library.  The Magitti Recommendation System [4] remembers its 
owner’s and other’s past activities to recommend activities that the owner may enjoy at 
her current location.  With predictive capability, a recommendation system such as 
Magitti could additionally recommend activities for future locations and remind one what 
to bring. 

Predictive, proactive devices can provide ‘cognitive assistance’ [5] to those who may 
need help due to mental disability, aging or simple distraction.  Predictions can be used to 
detect anomalies, such as when a user deviates from the expected path or routine [6].  
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The “Opportunity Knocks” system [5] tracks a user as he rides the bus home to his 
destination.  If he accidentally boards the wrong bus, or gets off at the wrong stop, the 
system notices the discrepancy, politely ‘knocks’ to alert the user, and directs him on 
where to go to catch the correct bus.  The current implementation of the system asks the 
user to identify his destination before he boards the bus.  With predictive ability, the 
application could either predict the user’s final destination or suggest a reduced set of 
likely destinations for the user to select. 

Sharing predictions with a caregiver can promote independence.  In [7], Chang, Liu 
and Wang developed a social networking system to assist people with mental illness.  
The system includes alarms for situations where the user does not arrive at her expected 
destination at the expected time or if she deviates from her expected path home.  
Predictions of future destinations could inform assistive technology applications such as 
these. 

Social networking can also be enhanced using predictions.  When predictions are 
shared, a friend can determine when to ‘run-into’ or serendipitously rendezvous with 
someone (or avoid them).  Common destinations could be used for social match-making 
[8].  Merchants could use predictions to target advertising, perhaps offering a coupon to 
lure you to a different restaurant for lunch than your usual stop. 

Privacy can be supported by location-prediction if it replaces tracking.  For example, a 
corporation that tracks employees in order to find the closest technician in case of a 
problem can conceivably use location-prediction instead to produce a list of technicians 
who are likely to be nearby. 

Ashbrook and Starner, in [9], suggest several multiple-user applications of location 
information in addition to those already mentioned.  One application is the exchange of 
favors, such as errands that someone else could possibly do in your place.  Another 
application could support coordinating a meeting of several people. 

Computer-supported-collaborative-work (CSCW) is an important area of research, 
especially with the trend toward remote work.  When co-workers are co-located, they 
learn each other’s routines and availability.  This ambient information gets lost when 
workers are in different locations.  Begole, Tang and Hill [10] developed algorithms to 
predict when office workers would be online, indicating that they were in the office and 
available for communication.  This is an application of predicting time, such as when 
someone arrives in the office in the morning or returns from lunch. 

3 Related Work 

Prediction of the next cell in a sequence of locations has been investigated in the 
networking and communications arenas in order to improve resource reservation and 
quality of service [11-17].  These efforts focus on predicting the next cell and do not 
concern locations that will occur further out into the future.  Smart Homes predict in 
order to reduce paging messages and allocate resources, such as light or heat in the next 
room the occupant will enter [18-21]. These experiments use a limited location space and 
are domain-dependent in that they can use knowledge of the geometry of the network or 
the home in order to constraint and improve the algorithm.  In addition, these works can 
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assume continuous location updates.  The inhabitants of a Smart Home do not leave the 
kitchen and appear in the bedroom without walking down the hallway. 

In [22], Zeibart et al. successfully predict driving destinations given a partially 
traveled route.   Our goal of pedestrian destination prediction is similar. However, we 
cannot assume that location updates are continuous in time.  Locative devices, such as 
our cell phones, will occasionally be turned off, get left behind or enter areas where 
location systems do not have coverage, such as GPS ‘urban canyons.’  Applications such 
as Facebook [23] and Twitter [24] rely on user updates, which mean that there will be 
significant time lapses between location updates.  In addition, to support privacy 
concerns, any location-logging application must allow the user to delete records or stop 
recording if the user desires [25-27].     

The authors of [28] use a combination of a Markov model and a heuristic model to 
predict the number of users at each base station in a cellular network.  They refer to the 
single best prediction returned as the ‘hard decision’ and the set of all possible predicted 
locations as the ‘soft decision.’  In our work on predicting future times, we also consider 
hard versus soft decisions.   

4 Markov Models for Prediction 

Popular data-compression algorithms, such as Lempel-Ziv (used in PKZIP and gzip), 
use probabilistic models based on Markov theory.  These algorithms use historical 
data to predict the next symbol in a sequence.  When compressing, these algorithms 
use the least number of bits to encode the most predicted symbols or sequences of 
symbols in order to reduce the size of the output. These algorithms can also be applied 
to prediction. Begleiter et al. applied several variable-order Markov models to 
prediction tasks [29].  One of their test applications was the prediction of music, 
which was of interest to us because the representation of music includes notes, their 
starting times and durations, which is similar to the temporal information we embed in 
our location sequences.  They achieved good results with the Prediction-by-Partial-
Match (PPM) algorithm, which is the model we chose to apply to our problem.  One 
advantage of the PPM algorithm is that it falls back to lower-orders automatically, 
which incorporates the findings of Song et al., that a low-order Markov model with 
fallback was the best predictor for location sequences [1].  Cleary et al. provide an 
excellent tutorial on using the PPM model for prediction in [30].   

5 Method 

This section of the paper describes the raw data used, the pre-processing steps, 
modifications made to the Markov model, and the implementation of the heuristic 
model. 

5.1 Location Using 802.11 Access Points 

IEEE 802.11 access points can be used as location beacons [31-33].  They are 
ubiquitous in urban and suburban areas and many mobile devices include built-in 
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IEEE 802.11 wireless capability, making IEEE 802.11 an inexpensive location-
determining technology.  Currently, our requirement is room-level or building-level 
location granularity, which is well supported by available IEEE 802.11-based location 
systems.  In this project, we use the Access Point ID as the location label.  We do not 
take the significant step of converting the access point ID into a useful place name, 
which in itself is a difficult problem [34, 35]. 

As part of the Wireless Topology Discovery (WTD) project at UCSD, researchers 
issued PDAs to 300 freshmen and collected WiFi access traces  [3].  The data were 
collected during an 11 week trace period during the fall of 2002.   

While a student's device was powered on, WTD polled the IEEE 802.11 wireless 
status every 20 seconds.  It recorded a timestamp, access point (AP) ID, signal 
strength, whether or not the device was using AC power and whether or not the device 
was associated with the access point.  Access points that were sensed, but not 
associated, were also recorded.  Later, we used the sensed access points to create a list 
of access points that were neighbors of the associated access points and were likely to 
be in close proximity.  

5.2 Preprocessing  

The raw data from the WTD experiment combines all logs from all users into one file.  
Our first step was to divide the raw data into individual files for each user.  Records 
that had the same time and date stamp were compared and the record with the highest 
signal strength was retained and any other records (usually of sensed, non-associated, 
access points) were discarded. Contiguous records were combined, where contiguous 
is defined as records with the same user number, the same access point and where the 
starting time was within one minute of the previous record’s starting time.  (Recall 
that polls are approximately 20 seconds apart.)  The duration of each session was 
calculated and included in the output.  These combined sessions were not allowed to 
run over a one day boundary.  (In reality, there were no sessions over 20 hours long.) 

We wanted two different views of the data.  The first is movement data, which 
represents the information that would be recorded by an always-on mobile device.  
The second is destination data, which represents the locations that a user might 
disclose using a social networking application.  These locations are the significant 
locations in someone’s day.  In this work, significant locations are determined solely 
by a length of stay of at least 10 minutes [36].  In the future, this definition may 
expand  to include recurrence [35].  Throughout the rest of this paper, we label the 
movement data as “MoveLoc” (for “Movement Locations”) and the destination data 
is labeled “SigLoc” (for “Significant Locations”).   

The MoveLoc Dataset. The starting time timestamps in the MoveLoc dataset are 
rounded to the closest preceding minute.  We wanted the MoveLoc dataset to include 
as much movement data as possible, so all sessions, even those with durations of less 
than 20 seconds, were included.  If more than one session occurred in the same one-
minute window, then the session with the longest duration was used for that one-
minute timeslot and the others were discarded.  
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Fig. 1 shows the MoveLoc data for User 3.  The color bar shows that this user 
visited 30 locations over the 10 week recording period.  Time-of-day is along the x-
axis.  One can observe that this user had some regular locations between noon and 
2:00pm, and some of the movement between locations is indicated by the change in 
colors/shades. 

 

Fig. 1. User 3's MoveLoc (1-minute or less) data 

 

Fig. 2. User 3's SigLoc (10-minute) data 

The SigLoc Dataset. The SigLoc dataset is comprised of places where the user spent 
at least 10 minutes.  The first step in creating this view was to remove all sessions 
with durations of less than 10 minutes.  The starting times of the remaining sessions 
were rounded down to the closest 10 minutes.  The SigLoc data for User 3 is shown in 
Fig. 2. One can observe that the number of locations dropped from 30 to 20 and the 
transitions between locations have been removed.  (Please note that the colors or 
shades assigned to various locations are not the same for the two figures.) 
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Finally, the MoveLoc and SigLoc data were then stored in two formats: 16-bit 
symbols for the Markov model and a human-readable form for the SEQ model. 

5.3 PPM for Predicting Location 

A PPM (Prediction-by-Partial-Match) implementation of a variable-order Markov 
Model was used as the basis for the prediction model. Source code from [37] was 
used as the basis of our implementation. Due to the large number of possible 
timeslots, the data were pre-processed to encode times and locations as 16-bit 
symbols, with one range for times and another for locations.  It is not necessary to 
restrict the symbols to a given range; however it is useful for validating the results 
returned by the model.   

When using the model to prediction future locations, the data are represented as a 
sequence of (time, location) pairs.  Each user’s data are in a separate file, which has 
the format: ݀ܽ݁ݐ; ሼ݁݉݅ݐ଴, ,଴݊݋݅ݐܽܿ݋݈ ,ଵ݁݉݅ݐ ,ଵ݊݋݅ݐܽܿ݋݈ … ,௡݁݉݅ݐ    ௡ሽ݊݋݅ݐܽܿ݋݈
Ten weeks of data are partitioned into test sets, or runs, where each run consists of 
five weeks of training data and one week of testing data, based on earlier tests [38].  
For example, one run could consist of User 3’s data from weeks 2 – 6 for training and 
User 3’s data from week 7 for testing.   

The model is trained for the first order.  (A similar experiment using third order is 
reported in [38]).  Once the model is trained on five weeks of data, the following 
week is used to test the model.  The test data are parsed into individual (time, 
location) pairs.  For each pair, the time is fed into the trained model as the input 
(context), and the model returns a list of predicted locations with their probabilities, 
sorted with the highest probability predictions at the top of the list.  The model then 
checks each of the returned predictions against the test location, which is the correct 
answer.  The prediction(s) with the highest probability are checked first (and labeled 
“Best” in the figures of results.)  The lower probability predictions are checked next 
(and are included in the “all predictions” category in Fig. 3). 

If none of the returned predictions are correct, the neighboring access points of the 
incorrect predictions are checked.  Neighboring access points were determined during 
preprocessing when a list is created of all of the access points which were sensed at 
the same time as each associated access point.  These access points are likely to be in 
the same building.  For example, if, in our test, the correct answer was access point 
#72, and the Markov model returned a prediction of access point #63, the model 
would check to see if access point #63 was a neighbor of #72 and likely to be in the 
same proximity. 

If the input time was not found at the first order, the PPM algorithm falls back to 
the 0th order and returns a list of the most likely locations, regardless of the input time.  
This means that the model has no information about the time that was entered as the 
context, so it simply returns the most popular locations.   
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The results of using the Markov model to predict future locations are shown in  
Fig. 3. The lowest results are for the MoveLoc dataset which uses 1-minute timeslots.  
Using 1-minute timeslots increases the number of states in the Markov model up to 
tenfold compared to 10-minute timeslots.  This state explosion increases the number 
of possible predictions and decreases the probability for each, leading to worse 
results.  For example, if the user arrives at location x at 8:00am and the next day 
arrives at 8:01am, these times are recorded as separate states in the Markov model, 
which reduces their individual probabilities.  In the SigLoc dataset, which uses wider 
10-minute windows, these two records fall into  the same 8:00am state, increasing its 
count, and therefore its probability.  The increased size of the timeslot compensates 
for variability in arrival times by using a longer window of time that is considered to 
be a correct prediction.   

The best results, 91% for the SigLoc data, are achieved when all of the returned 
predictions are used, regardless of their probabilities.  The median number of 
predictions returned is 2, with a maximum of 13 for the MoveLoc data and 9 for the 
SigLoc data.   

 

 

Fig. 3. Predicting Future Locations using the Markov Model 

5.4 PPM for Predicting Time 

We now turn to the converse problem.  Instead of asking questions about someone’s 
future location, such as “Where will Bob be at 10:00am?” we ask questions about 
when someone will be at a given location, such as, “When will Bob be in his office?”   

We began with the identical Markov Model.  Instead of training on data that was 
formatted as a sequence of times and their corresponding locations,  ሼ݁݉݅ݐ଴, ,଴݊݋݅ݐܽܿ݋݈ ,ଵ݁݉݅ݐ ,ଵ݊݋݅ݐܽܿ݋݈ … ,௡݁݉݅ݐ  ,௡ሽ݊݋݅ݐܽܿ݋݈
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the sequences are rearranged to form (location, time) pairs: ሼ݈݊݋݅ݐܽܿ݋଴, ,଴݁݉݅ݐ ,ଵ݊݋݅ݐܽܿ݋݈ ,ଵ݁݉݅ݐ … ,௡݊݋݅ݐܽܿ݋݈ ,௡݁݉݅ݐ ሽ 

where ݈݊݋݅ݐܽܿ݋୲ is the context, or the corresponding location, for ݁݉݅ݐ୲. 
The model was trained and tested with the same runs of five-weeks of training data 

with a corresponding week of testing data. 
Fallback was not used in this model because it does not make logical sense.  In the 

location application of the model, which is answering the ‘where’ question, it may 
make sense for an application to fall back to the most common location.   For the 
‘when’ question, such as “When will Bob be in Hawaii,” it does not make sense for 
the model to respond, “I have no data for ‘Hawaii,’ but the most probable time is 
10:00am, so I will predict that Bob will be in Hawaii at 10:00am.  In such cases, the 
model should refuse to predict. 

If none of the time predictions returned were correct, they were then checked to see 
if they were within 10 or 20 minutes of the correct time.  This corresponds to the 
checking of neighboring access points that was done for location prediction.   

The results for using the Markov model to predict the time someone will be at a 
given location are shown in Fig. 4. Initial results are dismal: less than 10% of the best 
predictions are correct for both datasets.  Results improve slightly by allowing 
predictions to be within 10 or 20 minutes of the correct time.   

The high value achieved by using all of the predictions returned comes at a price – 
the returned predictions cover all times of the day!  In other words, the model is 
asked, “When will Bob be at location x?” and the model responds, “Sometime today 
between midnight last night and midnight tonight.”  This result is useless for an 
application.  

 

 

Fig. 4. Predicting Times at Future Locations using the Markov Model 
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apparent when we look at the quantity of predictions returned.  The upper bound on 
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1,440 for the 1-minute, MoveLoc data.  The maximum number of locations varies by 
user. Table 1 shows the median number of unique locations and times in the training 
files.  The number of location states is much less than the number of temporal states; 
hence, the model is more likely to get the location correct.  The numbers of 
predictions returned listed in Table 2 also reflect this discrepancy.  The number of 
predictions returned for location prediction is much less than the number of 
predictions returned for time prediction.  

Table 1. Average Number of Unique Locations and Times for each Training File 

Dataset Ave. # Locations / Training File Ave. # Times / Training File 
MoveLoc 18 646 
SigLoc 5 68 

Table 2. Number of Predictions Returned for each Test 

DataSet Question Median # Predictions returned Max. # Predictions returned 
MoveLoc Where? 2 13 
SigLoc Where? 2 9 

MoveLoc When? 1439 1440 
SigLoc When? 144 144 

 
Recall that the model returns all of the predictions found for a given context.  The 

results for “all predictions” in Fig. 4 use all of the predictions returned, which is most 
cases covers the entire day.  Consider Fig. 5, which graphically shows the set of 
predictions returned for a hypothetical query asking when Alice will be at the office.  
The graph shows that Alice usually arrives around 9:00am, goes to lunch around 
noon, and leaves for the day at 5:00pm.   The highest probability prediction is the 
single prediction at 9:00am, which corresponds to the lowest results in Fig. 4.  This 
type of result is useful for applications which need to know the singular times of the 
day when someone is going to be in a given location.  Using all of the reported 
predictions corresponds to the best results from Fig. 4.  These results might be useful 
to an application that needs to know all of the possible times that Alice might be in 
her office.  However, if Alice left her mobile device in the office overnight one time, 
these results would always cover the entire day because there would be at least one 
count for that location at every possible timestamp. 

Thresholds. Fig. 5 shows some thresholds that might be used to determine a subset of 
predictions to be considered.  For example, the threshold at 90% would return the 
prediction that Alice would be likely to be in the office from 8:30am until noon and 
from 1:10pm until 4:40pm.  This broader prediction could be more useful to an 
application than the single prediction of 9:00am that is returned with a tighter 
threshold of 0% (which returns the highest probability predictions only). 
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Fig. 5. Thresholds for a Hypothetical set of Predictions 

Thresholding was then implemented in the model.  Recall that the model returns a list 
of predictions, each labeled with its probability.  The predictions are sorted in order of 
probability, from the highest probability to the lowest.  To invoke a threshold, the top 
predictions are checked for correctness until their cumulative probability surpasses the 
probability threshold.  For example, a threshold of 10% uses the top predictions until 
their cumulative probability is greater than 10%.  A threshold of 0% uses only the most 
likely prediction, which is the same as the ‘best’ predictions in the Fig. 4.  A threshold 
of 100% uses all of the predictions returned, which is the equivalent of the using all of 
the probabilities, again as shown in Fig. 4. Fig. 6 and Fig. 7 illustrate the results of using 
a probability threshold for the MoveLoc and SigLoc datasets.  

Observing the graphs in Fig. 6 and Fig. 7, one can see there is no apparent optimal 
threshold value.  The value of the threshold is dependent upon the goals of the 
application.   One application may want only predictions with a high probability while 
another application may want to present all of the possibilities to the user.  Imprecise 
knowledge of user intent may still be useful information [2].   

Currently, we do not consider the predictions themselves, only their probabilities.  
In the future, we may consider combining contiguous predictions into a window of 
time.  For example, if the returned predictions include {8:00am, 8:10am, 
8:20am,…,10:00am}, they could be combined into one prediction of 8:00am – 
10:00am.  Consideration needs to be made about how to compute the resulting 
probability when contiguous predictions are combined.  If Bob only occasionally 
arrives at the office at 8:00am but he is almost always there at 9:00am, how is that 
information presented to the user?  Should the less-likely 8:00am prediction be 
included in the results presented to the user?  A proper visualization of the results can 
illustrate these probabilities, either with a temperature graph which uses different 
colors for different probabilities or a graph similar to Fig. 5.   

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0

Pr
ob

ab
ili

ty
 o

f i
nd

iv
id

ua
l 

pr
ed

ic
tio

n

Time of Day

Probability

Top 0% (Best) 

Top 10%

Top 98%

Top 90%



 When Will You Be at the Office? Predicting Future Locations and Times 167 

 

 

Fig. 6. Applying a Probability Threshold to Time Predictions for the MoveLoc (1-minute) data 

  

Fig. 7. Applying a Probability Threshold to Time Predictions for the SigLoc (10-minute) data 

In addition, when we consider only the probabilities, we are losing some 
information about the predictions.  The PPM model stores counts of the number of 
times it encounters each pattern in the sequence.  Currently, we are testing only 
against the resulting probabilities and not the counts themselves.  The counts could be 
used to develop a confidence measure about the predictions.  The model can return 
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the same probability for two different states, even if it has only one occurrence of the 
first state and several hundred for the second state.  Consider the hypothetical 
situation where the data has recorded Bob at the mall once at 10:00am, but over the 
course of 10 weeks, has recorded Bob at the office at all different times between 
8:00am and 5:00pm.  If the Markov model is queried as to when Bob will be at the 
mall, it will return a prediction of 10:00am with a probability of 100%.  If the same 
model is queried as to when Bob will be in the office, it will return possibly hundreds 
of predicted times, and each could have a probability of less than 1%.  At first glance, 
it could appear that the Markov model is more confident that Bob will be at the mall 
at 10:00am, and that conclusion is erroneous. Displaying confidence increases the 
user’s trust in an application [39].  The counts calculated by the model can be used to 
determine confidence. 

5.5 The Heuristic Model: Traversing the Sequence 

Even though the Markov model can be used to predict future times, it is not a suitable 
solution. Too many predictions are returned and there is a loss of contextual 
information in statistical models such as the Markov model that are based on counting 
events. We therefore developed an algorithm which retains more contextual 
information. We call this model ‘Traversing the Sequence’ or the SEQ model, 
because it keeps the entire sequence of times and locations intact and, given 
contextual information such as a previous time or location, it traverse the sequences to 
predict a future time at a given location. 

The SEQ model represents the user’s day as a sequence of (arrival time, location) 
pairs.  Note that this is a different representation than the Markov model.  In the 
Markov model, for example, if a user spends 30 minutes in one location, the result is 
three records in the SigLoc dataset, one for each 10-minute timeslot.  In the SEQ 
model, this location is represented as one pair with the arrival time and the location 
and no duration information. 

The sequence model is an unsupervised learning model, in that the model is not 
trained on historical data that are labeled with the correct answers.  The SEQ model 
stores the historical data and uses it without training to determine future predictions.   

Let us illustrate with a simple example.  Our user, Bob, usually goes to a coffee 
shop at 8:00am, arrives at the office at 9:00am and leaves to go home at 5:00pm.  
Twice during the last ten days, he skipped the coffee shop and arrived at the office at 
8:00am in order to prepare for a 9:00am meeting at another location. 

The SEQ model stores these daily sequences without modification.  When the 
model is queried as to when Bob will arrive at the office, it searches each of the 
sequences to find when Bob arrived at the office and finds that on 8 days he arrived at 
9:00am and twice, he arrived at 8:00am. The model would return two predictions: 
9:00am with an 80% probability and 8:00am with a 20% probability. 
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Advantages of the SEQ Model. Because the SEQ model retains historical 
information, queries with additional context can be asked, such as, “When will Bob be 
in the office if I just saw him at the coffee shop?”  In this case, the model would not 
search any daily sequences that did not include the coffee shop, and would return a 
prediction that Bob would arrive at the office at 9:00am with 100% probability.  The 
model can be further expanded to include an earlier time as context (e.g. “When will 
Bob be at the office if I saw him on the road at 8:15?”) or both an earlier time and 
location.   

The model can also be expanded to use other forms of context.  If the sequences 
include a day-of-the-week label, the model can search only the sequences that fall on 
a particular day of the week or a subset of days (e.g. “When will Bob be in the office 
on the weekend?”)   

The SEQ model stays current without retraining. The model can be configured to 
use only the latest data and ignore outdated sequences.  The Markov model used 
previously requires periodic retraining to incorporate recent data. 

The model will refuse to predict if it is given context that it cannot find in a 
sequence.  For example, it will refuse to predict if it is queried about a location it has 
never seen (e.g. “When will Bob be in Hawaii?”) or a previous context that has not 
been encountered (e.g. “It’s 7:00pm, when will Bob be in the office today?”) 

The SEQ model Experiment. The same raw user data that were used for the Markov 
model were used for the SEQ model.  Instead of using 16-bit symbols to encode time 
and location as was done for the Markov model, the data for the SEQ model are 
stored in human-readable, comma-delimited files. The SEQ model was written in 
Python because of its rapid-development support and ease of handling text strings. 

The model was tested with different types of previous context, which we refer to as 
‘order’.  In the 0th order test, the only input is the location.  The model is queried as to 
when the user will be at the test location.   This location is referred to as the quest 
location.  A previous time can be given as additional context; this is noted as ‘1-time’ 
order.  A previous location can also be used as additional context; this is noted as ‘1-
loc’ in the model.  And finally, both a previous time and location can be used as 
additional context, creating the second order. 

The additional historical context, such as a previous time, place or both, is used to 
truncate the daily sequences searched.  If a previous time and/or location is given, the 
index of that time and/or location is used as the left edge of the sequence to be 
searched for the location in question. The pseudo-code for our SEQ model if given 
additional context of time (context_time) is listed in Fig. 8. 

 
SEQ Model for Predicting WHEN Someone Will Arrive at the Quest_Location  

(“ When will the user be at the quest_location is she was observed at context_time 
earlier that day?”) 
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Reset counters. 
For each daily sequence: 
Is the quest_location in the sequence? 
If not, increment the count for "Never" and continue onto 
the next sequence. 
Search the sequence to find the time closest to (equal or 
earlier than) the context_time. 
If the context time is not found,   increment the count 
for "Never" and continue onto the next sequence. 
The location of the context_time becomes the left border 
of the sub-sequence to be searched. 
Search the sub-sequence to find the quest_location. 
If not found, increment the count for "Never" and 
continue onto the next sequence. 
The location of the quest_location becomes the right 
border of the sub-sequence to be searched. 
Search the sub-sequence to find the context_location. 
If not found, increment the count for "Never" and 
continue onto the next sequence. 
Use the time corresponding to the quest_location as the 
predicted time and add it to the counters. 
Return the counters. 

Fig. 8. Pseudo-code for the SEQ Model 

Results for the MoveLoc (1-minute) and SigLoc (10-minute) datasets are shown in 
Fig. 9 and Fig. 10, respectively.  The prediction accuracy has improved over the 
Markov model.  Allowing for predictions within 10 or 20 minutes of the correct 
testing time yields an even higher predictive accuracy. 

There are a few causes for the improvement in prediction.  First, the SEQ model 
predicts only arrival times.   The Markov model indirectly encodes duration, in that 
records are repeated in the sequence until the user changes location.   The Markov 
data, therefore, has a chain of multiple records if a user is at a particular location for a 
length of time.  Since the length of the user’s stay may vary, the tests on the records at 
the end of the chain may produce wrong predictions, reducing the average predictive 
accuracy.  (For example, predictions about 5:00pm, when the last arrival time 
recorded was at 2:00pm, would be incorrect in the current SEQ model.) 

The predictions worsen with additional context (the 1loc, 1time and 2 areas of the 
graphs).  There are fewer sequences which match the given context.  In some cases, 
there are no historical sequences that match the additional context and no predictions 
are made. 

The SEQ model uses a smaller dataset of arrival times and locations instead of 
polled timeslots and locations and returns fewer predictions.  This reduction in the 
number of states improves its performance over the Markov model.   
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Fig. 9. Results of the SEQ Model on the MoveLoc (1-minute) data 

 

Fig. 10. Results of the SEQ Model on the SigLoc (10-minute) data 
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6 Summary and Conclusion 

Our goal is to develop models for predicting people’s future locations and times.  This 
problem is different than previous works because we are not limiting the predictions 
to the prediction of the next location or time, but instead predicting locations and 
times out into the future. 

We used data collected from PDAs, and used IEEE 802.11 access point IDs for 
determining location.  We represented the data in two formats: one which represented 
moving data and used 1-minute timeslots, and one which represented destinations or 
significant locations and used 10-minute timeslots. 

We found that a Markov model with fallback, such as PPM, can predict future 
locations with accuracy up to 91%.  However, the same implementation failed to 
predict future times.  A heuristic model, called the SEQ model, which traversed daily 
sequences of time and location data, improved prediction of time up to 77%.  The 
heuristic model also supports additional context, such as previous times and/or 
locations.  It can easily be expanded to support other contextual information such as 
day-of-the-week, or any other information that can be appended to the daily 
sequences. 

We have found that prediction of time is a more difficult problem than prediction 
of location due to the large number of possible states.  Sequence predictors that are 
effective for predicting next or future locations are not suited for predicting future 
times. 

6.1 Future Work 

There are many areas for future improvements in this work.  The Hidden Markov 
Model (HMM) may improve the results of location prediction, as the hidden states 
could compensate for the unobserved locations between destinations or for situations 
where two access point labels identify the same location.  Visualization of the 
returned information should be done to impart not just the predicted time or location 
to the user, but also the relative probabilities.  Confidence measures should also be 
included in the visualization.  Visualization becomes more complex when predictions 
from multiple users are combined. 

The SEQ model currently models only arrival time at each location.  It can be 
expanded to include duration information.  Duration information would support more 
useful applications.  Prediction of arrival times tells when someone will arrive, but it 
may be more useful to know how long someone will be at a given location.  Previous 
work in learning relative time between events was done in [40]. 

6.2 Conclusion 

This paper is about predicting the future, specifically when someone will be at a given 
location, or where they will be at a given time. Prediction is a sub-case of context-
awareness.  In this case, we are not attempting to determine someone's current context 
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or activities, but instead, we take a first step towards predicting future context by 
predicting future locations or future times at a given location. 

We see many applications for such predictions, especially when they are shared 
among friends, co-workers or care-givers.  These predictions can replace the ambient 
knowledge of our friends and co-workers routines that we pick up automatically if we 
live or work within close proximity of them.  This information can help care-givers 
remotely and unobtrusively monitor their clients, help friends meet, assist co-workers 
with contacting others. Hopefully, this work is one small contribution towards the 
invisible, proactive, assistive devices that are part of the vision of pervasive and 
ubiquitous computing. 

Acknowledgements. The authors would like to thank the anonymous reviewers for 
their insightful and helpful suggestions.  
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