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Abstract. This paper proposes an algorithm to identify groups of users
connected to a mobile ad hoc network that remain stable over time. Sev-
eral similar algorithms have been proposed to manage mobility either by
predicting disconnections or by identifying groups of peers stable over
time. They all rely on information such as GPS, signal strength or routes
and result in message overhead. The algorithm proposed here uses infor-
mation from the routing layer to detect groups that are stable over time.
This algorithm is fully distributed and creates no message overhead as
the result of using cross-layer information.
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1 Introduction

A MANet, or Mobile Ad Hoc Network, is a network established spontaneously
between mobile terminals with wireless capacities, that do not require preexisting
network infrastructures [5]. It therefore allows people in geographical proximity
to collaborate without paying for network infrastructures, or when infrastruc-
tures are absent or down.

In this paper, we present an algorithm to build groups of peers stable over
time in order to enable collaboration over a MANet. The proposed algorithm
uses cross-layering information acquired from the routing layer, in our case OLSR
[4]. It does not require specific equipment (such as GPS device), and does not
generate traffic overhead.

This algorithm can be useful as part of CSCW1 applications for MANet. When
collaborative applications users go out of their usual working environment, such
as researchers meeting at a conference, or kids on a field trip, they want to be
able to work as they usually would. and keep sharing files, doing collaborative
edition, editing wiki, etc. This is made easy if they use MANets because they do
not require any preexisting network infrastructure.

However, when using MANets, mobility of terminals may cause network parti-
tion, when the nodes initially connected split in connected groups isolated from

1 Computer Supported Cooperative Work.
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each other. This creates new issues for collaborative users, and especially for
collaborative services, such as:

– A peer P has been elected to provide a service such as hosting an index of
all the documents available in the network. This way finding a document re-
quires a unique message exchange. What will then happen when the network
is partitioned?

– A user wants to read a document stored on a distant terminal T. Should it be
accessed once and then discarded, in which case the user would not be able
to access it if T disappears, or should it be replicated, creating consistency
issues and additional network traffic?

The proposed algorithm can be coupled with other algorithms to maintain data
availability and data coherence in a nomadic context: proactive data replica-
tion may then be enforced within the stable groups. More about these other
algorithms is described in [7].

Note that in this proposal, we focus on the use of MANets by pedestrians
gathering in groups to collaborate. This context allows us to make hypothesis
about mobility and traffic. Traffic and data accesses are human generated and
therefore sporadic (as opposed to sensors). Groups of users are stable over time
but may split and merge (for example as researchers go from one conference
room to another) and users may come and go.

The proposed stable group building algorithm therefore tries to build stability
over time rather than looking for proximity between terminals, although this
parameter can also be taken into account.

A key issue is that the target terminals for our algorithm are mobile devices.
Such devices are often battery operated and are therefore limited in energy. The
two main sources of energy consumptions in a mobile device are the screen and
the wifi card. The extent of use before having to reload is therefore correlated to
the network load. Hence, any algorithm intended for MANet should try to limit
its communication needs. This is addressed in our proposed algorithm that does
not create message overhead as a result of using cross-layer information.

Several similar algorithms have been proposed to manage mobility either by
predicting disconnections or by identifying groups of peers stable in time. Such
propositions will be surveyed in next section.They all rely on information such
as GPS, signal strength or routes and result in message overhead. The algorithm
proposed here uses information from the routing layer to detect groups that are
stable over time.

The remainder of this paper is organized as follows: we first present existing
solutions and their context of use. We then present our proposal, illustrate it with
a simple example and discuss the choice of a few parameters. In section 4 we
evaluate our algorithm; a validation protocol is presented, and several scenarios
are tested.
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2 Existing Solutions

Several solutions have already been proposed for dealing with mobility. They
can be classified in three categories: those that predict when a partition will
occur; those that detect groups of terminals moving along; and finally those that
create clusters of terminals in dense networks, with no management of terminals
volatility.

These solutions rely on different technologies and techniques: the first one is
the use of absolute coordinates, such as those used by GPS. This is the most
precise assessment but it necessitates that peers exchange information; another
technique is to use relative distances, for example based on signal strength (this
is less precise and allows only to evaluate distance between peers within reach);
another possibility is the use of higher level information, such as the routing
graph or capacities of the terminals, for example the battery level. Some solu-
tions, such as [18] aim at creating clusters of terminals in dense networks. This is
a context where a lot of peers are connected and nodes are grouped by proximity,
for example to produce a hierarchical routing algorithm. While an interesting
approach, this does not consider the partitioning problem and is therefore of
little interest in our context.

Older solutions aimed at creating groups to achieve hierarchical routing and
therefore limit network traffic. In [13], Lin proposes a simple algorithm to build
2-hop wide clusters. Peers broadcast a list of their one-hop neighbours, on one
hop, and the cluster ID is set to the ID of the peer with the smallest identifier
among its neighbours. The stability of the algorithm is evaluated by counting the
number of nodes changing cluster in a 100 ms interval. This solution is clearly
not aimed at detecting human user groups, working together over periods of
several minutes. In [3], Basu proposed a distributed 2-hops clustering algorithm
by computing relative mobility between terminals based on the frequency of
a beacon signal. It aggregates terminals by 2 hops wide clusters, where the
clusterhead has the lower mean relative mobility.

Other works try to predict partition in order to adequately replicate services.
In [15], Su proposes such an algorithm, based on GPS and an absolute dating
system (it comes with GPS devices). Velocity vectors are exchanged and the
duration of a link is computed based on communication range, velocity and po-
sitions, which is then used to predict partitioning. In [8], Hauspie proposes to
detect partitions by computing the ’robustness’ of a path between two nodes.
This is done by checking for redundancy in the routing graph. When the robust-
ness decreases, the communication may be interrupted and a partition occurs.
This solution, if distributed, requires a full reconstruction of the graph, and
would likely cause high traffic overhead. In [6], De Rosa, proposes to predict
partitions and to prevent them: a coordinator centralizes distance information
between nodes, computed by using signal strength. It then predicts future nodes
position, and therefore possible partitions. The coordinator asks nodes to fill
the possible gaps to ensure full connectivity. While the idea of moving peers is
interesting and acceptable in some context such as rescue or military operations,
it does not suit our problem.
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Finally, some proposals sort the nodes in mobility groups. In [16] and [17],
Wang proposes to build groups based on mobility to replicate services in each
group. In [16], two algorithms are proposed to build groups of peers with similar
velocity. The first one, detailed in [17], is centralized, and relies on a server to col-
lect velocity vectors and cluster them. The second algorithm is fully distributed:
every node computes a mean distance to each of its neighbours, and a standard
deviation over time, and uses those criteria to build groups. In [11], Huang pro-
poses to cluster peers based on GPS information. Each terminal broadcasts to
n-hops a list of positions with a timestamp. The peer with the smallest IP ad-
dress among the messages received becomes a zone-master, and organizes nodes
based on the position vector, by computing velocities. Since it is fully distributed,
this solution generates traffic each time the clusters are updated. In [19], Zheng
proposed a distributed clustering algorithm using a positioning device (GPS).
Nodes exchange their positions, and α-stable clusters are constructed, where α
is a probability of keeping the connectivity at t+1 between 2 peers, knowing the
velocity vector and the position of each peer at t. In an α-stable cluster, every
pair of peers is α-stable. While presenting good stability results, this solution
does not evaluate the network overload.

The validation of [3] and [15] assumes a maximum speed of 72km/h. These
solutions are therefore probably meant for vehicular networks. The proposals
[15], [11], [19], and possibly [16] rely on GPS.

Our solution is closer to this third class of algorithm: we postulate that users
are moving in groups and we want to create groups of terminals stable over time.
Our proposal uses cross-layering information, obtained from the routing tables,
and therefore creates no network overhead. We only require a proactive routing
algorithm that maintains the routes, so that we always know which peers are
reachable at any time. In our evaluation we use the OLSR routing algorithm [4].
Our algorithm is fully distributed and does not require the use of a GPS device.
Hence, it should be compared to proposal such as [3], [16] and [8].

3 Proposal for Stable Groups

In this section we introduce our proposal. First of all we present our working
hypotheses, and we propose a definition for the notion of stable group. We then
present the proposed algorithm, both with pseudocode and an example. Our al-
gorithm relies on several parameters: the refreshing rate, the stability threshold,
and the number of tolerated sporadic absences. We see how these values have
been chosen.

3.1 Assumptions

In our proposal, we make the following hypotheses. First of all, we assume pedes-
trian users, moving in groups, that can be modeled with the Reference Point
Group Mobility Model (see section 4.3) [10]. We also assume that communi-
cation are symmetrical, with a maximal range of communication of 100m (the
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maximal range of 802.11b outdoor). Finally, the routing algorithm is proactive
and we use OLSR.

3.2 Stable Group: Definition

We define a stable group as a group of peers able to continuously communicate
over time. In other words, to become stable neighbours at time t, A and B must
have been in contact for at least δp seconds. If they cannot establish contact for
δf seconds, they stop being stable neighbours.

Therefore, we consider that peer A is able to continually communicate with
peer B around time t if:

– B receives all broadcast messages sent by A since t− δp.
– B receives all broadcast message sent by A between t. and t+ δf

If these conditions are true, B is a stable neighbour of A. Since communications
are symmetrical by hypothesis, if B is a stable neighbour of A, A is a stable
neighbour of B.

We define a stable group around peer P as the set G of peers where each pair
of peers in G are stable neighbours of P.

3.3 OLSR

Our work is part of the Transhumance [14] research project, a middleware for
MANet. As designing a routing protocol was not part of the project, we wanted a
solid routing protocol implementation. We settled on OLSR because of its active
community and the availability of the uniK implementation [2].

In our algorithm, we acquire information about which peers are in view by
looking at OLSR routing tables.

OLSR is a proactive routing algorithm for mobile ad hoc networks. Proactive
routing algorithms maintains routes by periodically sending messages to check
if routes still exist, and offers low latency, to the cost of maintaining the routes.
Reactive routing algorithms create routes on demand, by flooding the network.
Both approaches have their strong points and drawbacks and [12] shows that for
sporadic traffic, proactive algorithms are better suited. This clustering algorithm
is a building block for human manned collaborative applications, thus generating
sporadic traffic.

3.4 The Algorithm

Figure 1 presents the pseudocode of our algorithm.
In this algorithm we use a function called getRoutesFromRoutingLayer. It

returns an associative array including all the nodes in view and the number of
hops to reach it.

In a nutshell, our algorithm is a periodic algorithm that behaves in two phases,
in this fashion:
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– Observation phase: when a peer P comes into view, we create a counter,
called Presence Counter, or PC, and set it to 1. Each period, we check if P is
present. If it is, PC is increased (line 28) and when PC gets over a stability
threshold, P rejoins the stable group (l. 34). Else, PC is decreased (l. 25),
and if it reaches 0, we stop observing P (l. 23).
To become part of a stable group, P must be present for at least (stability
threshold) periods, plus the number of periods when it was absent.

– Stability phase: when P is in our stable group, we check at each period if
P is present. If it is, PC increases, up to a second threshold (l. 28), else, PC
is decreased. When PC gets under the stability threshold (l. 35), P gets out
of the stable group.
A number of consecutive sporadic absences are thus tolerated before it is
withdrawn from the group.

3.5 An Example

Before explaining the way our algorithm is parameterized, we present its func-
tioning with an example, where of stable threshold = 5 and maxAb=3. We con-
sider the value associated to the name of a peer in the associative array heardOf
to be its presence counter. In this figure we see the evolution of the presence
counter, PC, associated to peer P by peer A over time and the consequences on
the stable group.

1. at t=0, A had never heard of P.
2. from t=0 to t=2, PC increases.
3. at t=3, P is absent so PC is decreased.
4. from t=4 to t=6 PC increases ; at t=6, P becomes part of peer A’s stable

group. We can see that to become part of a stable group, a peer has to be
more present than absent.

5. from t=6 to t=7, PC increases.
6. at t=8, P is not reachable so its PC is decreased; it stays in the stable group:

a sporadic absence can be tolerated.
7. from t=9 to t= 13, PC is increased to stableThreshold+maxAbs, and then

stabilizes.
8. at t=15, P disappears; its PC is decreased but it stays in the stable group.
9. from t=14 to t=16, PC decreases.
10. at t=18, PC goes below stableThreshold, and so aftermaxAbs, it is withdrawn

from the stable group.

3.6 Algorithm Parameters

In this algorithm, three parameters can be adapted: The refreshing rate, repre-
sented by the PERIOD parameter (lines 1, 42) ; The length of the observation
phase, represented by the stableThreshold parameter (lines 28,34) ; The num-
ber of absences tolerated in the stability phase, represented by the parameter
maxAbs (line 34).

In this section we discuss their significance, and how we chose their values.
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1 PERIOD=2

2 stableThreshold = 120

3 maxAbs = 60

4

5 class Peer :

6 def __init__(self, group, filename):

7 self.group = group

8 self.heardOf =dict()

9 self.stableNeighbourhood=[]

10

11 def updateHeardOf(self, routes) :

12 heardOfSet= set(self.heardOf.keys())

13 routesSet= set(routes.keys())

14 absent = heardOfSet-routesSet

15 stillpresent= routesSet & heardOfSet

16 newcomers = routesSet-heardOfSet

17

18 for p in newcomers :

19 self.heardOf[p]= 1

20

21 for p in absent :

22 if self.heardOf[p] == 1 :

23 del self.heardOf[p]

24 else:

25 self.heardOf[p]= self.heardOf[p] - 1

26

27 for p in stillpresent :

28 if self.heardOf[p]<stableThreshold+maxAbs :

29 self.heardOf[p]=self.heardOf[p]+1

30

31 def buildStableGroup(self):

32 self.stableNeighbourhood=[]

33 for p in self.heardOf.keys():

34 if self.heardOf[p]>stableThreshold :

35 self.stableNeighbourhood.append(p)

36

37 def buildStableGroup(self) :

38 while true:

39 routes = getRoutesFromRoutingLayer()

40 self.updateHeardOf(routes)

41 self.buildStableGroup()

42 sleep(PERIOD)

43

Fig. 1. An algorithm to build stable groups
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Fig. 2. An example

Stable Group Refresh Period. Our algorithm periodically builds a stable
group: it tries to predict which peers will be present between the present time,
and the next time it is executed, based on past experience. This must be done
frequently enough that the peers in the stable groups are always in reach between
two refresh.

Since HELLO messages are sent every 2s, as proposed in the OLRS RFC [4],
the routing tables are refreshed every 2 seconds. Therefore, a smaller period
would not yield more information than a period of 2s. Therefore we decided on
PERIOD SEC=2s, and in this section, we evaluate this choice.

Consider a peer A in our stable group at time t. We would like to bound
the probability that until the next refresh of the group, the peer is actually
reachable. At t+2, the peer must still be seen.

We consider a communication range between rmin = 30m, and rmax = 100m.
The peer velocity is v= 1ms. If two peers are walking in opposite directions,
the distance between them will increase by 2 ∗ period ∗ v = 4m. Therefore, as
illustrated by fig. 3, if the peer is in the grey area at t, we are certain that we
will still see the peer at t+Period. Therefore, to bound the probability that the
peer is still seen at t+period, we compute the probability for the peer to be in
the grey area at t, knowing that it can be seen.

psee at t+2 =
grey area

whole area
=

π ∗ (R− 4v)2

π ∗R2
= (

R − 4v

R
)2

For rmax, psee at t+2 � 92%. For rmin, psee at t+2 � 75%. For a mean value of
r=65, psee at t+2 � 88%.

Note that those values are lower bounds. Even if a peer is in the grey area at
t, it will not automatically be out of reach at t+1 : it depends on its direction
and speed.

Stability Threshold. The stability threshold parameter indicates for how
many periods we expect a peer to be seen before it becomes part of our sta-
ble neighbourhood.



Handling the M in MANet 125

Fig. 3. Bounding the algorithm period Fig. 4. Two groups crossing at
angle a

In the group definition given in section 3.2, this is an approximation of δp, the
number of seconds peers must continuously communicate before becoming stable
neighbours. With our algorithm, two peers become stable neighbours after (sta-
bleThreshold+the number of communication drops) seconds. Therefore, the time
between two peers making contact, and two peers becoming stable neighbours
varies and is equal or superior to stableThreshold.

We want to set this threshold low enough that groups can be quickly formed,
but high enough that our algorithm is able to discriminate between two groups
crossing path and groups merging.

The time two groups crossing path stay in touch depends on the angle a
between their trajectories, as illustrated in fig. 4. In the best case, groups come
from opposite direction. In the worst case, groups cross at a very small angle
and their trajectories seem aligned.

We choose this threshold so that groups crossing at right angle ( 90◦, or π
2

rad) will not be mixed.
We want to compute the time span T during which two groups crossing at

angle α, with a maximum radius of d (this will be explain further in section 4.3,
where we present our mobility model), will stay in contact. As illustrated by
figure 4, T is the time taken to walk D.

Hence, T can be computed as:

0.5 ∗ d
0.5 ∗D = sin(0, 5 ∗ α) ⇒ D =

d

sin(0, 5 ∗ α)

As v=1m/s, T = d
sin(0,5∗α)

For α = 90◦, d=200, D = 282m. Since the velocity is 1m/s, it takes 282s
between the time the two groups see each other and the time the two groups
split. Since the algorithm is executed every 2 seconds, we set the stableThreshold
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to 140. Therefore, we consider a peer as part of our group if it is seen for at least
4 minutes 40.

With the stability threshold set to 140, the algorithm can distinguish between
two groups crossing at an angle α = 90◦ or less. If the angle is smaller, our
algorithm will momentarily detect one group instead of two before correcting
itself.

For α < 90◦, we can compute error spanα, a theoretical value for the time
during which our algorithm erroneously detects one group instead of two.

At tdeb=0, groups make contact and the presence counter PC starts to in-
crease. At tgrp=2*stableThreshold = 280, the peers are grouped. At tend =D,
PC starts to decrease; at that point, we have two cases.

If D > 2 ∗ (stableThreshold+maxAbs) :

– PC =stableThreshold+maxAbs
– Mistake is corrected at t = tend + 2 ∗maxAbs sec.
– The algorithm was incorrect for:

error span = tend + 2 ∗maxAbs− tgrp
error span = D + 2 ∗maxAbs− 280

Else:

– PC = D
2

– Mistake corrected at t = tend + 2 ∗ (D2 − stableThreshold)
– The algorithm was incorrect for:

error span = tend + 2 ∗ (D2 − stableThreshold)− tgrp
error span = 2 ∗D − 560

Table 5 presents a few results for different angles.

Angle 80 70 60 50

Time 1m2 2m17 4m40 5m53

Angle 40 30 20 10

Time 7m44 10m52 17min11 36m14

Fig. 5. Time to correct discrepancy, depending on the angle, in degrees

Note that if α is small enough, the groups would appear to have identical
trajectories to a human observer, who may think for a while that they, in fact,
have merged. Our algorithm is misled for the same reason.

Number of Absences Tolerated. The maxAbs parameter indicates for how
many period at most we allow a peer in the stable group to be absent before it
is removed from the stable group.

In the group definition given in section 3.2, this is an approximation of δf , the
number of seconds stable neighbours should be able to communicate. When two
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stable neighbours lose contact, their presence counter is comprised between sta-
bleThreshold and stableThreshold+maxAbs. It is steadily decreased until it gets
under stableThreshold and the two peers stop being stable neighbours. There-
fore, the time to determine that two peers are not stable neighbours anymore
after they stop communicating is less or equal to maxAbs.

This parameter is used in two cases :

– When a peer part of our stable group leaves, we want it to be withdrawn
from the stable group as soon as possible. The same problem arises when a
group splits in new groups.

– When a peer part of our stable group is absent for a small period, we want
our algorithm to tolerate this absence and keep it in the stable group, so
maxAbs should be high enough.

The number or frequency of peers leaving have no influence on the choice of
maxAbs value, except that it should be low enough.

The absences on the other hand do. For example, if we could establish that
peers are never sporadically absent for more than 30 seconds, we could set max-
Abs to 15. The frequency of absences can be influence by different parameters:

– a temporary obstacle, such as a wall, between two peers.
– the network load creates a loss of information at OLSR level.
– the terminal freezes for a few seconds.

Since we have no control over those situations, and no way to predict those
parameters, we chose a value for maxAbs based on the group definition: if a
peer in my stable group at t is absent for more than 2 minutes, it should be
withdrawn from the group. Hence, maxAbs=60.

4 Evaluation

In this section we present our algorithm evaluation.
First of all, we see how it compares to others in term of complexity. Then, we

run it on a few typical scenarios, to see how it behaves. Since testing on MANets
is difficult, we did this part on a simulator.

4.1 Usual Metrics : Distributed Algorithm Complexity

Since it uses information acquired from the routing tables, our algorithm do not
need to exchange overhead messages to establish topological information. It is,
in this respect, better than any other propositions.

Since each peer computes its neighbourhood independently, the algorithm
is fully distributed and presents no centralization bottleneck. Therefore, our
algorithm scales as much as the routing algorithm does.

We need another metric to evaluate the performance of our algorithm.
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4.2 Proposition: An Accuracy Metric

Different groups are evolving in an area. Suppose an oracle who can set apart
groups based on distance and motions, and creates ideal groups.

To computer the accuracy of our algorithm, we compare the composition of
the ideal group, to that of the computed group:

accuracy(t) =
|ideal ∩ computed(t)|

|ideal|
Note that |ideal ∩ computed(t)| is never null, since both sets contain the peer
itself.

This computes a value in N, and an accurate algorithm keeps this metric to
close to 1.

4.3 Evaluation by Simulation

MANets are inconvenient to deploy: since each device is mobile, we would need
human or robot operators able to move and reproduce mobility at will. They also
are inconvenient for reproductibility: wireless communications may be perturbed
by external signals upon which we have no control, and two experimentations
with strictly identical mobility patterns may produce different results, unless we
have a vast isolated space for experimentation. Hence, we have validated our
algorithm by simulation.

Modus Operandi. To validate our algorithm by simulation, we designed and
used several tools:

1. We generate mobility traces compliant to the RPGM model (cf section 4.3).
2. These traces are then injected in the ns-3 simulator[9], configured with wifi

802.11b[1], and OLSR.
3. Within ns3, we dump the routing tables every 2 seconds on the disk.
4. We run our algorithm using this tables with different values for each param-

eter.
5. For each run of our algorithm, we compute an aggregated accuracy overtime.

Mobility Model. To generate mobility traces, we used the Reference Point
Group Mobility (RPGM) Model [10].

In RPGM, nodes are organized in groups. Each group has a reference point,
that is a logical centre : the reference point (RP) moves with a RandomWaypoint
pattern and other nodes move to stay within range of the reference point.

Since the upper bound of the communication range of IEEE 802.11b in open
space is 100m, and since each peer is placed within communication range of RP,
two peers will never be more than 200m apart. Therefore, the maximal radius
of an RPGM group is 200m.
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Node Density, Network Topology, and Influence on the Accuracy Mea-
surement. In a small enough simulated area, groups will interact even if we try
to keep them apart because of the nodes density. Therefore, if the simulated area
size is less than the group area size by the number of groups, the node density
is too high to distinguish all the groups.

We have to calibrate our tests so that the accuracy is not perturbed by the
closeness of the groups.

To do so we need to compare two values:

– S = the surface area of the simulated area;
– NG*GS = the number of groups * the maximal area covered by a group.

The maximal area GS covered by a group depends on its topology. For example,
as seen in figure 6, the group covers most ground when it is organized as a line.

Fig. 6. Possible network configurations

In the RPGM model, peers are organized so that each peer is within reach
of the reference point. This corresponds to a network configuration as in fig.
6. A group should therefore occupy a circular area of 200m of radius. In the
subsequent scenario, we chose the size of the simulated area so that groups can
be isolated.

4.4 Test Scenarios

In this section we examine how our algorithm behaves in characteristic situations.
We see how it behave with no groups interfering, and what happens when two
groups cross paths, merge, and when one group splits in two subgroups.

For the simulations presented below, the simulated area size is 2000mx2000m,
and each group is made up of 10 peers. The mobility model is RPGM.

If not indicated otherwise, the stable threshold varies between 100 and 180 .
The maximum of authorized periods of unavailability varies between 20 and 100.
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For each case, we present the scenario, namely which mobility pattern, and
which parameters are tested, and the theoretical result. Results are presented as
graphs representing the evolution of the algorithm accuracy over time.

Fig. 7. 1 group Fig. 8. 2 distinct groups

One Group. In this scenario, illustrated by fig.7, we want to verify the be-
haviour of our algorithm in a simple situation with one group of peers.

Scenario: A group of peers is walking from the upper left corner to the
opposite corner. We want to test if our algorithm work when no disruption
occurs, and which value of stableThreshold maximizes, in that case, the accuracy;
stableThreshold varies between 100 and 180.

Expected result: We expect the computed group not to be accurate up to
stableThreshold seconds, to stay accurate after. The lowest value of stableThresh-
old should maximize the accuracy.

Fig. 9. One group, �= stable threshold
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Fig. 10. Paths crossing Fig. 11. Same distance, different angles

Observation: Graph 9 represents evolution of the accuracy over time. Each
curve represents the accuracy for a given value of stableThreshold. As we can
see, the simulation validates our expected results.

Two Groups with No Interaction. In this scenario, illustrated by fig.8, we
want to verify that having two groups with no interaction does not alter the
computation accuracy.

Scenario: Two groups follow opposite borders of the area. They never come
in contact, and we want to verify that the algorithm accuracy behaves as it does
for one group. The stable threshold varies between 100 and 180.

Expected result: As groups are not interacting, we expect the same curve
as in the previous experiment.

Observation: Results are similar to fig. 9.

Two Groups, Crossing Path. In this scenario, illustrated by figure 10, we
examine the behaviour of our algorithm when two distinct groups are crossing
paths.

Scenario 1: Two groups start out of reach of each other, at upper left, and
bottom left corners; both groups walk diagonally to reach the opposite corner
of the area; at t= 1415 seconds, they cross path at right angle, at (0,0). Around
t=1415, we want to verify if for the chosen value of stableThreshold, our algorithm
discriminates between the two groups. The stable threshold varies between 100
and 180.

Expected result 1: We examine the behaviour of our algorithm around t=
1415. For a stable threshold under 140, no errors should be detected; as the stable
threshold decreases, the results should worsen.

Observation 1: Graph 12 show that results are better than expected : the
two groups stay distinct for a stable threshold under 120.

Scenario 2: Two groups start out of reach from each other and at t= 1415
sec, they cross path at (0,0); the angle α formed by their trajectories varies
between 0 rad and π rad; their starting positions are chosen as illustrated by
fig.11 so that all the groups cross paths at time t=1000. We want to verifie
that the algorithm discriminates between groups crossing at angle larger than
or equal to π

2 rad. The stable threshold is fixed at 140.
Expected result 2: If two groups are walking with a 0 rad angle, they

effectively behave as one group, so in this case the accuracy should be 2 from



132 H.D. Ha Duong and I. Demeure

Fig. 12. 2 groups crossing, �= stable thresholds

Fig. 13. 2 groups crossing, �= angles
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t=1415 sec and on. For other values of α, the errors should decrease as α grows,
and for α > π

2 , no error should be detected.
Observations 2: In figure 4.4, each curve represents the evolution of the

accuracy for a given angle. We can see that our prediction for α = 0 and α > π
2

is correct. The correctness of the algorithm is also increasing as α grows. We can
also see that the recovery time for α < 90◦ is lower than expected. For example
for α = 45◦, the error is 4m40, lower than the theoretical time of recovery for
α = 50◦, 5m53, as computed in 3.6.

Fig. 14. Merging Fig. 15. Split

Two Groups, Fusion. In this scenario, illustrated by figure 14 we measure
how our algorithm behaves when two groups merge.

Scenario: Two groups start at the two bottom corners of the area; they both
walk at right angle to the middle of the area, taking 1415 seconds; the groups
merge and walk straight to the top. We want to verify that the algorithm detects
the merging, and the time it takes depending on the stability threshold. The stable
threshold varies between 100 and 180.

Expected result: We examine the behaviour of the grouping algorithm
around t=566. The lesser the stable threshold is, the faster groups are formed
and the better the accuracy.

Observation: As expected, we can see on figure 16, that the algorithm re-
covers better with a lower stable threshold. Note that as trajectories are perpen-
dicular, the peers starts communicating 142 sec before the merge. With a stable
threshold of 70, no error would occur.

This experiment is also a generalization of the case of a peer joining a group
and therefore validates it.

One Group, Splitting. In this scenario, illustrated by figure 4.4, we measure
how our algorithm detects a group splitting.

Scenario: The group starts at (0,1000) and walks to the center, taking 1000
sec; there, it splits in two; one half walks to the upper left corner while the other
one walks to the upper right corner. We want to verify that the algorithm detects
the split, and the time it takes depending on the maximum absences tolerated.
The stable threshold is fixed to 140 and maxAbs varies between 20 and 90.
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Fig. 16. Two group merge, �= stable thresholds

Fig. 17. One group splits, �= maximum absence
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Expected result: We examine the behaviour of the group algorithm around
t = 2000. In this scenario, the algorithm cannot always be accurate, even with
maxAbs=0, since when the groups split at t=1000, they can still communicate
for 224 sec. Still, we expect that the lower maxAbs is, the quicker our algorithm
will correct the groups.

Observations: In figure 17, each curve represents the evolution of the accu-
racy over time for a given value of maxAbs. It validates the expected result.

Note that this experiment is a generalization for the case of a peer leaving a
group and validates it.

Overall Observations. Experiments 4.4, 4.4 and 4.4 show that the lower the
stability threshold is, the quicker a stable group can be formed, while experi-
ment 4.4 shows that if the stability threshold is too low, the algorithm cannot
differentiate between a group, and two groups crossing path.

Experiment 4.4 shows that the lowest maxAbs allows a better detection of
group splitting. However, while the experiment is not shown here due to the
lack of space, maxAbs allows for tolerating transient faults and therefore should
not be 0.

Overall, these experiments validate the expected behaviour of our algorithm,
and in the case of two groups crossing, shows even better results than expected.

5 Conclusion

In this paper we proposed an algorithm to build groups stable over time. This
algorithm relies on cross-layering information, namely routing information main-
tained by a proactive routing algorithm, to establish which other peers are reach-
able for long enough to be considered stable neighbours.

The two strong points of this algorithm, compared to existing proposal, are
the lack of need for a positioning equipment, such as GPS, and the lack of
network overhead. Both are sources of energy use; energy is a critical resource in
a MANet context where terminals are mostly handheld and battery-operated.

We presented an evaluation of our algorithm, with a theoretical model and
by simulation.

In term of distributed complexity, our algorithm is better than any existing
proposal as it does not create network overload. We also validated our theoretical
model by simulation.

Further works would be to implement existing proposals to test them again
our accuracy metric, in order to provide further comparison.
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