
Debugging Tools for MIDP Java Devices

Olli Kallioinen1 and Tommi Mikkonen2

1 Sasken Finland, Tampere, Finland
olli.kallioinen@sasken.com

2 Tampere University of Technology, Tampere, Finland
tommi.mikkonen@tut.fi

Abstract. Mobile Java development using CLDC and MIDP can be
very restricting, not only because of the more restricted libraries and
older Java language, but also because some very basic development tools
are not available in many situations. One of the biggest problems when
debugging a midlet – a CLDC/MIDP application – is that when running
a mobile Java application in a real device, stack traces are not available.
Also other tools, like profiling tools, only work in certain emulators.
In this paper, a set of improved tools for mobile Java development is
introduced. Instrumentation, a well-known technique is used to work
around the restrictions of the Java sandbox. Consequently no special
support is required from the platform.

Keywords: Mobile Java, debugging.

1 Introduction

Sun’s mobile Java platform (Java Micro Edition, Java ME) has not been a very
hot topic lately. New, advanced mobile devices with platforms like Android,
Maemo, and iPhone have been stealing most of the media attention. How-
ever, when comparing mobile devices that are able to run third party software,
Java ME is still by far the most common mobile platform at the moment.

One of the most frustrating problems when developing application targeted
to Java ME devices, is that stack traces are often unavailable. Stack traces are
normally used to locate the cause of run-time errors. The traces are printed to
the standard system out stream that is usually not available when running a
program on a real device. In Java SE it is possible to redirect the stream to any
desired destination [1], but this redirection possibility was left out from Java ME
[7]. It would not be a big problem if it would be possible to access the traces
programmatically, like in Java 1.4, but this is not available either. This problem
describes well how the combination of small shortcomings in Java ME prevent
some very basic functionality that most developers take for granted in modern
environments. Also other tools like profilers usually work only in an emulator.

This paper proposes better tools for Java ME development. The practice of
manipulating Java binaries after compilation is used to implement the tools.
This method allows all the tools to be used regardless of the environment where

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 80–99, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Debugging Tools for MIDP Java Devices 81

the application is running. The tools can be used to find the cause of a problem
in situations where the emulator cannot be used. For example a problem could
only occur on certain devices, or in some cases an application cannot be run on
an emulator at all.

The rest of the paper is structured as follows. Section 2 discusses mobile
Java and Java language internal workings.Section 3 describes improvements and
the principles that have been used to implement them. Section 4 evaluates the
implemented tools and describes how they can be used. Section 5 summarizes
the presented improvements..

2 Java Micro Edition

As the Java platform was growing it was split into multiple editions. In addition
to the Standard Edition (Java SE) two other editions were created: Enterprise
Edition (Java EE) for application servers, and Micro Edition (Java ME) for de-
vices with limited resources. Java ME is further divided to smaller parts to be
able to support a very heterogeneous set of devices. Each Java ME runtime envi-
ronment consists of three parts: (1) a configuration that defines the set of basic
libraries and virtual machine capabilities, (2) a profile that defines a common
set of APIs for a smaller group of similar devices, (3) a set of optional packages
for other specific technologies like Bluetooth or SMS.

Two different configurations are currently available:Connected Limited Device
Configuration (CLDC), and Connected Device Configuration (CDC). Multiple
profiles exist, but in general Mobile Independent Device Profile (MIDP) is the
most commonly used one. The combination of CLDC and MIDP, which is tar-
geted for low-end devices like feature phones, is one of the most common runtime
environments in existence, with billions deployed in different mobile phones. A
Java ME application built using CLDC and MIDP is called a MIDlet.

2.1 Mobile Java Development Using CLDC and MIDP

There is a variety of different kinds of tools available for a Java developer. Multi-
ple different Java specific tools can be used for writing code, compiling, packag-
ing, debugging, testing, static analysis of source code, and so on. Some of these
tools can also be used to develop mobile Java applications, but the restrictions
of CLDC also prevent the use of many tools.

The build process for building a MIDP application has some differences com-
pared to building a normal Java SE application. In addition to the normal Java
Development Kit (JDK), the Java PlatformMicro Edition Software Development
Kit (Java ME SDK) is required. The standard Java compiler can be used, but
the Java source code version and target class file version need to be set appro-
priately, as the newest class file format supported by CLDC is the JDK 1.4 class
format. The Java standard libraries must also be replaced with the CLDC ones.
The standard Java compiler supports cross-compiling, meaning that classes can
be compiled against bootstrap libraries instead of the normal JDK class libraries
and the target class file format can be set to other JDK versions [4].

82 O. Kallioinen and T. Mikkonen

In comparison to the class format of Java 1.3 that CLDC is based on, an
extra step is added to the build process [7]. The classes need to be preverified
before the classes can be used by the CLDC virtual machine. The CLDC virtual
machine uses a simplified process to verify the correctness of classes to make
loading faster and to save memory, and consequently classes must be preverified
before they can be loaded. The Java ME SDK provides a preverification tool
that is usually run after compiling the classes.

Finally, compiled and preverified classes need to packaged into a JAR package
before the MIDlets in them can be installed and run. Information about the
MIDlet must be included in the manifest file inside the JAR file. Furthermore,
the JAR file is usually accompanied by a JAD file that describes the MIDlet
properties [10].

2.2 Restrictions When Developing MIDlets

When developing for mobile devices many special considerations must be taken
into account. Devices usually have less resources like memory and storage space
than in a full Java SE desktop environment and the CPU of the device might
not be very powerful. One further speciality is the user interface. Typically only
one MIDlet can be running at a time and there is no standard support for inter-
MIDlet communication. Also, in many platforms MIDlets cannot be running on
the background while the phone is running its native applications.

From developers point of view, the most notable difference between Java SE
and JavaME is that a lot of classes have been dropped from the basic Java library
and some functionalities have been replaced with Java ME specific classes. In
MIDP the AWT and Swing UI libraries are replaced with the LCDUI library [8].
In addition, many language features have been dropped from CLDC. Further-
more, all the newer features of the Java language are missing.

Same debugging tools can be used in Java ME applications as in Java SE.
When using an emulator, all that needs to be done is to launch the emulator in
debugging mode and attach it to a debugger. Debugging with a real Java ME
device (on-device debugging) requires specific support from the device. Device
specific differences are common, and on many platforms no support is provided.
In reality, using a debugger on an actual device is usually cumbersome, slow
or not possible at all. Often, logging to a COM port or to log files is the best
available solution for finding the cause for issues in the developed MIDlet.

Exceptions and stack traces are good tools for finding issues in Java appli-
cations. The restrictions of CLDC limit the use of stack traces, however. When
an exception is thrown in Java SE, it is easy to locate the cause of the ex-
ception by following the stack trace attached to the exception. In CLDC it
is only possible to print the traces to standard system output using Throw-
able.printStackTrace() [7]. This makes it hard to get the traces when using a
real device as the standard output may not be accessible. Some devices pro-
vide a way to read the standard output prints, but such features are device and
platform specific.

Debugging Tools for MIDP Java Devices 83

In Java SE it is possible to access the stack trace information programmati-
cally [3], but the API is not available in CLDC. Another Java SE option that is
not available in CLDC is to reassign the PrintStream used by System.out using
System.setOut() [2]. Finally, setting a default exception handler for threads is
not possible in CLDC.

Depending on the emulator that is used, it is usually possible to configure
the emulator to show exceptions implicitly. Some vendor specific tools may be
used to get the traces even on actual devices but the tools are in many cases
not publicly available. In some cases a MIDlet can use proprietary functionality
that is not available on the emulator and the only possibility is to run it in a real
device. In these cases the exception traces provided by the emulator are again
unavailable. Even if the developer can access the stack traces, they may not
include the source code line numbers like Java SE traces do. In fact, the debug
information is not used by the reference CLDC virtual machine implementation
even if the source line debug information is available in the classes.

The lack of stack traces when running an application in a real device becomes
even a bigger issue because of another Java ME related problem: fragmentation,
caused by the huge number of different Java ME devices that have different
kind of hardware, operating system, and virtual machine implementation [5].
It is common to have an application that runs on an emulator and on some
devices, but crashes in some other phone models. Finding out what is wrong
without proper stack traces can be a time consuming operation. Usually debug-
ging prints need to be added to pinpoint the problem source and each time the
application needs to be built, packaged, installed, and restarted on the device.
All the information needed to locate the exception source are in stack traces.

The sandbox of Java ME is much more restricted in comparison to Java SE.
Due to Java ME restrictions, it is generally not possible to extend the function-
alities that are offered by the platform.

2.3 Java Virtual Machine and Bytecode

The virtual machine and its instruction set resemble real hardware and the
instruction set of a real hardware machine. Especially the instructions that are
used to manipulate memory and for performing arithmetic operations are similar.
In addition, some higher level concepts have been also introduced. For example,
the virtual machine directly supports objects and exception handling [6].

When Java source code is compiled, it is compiled to a hardware-independent
binary format called the class file format. Although it is called a file format, and
usually files are used, the binaries do not necessarily need to be stored to files.
Each class file represents the Java class or interface it was compiled from. The file
format also addresses details like byte ordering to achieve platform independence.
The instruction set of the virtual machine is used to represent the Java source
code. In the class format, each instruction is denoted by one byte, allowing 256
different instructions. That is also why term bytecode is often used to describe
the compiled instructions. The bytecode instructions take only a small part of
typical class files, as other information, like the symbol table containing literals,

84 O. Kallioinen and T. Mikkonen

need to be also included in each class file. The file format and the instruction
set are designed to be used with the Java language, so the supported features
match closely to the features of the Java language [6].

The class files preserve the basic structure of the source code classes. The
names of packages, classes, methods and fields are also preserved in the class
file. All the information to reference a class is available in the compiled Java
class so it is possible to reference the class from Java source code, even if the
source code for the referenced class is not available. This enables decompilation
of Java class binaries so that the produced decompiled source code is close to
the original source code. Even local variables names can be preserved if the
information was included in the class files when it was compiled [6].

The virtual machine specification only specifies the abstract virtual machine.
Many implementation details can be defined by the virtual machine implemen-
tation. For example, the used garbage collection algorithm is virtual machine
specific. Similarly, the bytecode could be interpreted at runtime, compiled to
native code, or even run directly on hardware. When interpreting bytecode, just-
in-time (JIT) compilation is often used to improve performance. This means that
when the bytecode is being executed, some often called classes may be further
compiled to native machine code.

3 Improving the Java ME Toolset

When custom class loaders are available, class bytecode can be modified at
run-time. A custom class loader can be defined that alters the bytecode of
the class when it is being loaded into memory. Java 5.0 has a specialized
java.lang.instrument package that provides built-in support for modifying the
bytecode of classes when they are being loaded [3]. Modifying an application to
gather information about the execution of the application is often called instru-
menting the bytecode or just instrumentation [9]. This kind of dynamic runtime
modification is not possible in CLDC. There is no support for custom class load-
ers either [7]. The only available possibility to modify the bytecode, is to do it
statically after compiling, before creating the final MIDlet JAR package. The
modified classes also need to be preverified again before packaging.

Modifying bytecode introduces the possibility of adding new errors to oth-
erwise working code. Modifications can be checked already on build-time and
the instrumentation libraries have support for verifying that the modification
produces valid bytecode. Such problems are usually found when loading and
verifying the class, or when preverifying a class in CLDC. If the aim of the byte-
code modifications is to change the functionality of the application, possibly
introduced problems can be very cryptic and hard to debug. Even if the appli-
cation is just instrumented to gather information, errors in the instrumentation
can cause the functionality of the application to change.

The basic idea of all the improvements this paper is modifying the compiled
Java bytecode before creating the final distributables. As the Java class format
has no direct connection to Java language, also constructs that would not be
possible in normal Java language can be used in valid Java class files.

Debugging Tools for MIDP Java Devices 85

3.1 Tracing Method Calls

The basic idea of tracing method calls is that a piece of Java bytecode is added
to the beginning and end of each method. This makes it possible to receive a
callback every time a method is entered or exited, which in turn acts as the
basis for other more complex features and is not as useful by itself. However,
these automatically added callbacks can be used to eliminate the manual labor
of adding similar tracking code.

Tracing in General. This first improvement makes it possible to track the
execution of Java methods and to write the information to the standard system
output or a log file. This kind of tracking of code execution by log messages is
generally known as tracing. The trace messages are usually disabled during nor-
mal development and in final builds to prevent excessive amount of log messages.
Then, if more information is needed by the developer, the trace level messages
can be enabled.

Automated Tracing. Using the implemented tool, the developer can automat-
ically get trace messages without the need to add source code individually to
each traced method. All that the developer needs to do, is to enable the method
traces option in the instrumentation phase. No modifications to the existing code
are needed. This option only outputs the traces in a simple predefined format to
standard system output. The developer can implement specific callback methods
himself if more control over the output is wanted. No references to any external
Java libraries are needed, since callbacks to the method will be generated in the
instrumentation phase and there is, for example, no need to register a listener.
The location and name of the callback method name can be defined in the in-
strumentation phase. This callback can then be used to print information about
each method invocation in any way wanted. A separate callback is available for
both entering a method and exiting a method.

Modifying the Bytecode. Adding code to the beginning of a method is a
straightforward operation. On the other hand determining when a method exits
is a bit more complicated because there can be multiple return statements and
thus multiple possible exit points. In addition, an exception can cause the method
to exit at any point. The method tracing only generates the exit callback if the
method exits normally. The more complicated special cases caused by exceptions
are ignored for now. The improved stack traces explained in the following can
be used to detect the thrown exceptions. When exceptions are ignored, all that
is needed to detect exiting from a method is to find all the return statements
in the method and to add additional bytecode for handling the callbacks just
before them. The end of a void method is also considered as a normal return
statement in bytecode. The instrumentation phase can be demonstrated with an
example Java method. Listing 1 defines a method that calculates the mean for
an array of integers. From the instrumentation point of view it is irrelevant what
the method actually does, but it was chosen because it is short and meaningful
but it still has enough code to demonstrate some special cases.

86 O. Kallioinen and T. Mikkonen

Listing 1. Java method before it has been instrumented.

pub l i c i n t calculateMean (i n t [] va lues) {
i f (va lue s == nu l l) { r e tu rn 0 ;}
i n t sum = 0 ;
f o r (i n t i = 0 ; i < va lues . l ength ; i++) {sum += values [i] ; }
i n t mean = sum / va lues . l ength ;
r e tu rn mean ;

}

The Java source code in Listing 2. demonstrates how instrumenting the
class with method tracing enabled affects the class. A call to a static method
Trace.methodEntered has been added to the beginning of the method. This is a
call to the method that handles the tracing for entering a method. This method
will invoke a callback method that has been defined in the instrumentation phase.
The Trace class is a Java class that is a part of an implemented run-time library.
This and some other utility classes need to be included to the final application
JAR package for the tracing to work. Also, a call to Trace.methodExited has been
added before each return statement. This call will relay the information about
exiting the method to the user defined callback method. The actual insertion is
done as bytecode but if the resulting class would be decompiled it would result
in source code that would be similar.

Listing 2. Same method after instrumentation.

pub l i c i n t calculateMean (i n t [] va lues) {
Trace . methodEntered (”MyMath” , ” calculateMean ” , 1) ;
i f (va lue s == nu l l) {

Trace . methodExited (”MyMath” , ” calculateMean ” , 2) ;
r e tu rn 0 ;

}
i n t sum = 0 ;
f o r (i n t i = 0 ; i < va lues . l ength ; i++) {sum += values [i] ; }
i n t mean = sum / va lues . l ength ;
Trace . methodExited (”MyMath” , ” calculateMean ” , 6) ;
r e tu rn mean ;

}

More detailed information regarding the method that is being executed is
provided in the callback method parameters, including the name of the class
and the name of the method. The last parameter is the source code line number.
It is added to make it possible to later distinguish multiple methods with same
name, and to help finding the method in a source file. The class name and the
method name are known in the instrumentation phase and the line number is
also available if debug information has been included in the class file.

Debugging Tools for MIDP Java Devices 87

3.2 Improved Stack Traces

Stack trace is a structure representing the call path of a thread at some specific
time of execution. It lists the method invocations that lead to the state that the
trace represents. The position in source code where each method was invoked
can also be stored to the structure. Stack traces are very useful when trying
to locate and fix errors in the source code. The trace can be displayed when an
exception has happened to easily find the exact place in source code what caused
the exception. Unfortunately getting stack traces with full source line number
information can be a problem when using CLDC.

Tracking the Execution of an Java Application. It is not possible to
access the stack trace information programmatically in CLDC, but it is possible
to solve the problem of not being able to get the stack traces with another
approach. The solution is to modify the bytecode of the application itself, so
that the application keeps track of its own execution. Each method needs to
be modified to detect when the execution of a thread enters the method and
when it leaves the method. In addition, each thread needs to be associated with
a data structure that defines the current method call path of that thread. As
the application itself will be keeping track of the execution of its code, it is
possible to get the current stack trace at any point regardless of the execution
environment.

The structure used to define the invocation path is a stack, where each ele-
ment represents a method invocation that was done from the previous element.
This stack mimics the actual call stack that keeps track of the method execution
in the virtual machine [6]. Similar kind of structure has been available for the
programmer in Java SE version 1.4 and in newer versions, where it is possible
to call throwable.getStackTrace() method to receive an array of StackTraceEle-
ment objects. Java version 1.5 (or 5.0) takes this even further and provides
multiple method in the Thread class for accessing the current stack trace pro-
grammatically. As CLDC is based on Java 1.3, neither getStackTrace() method
nor StackTraceElement class are available [2,3,7].

An element representing the current method is pushed to the stack each time
a thread enters a method and popped when the method is exited. It is also
necessary to catch possible exceptions and pop the method if one is detected
to keep the stack correctly up-to-date. Each time a method is entered and the
thread is not known from before, a new stack trace is created and associated
with that thread. Similarly, as the last item is popped from a stack, we know
that the stack trace related to that thread is not needed anymore.

At the same time it is also possible to solve the problem of not getting source
code lines in stack traces. This is however only possible if the required debug
information has been enabled when compiling the classes that are being instru-
mented. If this line numbers debug information is enabled, the compiler adds a
special bytecode instruction defining the source line number before each group
of bytecode instructions that were generated from the same source code line.
When instrumenting a method every time this kind of bytecode instruction is

88 O. Kallioinen and T. Mikkonen

encountered instructions need to be added to update the current stack trace.
The added instructions need to update the top element in the stack of method
elements to point to the correct source line.

Adding Bytecode to Track the Execution. The instrumentation phase is
demonstrated with the same example Java method that was used previously in
Listing 1. The Java source code in Listing 3 demonstrates the effect of instru-
menting with improved stack traces enabled. The Trace and StackTrace classes
are normal Java classes that are also part of the implemented run-time library.
Most of the functionality related to the stack traces is implemented as normal
Java code in the run-time library to make the instrumentation simple. Amongst
other things, the included utility classes keep track of the threads and map them
to the right stack traces.

Listing 3. The same method after instrumentation with stack tracing enabled.

pub l i c i n t calculateMean (i n t [] va lues) {
StackTrace t r a c e = Trace . push (”MyMath” , ” calculateMean ” , 1) ;
t ry {

t r a c e . s e tSourceL ine (2) ;
i f (va lue s == nu l l) {

t r a c e . pop () ;
r e tu rn 0 ;

}
t r a c e . s e tSourceL ine (3) ;
i n t sum = 0 ;
t r a c e . s e tSourceL ine (4) ;
f o r (i n t i = 0 ; i < va lues . l ength ; i++) {

sum += values [i] ;
}
t r a c e . s e tSourceL ine (5) ;
i n t mean = sum / va lues . l ength ;
t r a c e . pop () ;
r e tu rn mean ;

} catch (Throwable t) {
t r a c e . ex cep t ion (t) ;
throw t ;

}
}

A call to Trace.push() is added to the beginning of the method. This method
pushes a new element, representing this method, to the call stack of the current
thread. The name of the class, the name of the method, and the method begin-
ning line number are passed as parameters. The parameters are needed later to
print a stack trace that looks like a normal Java stack traces. For convenience
the current stack trace element is saved to a local variable called trace.

Debugging Tools for MIDP Java Devices 89

The trace.pop() method pops the top element from the stack. A call to it needs
to be added before each return statement to keep the stack state up-to-date. This
is done similarly as with the method tracing before.

The whole original method is enclosed inside a try-catch block to catch any
exceptions that would otherwise escape. Any exception that escapes the original
method will be caught and thrown again, so that the functionality of the method
does not change. Before throwing the exception, trace.exception() is invoked to
update the stack trace. Calling trace.exception() pops this method from the stack
and records the thrown exception. In normal Java source code it is actually not
possible to throw a Throwable object without declaring it to be thrown in the
method declaration, but it is possible on the bytecode level.

A call to trace.setSourceLine() needs to be added before each original line of
code, so that the line number that is being executed is updated to the stack
trace. If an exception will be thrown when executing the following original line,
the trace will now point to the same line. In the example code, the execution
can jump back when the for loop is being executed and the source line will not
be set correctly. In the actual bytecode implementation this is not a problem
as the call to the trace.setSourceLine() method is placed just after the bytecode
instruction defining the line number debug information so that it is set correctly
regardless of any jump instructions.

For the tracking to work, each thread needs to have its own stack trace.
Every time a Trace.push() is invoked we need to find out which thread invoked
the method. The current thread is resolved inside the Trace.push() method using
Thread.currentThread(). A separate mapping is needed to find the correct stack
trace for the current thread as the thread object itself is part of the standard
Java library and cannot be modified.

Logging Exceptions Traces. Now that the application itself keeps track of
the execution of its threads, it is possible to get a up-to-date stack trace at any
given point in the code. Similarly to Java SE, the tools provide the user with an
API to receive the trace explicitly as an array of method elements.

In exception situations it is convenient to log the stack trace implicitly without
any code written by the developer. The tool provides an build time option that
can be used to determine how the exceptions are logged. The options are to
log all exceptions, to log only uncaught exceptions, or to not log exceptions
implicitly at all. All that the developer would need to do is to define a callback
method that will be invoked each time an exception has occurred.

It is a common practice to use throwable.printStackTrace() to print the stack
trace to standard output whenever an caught exception could be interesting
when debugging. As stated before, the standard output is often not available
and the stack trace should be redirected to the logging system that is in use.
This can be achieved by detecting each call to throwable.printStackTrace() in
the instrumentation phase and modifying each call so that the stack trace of the
exception will also be logged.

Listing 4 provides an example method that will be used to demonstrate how
the exception logging works. This method invokes another method called con-

90 O. Kallioinen and T. Mikkonen

nection.open() that is known to possibly throw an IOException. If an exception
is thrown, it will be caught and the exception stack trace will be printed.

Listing 4. A Java method catching a possible exception and printing the stack trace
of the exception to the standard output stream.

pub l i c void open () {
t ry {

connect ion . open () ;
} catch { IOException i o e } {

i o e . pr intStackTrace () ;
}

}

Now we want the exception stack trace to appear in the logging system that is
used by the application. As it is necessary to detect exceptions to keep the stack
trace correctly up-to-date, it is easy to add a callback to some logging code each
time an exception is detected. The stack trace can be given as a parameter. In
addition, we need to detect exceptions that are caught by the original method.
Otherwise it is not possible to detect exceptions that never leak outside the
method they were thrown in. Exceptions that are caught inside the original
method need different kind of processing as they should not pop the method
from the call stack.

Listing 5 shows how the instrumentation modifies the bytecode of the method
to enable detecting all exceptions. All the same modifications are done as before
when adding the general stack tracing (Listing 3). In addition, code is added to
detect caught exceptions and to enable their logging.

A call to trace.exceptionCaught() is added to be the first instruction in the
catch block of the original code (after line 4). This call needs to be added to the
beginning of every catch block in the instrumented bytecode. If the developer
has chosen to print all exceptions, a callback to the logging method will be done
each time trace.exceptionCaught() is invoked. Otherwise the current stack trace
is just saved so that the callback can be called later with correct stack trace if
necessary. The stack trace needs to be saved before any code is executed inside
the catch block to be able to get the correct source line information later. Any
possible finally blocks do not need changes as they do not catch exceptions.

Finally, a call to our own Trace.printStacktrace() needs to be added after every
standard throwable.printStackTrace() method. The added method call logs the
stack trace that was saved when the exception object that is given as a parameter
was detected. It uses the callback method defined by the developer to log the
trace.

If the developer has chosen to implicitly print all uncaught exceptions, all we
need to do is to add an extra check inside the final trace.exception() method
that is invoked when an exception escapes the original method. If the call stack

Debugging Tools for MIDP Java Devices 91

Listing 5. The method after instrumentation for logging exception traces.

pub l i c void open () {
StackTrace t r a c e = Trace . push (”MyClass ” , ” c l o s e ” , 1) ;
t ry {

t ry {
t r a c e . s e tSourceL ine (3) ;
connect ion . open () ;

} catch { IOException i o e } {
t r a c e . except ionCaught (t) ;
t r a c e . s e tSourceL ine (5) ;
i o e . pr intStackTrace () ;
Trace . p r i n tS t a ck t r a c e (throwable) ;

}
} catch (Throwable t) {

t r a c e . ex cep t ion (t) ;
throw t ;

}
}

is empty after popping the current method we know that the exception was not
caught by any instrumented code and it should be logged. An extra warning
message is shown when a thrown exception escapes uncaught.

3.3 Deadlock Detection

Synchronization is required to keep data from corrupting when multiple threads
are using shared resources. Synchronization restricts the access to certain mem-
ory areas so that only one thread may access the data at a time. In Java, synchro-
nization is implemented on the language level and also the Java virtual machine
has its own specialized instructions for it [4,6].

Adding synchronization adds the possibility of deadlocking however. A dead-
lock happens when multiple threads are accessing synchronized resources so that
a thread has to wait for another thread that is directly or indirectly waiting for
the original thread.

Errors that cause deadlocks are usually hard to detect and hard to debug.
The deadlock may only happen in some special case with certain specific tim-
ing. There are many techniques that can be applied to prevent deadlocks from
happening and it is usually best to apply some well known strategy to rule out
the possibility of a deadlock. One commonly applied strategy is called resource
ordering. When using resource ordering deadlocks can be avoided by accessing
the resources always in the same order.

Even if preventing deadlocks has been taken into account when developing an
application, it is still possible to miss a possible deadlock situation. If a dead-
lock is already occurring and it can be reproduced, a good way to find the cause

92 O. Kallioinen and T. Mikkonen

for the deadlock is trying to detect it on run-time and print the stack trace for
each of the deadlocking threads. Java SE provides a built-in method for find-
ing deadlocked threads when the application is running. The findMonitorDead-
lockedThreads() method in java.lang.management.ThreadMXBean class can be
used to find threads that are currently deadlocked [3]. The same functionality
is not available in Java ME, but similar functionality can be implemented by
instrumenting the applications bytecode.

Bytecode Manipulation to Detect Deadlocks. The application needs to
be modified to track when each of the running threads enters a synchronized
block and thus acquires a lock. Every synchronized method and synchronized
block must be modified to be able to detect deadlocks when they happen on run-
time. Before entering a synchronized code block the current thread is marked to
be waiting for the lock object defined in the synchronization block. Just after
entering the synchronized area the thread needs to marked as the one owning
the lock. Similarly the lock is marked as released when the method or block is
exited.

A data structure containing the locks acquired by each thread needs to be
maintained. Each time a new lock is requested by a thread, the data structure
must be checked to see if a deadlock situation has occured. When a deadlock is
detected the stack trace of all the threads that are causing the deadlock can be
printed using the same method as earlier when printing normal exception stack
traces.

For synchronized member methods the lock object is the this reference and
for static methods it is the Class object for the class in question [4]. Using the
synchronized keyword in a method declaration has the same effect as enclosing
the whole method in a synchronized block. As, an example, let us consider the
following Java method:

pub l i c synchron ized void dead lockTest () { connect ion . open () ; }

When a synchronized method is instrumented, the synchronized keyword is
removed, and a separate synchronized block is added to achieve the same effect.
This needs to be done because we need to mark the thread as waiting for a lock
before it enters the synchronized block. Listing 6 shows the instrumented version
of the method from Listing 6. The resulting code for Listing 6 would be exactly
the same, but the line number have been aligned to match the former example.
The added instructions for tracking stack traces have been excluded to make
the example clearer. In addition, the current stack trace must be passed to the
deadlock detector so that the current thread can be determined and the stack
trace printed upon a deadlock.

The call to DeadLockDetector.waitingForLock() method is added to mark the
thread as waiting for a lock. Waiting is not necessary if the thread already
owns the lock. A call to DeadLockDetector.locked() is added right after entering
a synchronized block to mark the current thread as the owner of the lock. A
counter must be increased to be able to mark the lock as released when the

Debugging Tools for MIDP Java Devices 93

Listing 6. The method after it has been instrumented for deadlock detection.

pub l i c void dead lockTest () {
DeadLockDetector . wait ingForLock (t h i s) ;
synchron ized (t h i s) {

DeadLockDetector . locked (t h i s) ;
connect ion . open () ;
DeadLockDetector . r e l e a s ed (t h i s) ;

}
}

outermost synchronized block using the same lock is exited. Before the end
of the block a call to DeadLockDetector.released() method is added. This call
decreases the counter for the used lock and marks the lock as released if this was
the outermost block using this lock. The lock object reference that is used for
synchronization is given to all the method calls as a parameter

The code shown in the example is not enough to correctly handle exception
situations. Fortunately in Java bytecode the instruction for releasing a locks
is automatically added to each exception catch block when a class is compiled.
The DeadLockDetector.released() method call just needs to be added before each
instruction releasing a lock. The case when a method is exited with an exception
must be however handled separately and all the acquired locks must be released.
The exception tracking described earlier can to be used for that.

The DeadLockDetector class handles the logic for detecting deadlock situa-
tions. The class keeps track of the locks that are owned by each thread and each
time before entering a synchronized block a check is made if a deadlock situa-
tion has occurred. A deadlock occurs if the lock that the thread is waiting for is
locked by another thread that is again waiting for the current thread. Each time
when trying to acquire a lock a check needs to be made for these kind of cyclic
locking situations.

In addition to synchronized blocks and methods, also object.wait() methods
affect the ownership of locks and can cause deadlocks. A wait method invocation
stops the thread and releases the lock until a notification wakes up the thread
again or a timeout happens. When the thread is woken up it tries to acquire the
lock again and can cause a deadlock.

Listing 7 shows how each call to a object.wait() method in the original class
is modified. before the call a call to DeadLockDetector.wait() is added. This
method call marks the lock as released and marks this thread as waiting for
the lock again. Even though this thread might sleep for a long time and is not
technically waiting for the lock, it is close enough for the purpose of deadlock
detection, as the next executed instruction cannot be reached before the lock
is acquired. After the wait, a call to DeadLockDetector.locked() is added as the
lock is now again acquired by this thread.

94 O. Kallioinen and T. Mikkonen

Listing 7. Instrumenting wait calls to enable deadlock detection.

. . .
DeadLockDetector . wait (t h i s) ;
t h i s . wait () ;
DeadLockDetector . locked (t h i s) ;

. . .

3.4 Simple Profiling

The performance of an application may be found to be be less than satisfactory
at some point of development. The process of determining which parts of the
application are using the most resources is called profiling. Optimization in these
so called hot spots will also give the most benefit. If optimizations are done
without knowing what the actual performance bottlenecks are, a lot of time can
be wasted without much improvement in performance. Profiling can be used to
find problems in memory use and to find execution speed bottlenecks [11].

Bytecode Manipulation to Enable Profiling. The basic idea of the im-
plemented profiling tool is to provide information about the time that is spend
executing in each of the methods of the application. This can be achieved by
getting the system clock time before executing a method and the time after the
execution. The difference in the time can be used as an estimate of the amount
of time spent in the method. Also the number of calls to each method is stored.
The memory usage of the application is not analyzed by the implemented tool.
Let us next consider the following Java method that is to be instrumented with
profiling information:

pub l i c void p r o f i l i n gTe s t () { connect ion . open () ; }
Listing 8 shows the example method after instrumentation. A line is added to

the beginning of the method that stores the starting time of the execution of the
method to a local variable. Code for determining how long the execution took is
added to the end of the method. The difference between the start time and end
time is calculated and added to the total time used in the method. After that
the counter for the number of method calls is incremented.

An array is used to store the profiling information. Reference to the array
is kept in a static field called $methods. This field needs to be added to each
instrumented class. The array contains ProfiledMethod objects. Each object holds
the profiling data for one specific method: the total time spent in the method
and the call count for the method. Each method of a class is associated with an
index number, which is used to access the correct object in the array.

Debugging Tools for MIDP Java Devices 95

Listing 8. The same method after it has been instrumented for profiling.

pub l i c void p r o f i l i n gTe s t () {
long s t a r t = System . cu r ren tTimeMi l l i s () ;
connect ion . open () ;
$methods [0] . totalTime +=

System . cu r ren tTimeMi l l i s () − s t a r t ;
$methods [0] . ca l lCount++;

}

s t a t i c f i n a l Profi ledMethod [] $methods = new Profi ledMethod [1] ;

s t a t i c {
$methods [0] = new Profi ledMethod (” p r o f i l i n gTe s t () ”) ;
P r o f i l e r . addClass (”MyClass ” , $methods) ;

}

The profiling information array needs to be initialized in the static initializa-
tion block so that every method contained in the class is added to the array.
Also the name and signature of the method is saved so that the data for differ-
ent methods can be identified later. The array is also registered to the Profiler
class with the name of the current class. The profiling information can be later
accesses using methods that are available in the Profiler class.

4 Evaluation

Using Java ME and SE simultaneously made the old and limited CLDC libraries
feel even more limited compared to the less restricted Java SE. The full Java
library of Java SE and the new Java language features will still be missed after
the implemented improvements.

4.1 Limitations and Potential Problems

All the standard Java libraries and other libraries that are part of the platform
cannot be instrumented. Fortunately, the interesting parts of the code that is
being debugged are usually the ones that are being developed and therefore it
is possible to instrument them. For performance reasons it might make sense to
instrument only part of the whole project.

Tracing is not possible in classes that have not been instrumented. For example
if an instrumented method calls another uninstrumented method that again
eventually calls instrumented code, we have no way of knowing what happened
in the uninstrumented method and if there were other method calls before calling
the instrumented code again. In these situations the stack trace will just contain
an unknown element to mark the uninstrumented code. Similar problems exist
with deadlock detection where some deadlocks may not be detected if all of the
code is not instrumented.

96 O. Kallioinen and T. Mikkonen

To include correct line numbers in stack trace, the instrumented class files
are compiled with debug information. If the application uses some third party
library whose source code is not available, some parts of the application might
not include the necessary debug information. Source file name and line number
information is needed to map the byte code instructions in the compiled classes
to source code lines. Stack traces will work even if the information is missing
but the stack traces will not contain the line number and source file name.

When the optimizations are enabled in the instrumentation phase, the in-
structions for catching exceptions are not added to some very simple methods.
This has the side effect that some exceptions that can happen at any point of
execution may be reported to have happened on a wrong line. Normally this is
not a problem and the optimizations can be disabled if necessary.

Instrumenting modifies the Java bytecode and can also cause issues with code
that was previously working. Many errors are detected immediately when the
preverification fails but some errors may only occur on run-time. Extensive test-
ing has been done to make sure as many as possible different kind of Java
language constructs work without problems.

Biggest problem with the implemented deadlock detection is that the instru-
mentation affects the timing of the code execution. As the deadlock may only
happen on some specific timing it is possible that the deadlock cannot be repro-
duced when the detection is enabled. Similar problem also exists in profiling: The
profiling results are affected by the code that is added to measure performance.

4.2 Performance and Size Impact

The instrumentation phase adds bytecode instructions to every instrumented
method. The added instructions make each class bigger and affect the execution
speed of the program. The added instructions also include calls to the runtime
library part of the debugging tool. These runtime library classes need to be in-
cluded in the final JAR package and require about 10 kilobytes of space. Also the
memory usage of the application is slightly increased as each thrown Exception
and the current stack trace for each thread needs to be kept in memory when
running an instrumented MIDlet. The overall size and speed overhead of the in-
strumentation was tested using some existing Java ME benchmarking software
and using an actual Java ME application. The memory usage impact of the im-
plemented tools was not measured as the increase in memory usage is very small
compared to the amount of memory that is usually available.

JBenchmark (http://www.jbenchmark.com/) is a set of Java ME benchmark-
ing tools that are meant to measure the performance of Java ME enabled devices.
The differences between the performace of different devices is not interesting from
point of view of this paper. However, the same benchmarking MIDlets can be
used to measure how the performance changes after instrumenting the bench-
marking MIDlet to enable the improved debugging features. Multiple versions
of the JBencmark MIDlet were used to measure both the impact on the MIDlet
size and the impact on the MIDlet execution speed.

Debugging Tools for MIDP Java Devices 97

Table 1. The size impact of instrumentation

Test Original Size after Size
MIDlet size instrumentation increase

JBenchmark 26236 bytes 28747 bytes 9.6%
JBenchmark 2 63994 bytes 67794 bytes 5.9%
JBenchmark Pro 207103 bytes 238981 bytes 15.4%
Dromo client 513167 bytes 671686 bytes 30.9%

When instrumenting, the size of the original uninstrumented classes is in-
creased approximately 5–30%, depending on the application and the instru-
mentation parameters. Table 1 shows the size impact of instrumentation on
some existing Java ME applications. The constant increase of approximately
10 kilobytes caused by the runtime library classes is ignored in these calcu-
lations so that it will not skew the size increase percentage. The overhead is
smaller in the JBenchmark MIDlets as they do not include debug information
and thus the information to track line numbers in exception will not be added
to them. JBenchmark and JBenchmark 2 were also already obfuscated before
instrumentation was done. This reduces the size increase as the string literals
that need to be added when instrumenting are much shorter. The Dromo client
(http://sourceforge.net/projects/dromo/) is an open source MIDlet for remotely
controlling a video recording server. It was chosen to represent a real life Java ME
application. The used version was compiled to include all the necessary debug
information and it was not obfuscated.

The maximum allowed size of a MIDlet JAR package can be very restricted
depending on the target device. The limit can be as little as 100 kilobytes in
some older mobile devices. In current devices the limit is considerably higher,
up to megabytes. A 30% increase in MIDlet size can become an issue in some
cases. The MIDlet can be obfuscated after the instrumentation to reduce the
size if necessary. Obfuscation renames all the classes and normally this would
also make the stack traces unreadable. If the instrumentation is done before
obfuscation, the original class and method names will be preserved even after
obfuscation in the stack traces. This is possible because the method and class
names are literals in the code and will not be changed by the obfuscator. The
reduction in JAR size is not as much as it would be without instrumenting.
Obfuscation also reduces the size of the runtime classes that are added to the
JAR by the implemented tools.

Each method call is instrumented with multiple new calls to methods in the
runtime debugging classes and the current source line number needs to be up-
dated on each new line of code. If an instrumented method is called repeatedly
in a loop, this can add up to a significant amount of time. The speed impact
of instrumentation is shown in Table 2. Each benchmark was first run uninstru-
mented and then instrumented. The shown percentage shows the performance
of the instrumented benchmark relative to the uninstrumented run. All the mea-
surements were done using the default emulator of Sun’s Wireless Toolkit and a
Nokia X3 device. The table shows an average of three runs of each benchmark.

98 O. Kallioinen and T. Mikkonen

Table 2. The speed impact of instrumentation

Benchmark Speed after instrumentation
WTK emulator Nokia X3

JBenchmark 97.3% 96.3%
JBenchmark 2 84.9% 97.5%
JB Pro: Business math 89.2% 99.8%
JB Pro: Chess AI 23.1% 9.4%
JB Pro: Game physics 28.8% 20.6%
JB Pro: Image processing 22.9% 17.1%
JB Pro: Shortest route 46.6% 15.6%
JB Pro: XML parsing 85.7% 87.8%
JB Pro: ZIP compression 12.9% 7.6%

The speed impact varies a lot depending on the code that is being instru-
mented. The JBenchmark and JBenchmark 2 tests mostly consist of different
kind of graphics operations where the majority of execution time is not spent in
the Java code and the impact on MIDlet performance is very small. JBechmark
Pro was used to run some specific processing intense operations. These opera-
tions are closer to the worst case scenario where a very simple method is run a
huge number of times in a loop. Also the performance impact is very significant
in these kind of tests.

In UI and graphics operations the application speed is not affected very much
and even a slowdown to half or one fourth of the original speed is normally
acceptable when debugging an application. Instrumentation can however cause
the application to slow down up to one tenth of the original speed in some
processing intense operations.

The performance degradation and the increase in program size can further be
tackled by different options in the instrumenting phase. It is possible to limit
the number of instrumented classes by including only interesting classes, or by
excluding some classes that are uninteresting or processing intense. Another
option is to disable some tracing features. Both of the options compromise the
amount of information that will be available when executing the program.

5 Conclusions

This paper presents a set of tools to make Java ME development and debugging
faster and easier. Implementing dynamic tools that are used when the appli-
cation is running is challenging in the very restricted sandbox of Java ME. As
a workaround, we instrument the compiled application binary statically before
running it. This way the application can itself gather information at run-time.

The developed tools have already been used in Java ME projects being de-
veloped at Sasken Finland. The feedback from the developers has been very
positive. Mainly the ability to get stack traces has been used, and it has proven
its usefulness multiple times already during a short period of two months.

Debugging Tools for MIDP Java Devices 99

References

1. JavaTM2 Platform Standard Edition 1.3 API specification,
http://java.sun.com/j2se/1.3/docs/api/ (accessed on February 2010)

2. JavaTM2 Platform Standard Edition 1.4 API specification,
http://java.sun.com/j2se/1.4.2/docs/api/ (accessed on February 2010)

3. JavaTM2 Platform Standard Edition 5.0 API specification,
http://java.sun.com/j2se/1.5.0/docs/api/ (accessed on February 2010)

4. Arnold, K., Gosling, J., Holmes, D.: The JavaTMProgramming Language, 4th edn.
Addison-Wesley (April 2008)

5. Lau, A.: The fragmentation effect. JavaWorld (May 2004),
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-fragment.html

6. Lindholm, T., Yellin, F.: The JavaTMVirtual Machine Specification, 2nd edn.
Prentice-Hall (April 1999), http://java.sun.com/docs/books/jvms/

7. Sun Microsystems, Inc. Connected Limited Device Configuration (CLDC) Specifi-
cation 1.1 (March 2003),
http://jcp.org/aboutJava/communityprocess/final/jsr139/

8. Sun Microsystems, Inc. Mobile Information Device Profile (MIDP) Specification
2.1 (June 2006), http://jcp.org/aboutJava/communityprocess/mrel/jsr118/

9. Tanter, É., Ségura-Devillechaise, M., Noyé, J., Piquer, J.: Altering Java Semantics
via Bytecode Manipulation. In: Batory, D., Blum, A., Taha, W. (eds.) GPCE 2002.
LNCS, vol. 2487, pp. 283–298. Springer, Heidelberg (2002)

10. Topley, K.: J2ME in a Nutshell. O’Reilly (March 2002)
11. Wilson, S., Kesselman, J.: JavaTMPlatform Performance: Strategies and Tactics.

Addison-Wesley (June 2000)

http://java.sun.com/j2se/1.3/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-fragment.html
http://java.sun.com/docs/books/jvms/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://jcp.org/aboutJava/communityprocess/mrel/jsr118/

	Debugging Tools for MIDP Java Devices
	Introduction
	Java Micro Edition
	Mobile Java Development Using CLDC and MIDP
	Restrictions When Developing MIDlets
	Java Virtual Machine and Bytecode

	Improving the Java ME Toolset
	Tracing Method Calls
	Improved Stack Traces
	Deadlock Detection
	Simple Profiling

	Evaluation
	Limitations and Potential Problems
	Performance and Size Impact

	Conclusions
	References

