
M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 415–427, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

SAVED: Secure Android Value addED services

Antonio Grillo, Alessandro Lentini, Vittorio Ottaviani,
Giuseppe F. Italiano, and Fabrizio Battisti

Department of Computer Science, Systems and Production
University of Rome “Tor Vergata”,

Via del Politecnico 1, 00133 Rome, Italy
{grillo,lentini,ottaviani,italiano}@disp.uniroma2.com

Abstract. The availability of free Software Development Kits for recent mobile
device platforms challenges many developers in realizing applications for the
growing Smartphone market. In many cases such applications may interoperate
in their working environment using mechanisms similar to the inter-process
communication (IPC) and made available by the mobile operating system.
Unfortunately, mobile devices lack in flexible solutions for making these
communications secure. In this paper we propose a framework to secure the
message exchange with the services installed on Google Android mobile
devices. VASs realized by different providers are discovered, used and
composed by an Application Frame designed for realizing complex goals. We
implemented a prototype of our proposed framework on a real device and we
performed extensive testing to measure the overhead introduced by the
cryptographic operations required to protect the inter process communication.

Keywords: IPC security, Value Added Services, digital certificate, service
interoperability.

1 Introduction

Today’s smartphones are widespread mobile devices that combine advanced features
in managing personal, phone and business data. One of the most interesting features
of smartphones lies perhaps in the possibility to install third party applications; as a
consequence, one can use his/her own smartphone truly as a PC: accessing social
networks, paying bills, checking bank accounts, etc… Smartphone applications are
commonly installed and stored in memory, and in modern devices all the application’s
data are kept safe from the OS by using a sandbox approach. Such approach prevents
other applications to access unauthorized data insulating each application from the
others [4], [5], [6]. However, users and manufacturers may suffer from mobile
malware infections, call-ID spoofing attacks, spam, and problems with third-party
applications or accidents that can cause malfunction of network capacity, disclosure
of sensitive business data and more in general privacy problems such as loss of
personal data.

416 A. Grillo et al.

In this paper we propose a new framework based on Google Android Operating
System (OS) for the realization of several value added services (VAS). We call this
framework SAVED (Secure Android Value addED services). SAVED enables secure
communication between services and applications using such services via Inter
Process Communication (IPC)/Remote Procedure Call (RPC). Each VAS is realized
through an Android Service. The access to such a service requires the execution of an
authentication and authorization phase among the involved parties. Once this initial
phase is completed, the application sets up a secure communication with the service
using a symmetric encryption scheme.

2 State of the Art

Android is a multi-process system, in which each application (and parts of the system)
runs in its own process. Most security between applications and the system is
enforced at the process level through standard Linux facilities, such as user and group
IDs that are assigned to applications [1]. The Android system requires that all
installed applications be digitally signed with a certificate whose private key is held
by the application's developer. The Android system uses the certificate as a means of
identifying the author of an application and establishing trust relationships between
applications. The Android approach grants security of application’s data, and prevents
access to all services developed by others. Every service publishes in its personal
manifest file the permissions required to use the service. One of the permission
settings in the manifest file is Protection level. The Protection level field configures
the security policies required by the service; if the level is set to signature the service
will communicate only with these applications with which it shares the same
developer certificate.

The main advantage of the approach followed in the Android design is that
developers have to focus their attention only on the application, while the OS grants
that all the applications that are not allowed to access the services are prevented from
doing so. This simplification comes at an extra cost: only developers sharing
certificates and private keys can use services already developed in new applications.
This is a huge limitation compared to the growing size of the mall market and the
number of organizations and developers enrolled in publishing applications and
services. According to a very recent survey on the smartphone OS market published
by Gartner [2], both Android and Apple were the only two OSs vendors among the
top five to increase their market share: in particular, Android moved to the fourth
position displacing Microsoft Windows Mobile for the first time and the Android
market has grown 4.4 times in size, going from 10,000 to 20,000 applications in the
first four months of the 2010.

The approach of Android prevents third parties to start using the framework’s
VAS. Developers can use each others’ services sharing certificates and credentials: in
this case, the applications can interact but the security of the whole framework is
granted from a single digital signature; if the developer’s digital signature is stolen a

 SAVED: Secure Android Value addED services 417

hacker could sign his/her own applications, thus getting complete access to all data of
the framework.

Our approach wants to promote the framework scalability and grant secure access
to services developed by other users without the need to share private data. We
propose to insert a new layer that handles security of inter-process communications;
in such layer, trustability is granted directly by the security policy of the framework,
and each application can require access and publish services interacting with the
framework like in a PKI environment. Thanks to SAVED framework it is possible to
face different kinds of threats:

• Service Spoofing: the application refers to a service by simply using an interface
that establishes the name, the package and the methods signatures; if the original
service is replaced on the mobile device, applications that exploit that service are
unaware of the substitution.

• Memory Dump: starting from Android 1.5, a new API has been introduced to
generate a memory dump programmatically. The static method
dumpHprofData(String fileName) of the Debug class generate a dump file that can
be converted with the hprof-conv tool of the Android SDK and, subsequently,
analyzed with different memory analysis tools (e.g., Eclipse MAT, JProfile, etc.).
If a fake application execute the dump periodically and export the dump data using
a connection (e.g., HTTP connection), it is possible to steal the data exchanged
among applications and services.

3 The Framework

SAVED (Secure Android Value addED services) is a framework that grants secure
communication between services without requiring private data sharing. Our intent is
to improve interoperability between applications and services facing the limits of the
Android’s native approach. The purpose of SAVED is to allow applications to use
services developed by others, to add new VAS to the framework or even to create
new applications using already existing VAS. All the interactions performed using the
proposed frameworks will be performed in a secure way. SAVED adds
supplementary security at the process communication level: each application is
accredited to the framework which grants privileges to access in a secure way shared
services and facilities. Single process security provided using sandboxes with the
Android approach is also preserved in SAVED. In our framework we defined two
main entities:

• Application, which provides graphical user interface, and all the logics
implementing the task to be realized. Applications are implemented extending the
Android.Activity class.

• Value Added Service (VAS), which provides to the applications developed using
the framework all the certified services. VASs are implemented as remote services
extending the Android.Service class. The ProxyCA and the ProxyTSA are two
special VAS in the framework; these VASs allow the communication with a
Certification Authority and a Timestamping Authority, respectively.

418 A. Grillo et al.

In order to realize Applications participating to the framework, developers have to
extend specific interfaces and include particular resource packages. When a new VAS
is realized, it is required to export its class package. Such class packages will be
imported from the Applications that will use the services provided by the VAS. The
packages imported will be used to perform inter-process communication. Including
such packages and extending the interfaces will provide the supplementary security
layer that will grant a secure communication between entities and prevent the access
to the services to those applications that are not allowed.

Moreover, we tried to address some best practices to create components
participating to the framework enforcing the required security needs. Some examples
follow:

• Activation code: when the Application/VAS is installed on the device an unlock
code should be required to the user; the Application/VAS will remain locked
(preventing all interactions) until the user will insert the proper activation code of
every entity;

• Use of standard certificate: each component should have a proper X509 digital
certificate signed from a valid Certification Authority (CA), such certificate will be
saved in a keystore inside the component memory area; the component will be
responsible to take care of managing correctly the keystore itself to grant a secure
saving of the other’s certificates;

• Model View Control Pattern: VAS and Applications will take care of
implementing independently graphical user interfaces to be shown to the end user;

• Mutual Authentication: each entity needs to implement a mechanism to grant
mutual authentication. The mutual authentication should be ensured by mutually
exchanging and verifying the digital certificates. Using a handshake schema (e.g.,
TLS handshake) the involved entities exchange their digital certificates, check the
certificates validity through the ProxyCA, and mutually authenticate themselves
(see Fig. 1).

Fig. 1. Mutual Authentication phase

 SAVED: Secure Android Value addED services 419

• Session Authentication: once the entities are mutually authenticated, a session key
(i.e., SK) is shared. According to our approach the SK is generated by both the
Application and the VAS using parameter defined by the two parties (i.e.,
CTRL_A and CTRL_B). Adopting a key agreement protocol (e.g., Diffie-Hellman
protocol) the involved entities agree on secret SK that will be used to encrypt
subsequent communications (see Fig. 2).

Fig. 2. Session Authentication phase

Fig. 3. Session Encryption phase

• Session Encryption: Every VAS allows access to its functionalities only to
“trusted” Applications; trusted Applications have performed successfully the
Mutually Authentication and the Session Authentication phases. In order to enforce
the uniqueness of each interaction with VAS a random value (i.e. Nonce_A) is
used; the confidentiality is granted by encrypting the exchanged data with the SK.

The Application composes the results of different VAS in order to realize a
complex goal. At the end of this phase, the Application interacts with a

420 A. Grillo et al.

timestamping authority through the ProxyTSA in order to securely keep track of
the creation time of the realized goal (see Fig. 3). The sensitive data of the
operation are summarized applying an Hash function (i.e., Op_Hash) and these
data are sent to the Timestamping service.

Mutual Authentication, Session Authentication and Session Encryption represent the
secure core of SAVED framework and should be carefully performed in order to join
the framework.

4 The Framework Implementation

We developed a prototype of the SAVED framework on an Android 1.5 platform. The
main features of the proposed framework are encapsulated into the jar files that
contains two kind of files (i.e., .aidl, .Stub) for the inter process communication.

AIDL (Android Interface Definition Language) is an IDL [3], [4] with which it is
possible to generate automatically the source code that allows two Android
applications to exchange information using IPC. AIDL/IPC interface based
mechanism is similar to Common Object Model (COM) or Common Object Request
Broker Architecture (CORBA). In order to implement an AIDL/IPC service it is
required to perform some steps:

• Create an .aidl file to define the interface (YourInterface.aidl). The interface
defines the access methods and the fields available to a client.

• Add the .aidl file to the makefile and implement the methods of the interface
creating a class that extends the YourInterface.Stub (.Stub file is automatically
generated by the tool) and implements methods declared in the .aidl description
file.

• Publish the interface to clients rewriting the Service.onBind (Intent) method; this
method will return an instance of the class implementing the interface.

Fig. 4. SAVED framework main packages

 SAVED: Secure Android Value addED services 421

This IPC mechanism needs a way to share complex information, such as non-
primitive types, between two entities. In order to achieve this goal Android provides
Parcelable class able to serialize and deserialize complex types.

Fig. 4 simplifies the package diagram of SAVED. The picture shows on top the
following core .jar files:

• pkgApp.jar contains the interface InterfaceApplication that must be implemented
by every class that want to participate SAVED as an Application;

• pkgServ.jar contains the interface InterfaceService that needs to be implemented
by every class that want to be a VAS in the framework;

• pkgCA.jar carries the IProxyCA.aidl with his relative .Stub file; these files allow
the communications between the entities of SAVED and the ProxyCA. Moreover,
the jar file contains the parcelable class ReqX509 that is mandatory for the
communication;

• pkgTSA.jar packages the IProxyTime.aidl with his relative .Stub file to grant
communication with the Proxy TSA;

• pkgCommBase.jar contains the three base parcelable files that grant the
communication between the Application and the VASs, namely
CertificatePack.java, KeyPack.java and ResourcePack.java.

In order to grant to an Application to contact and receive services from all the VAS
inside the framework, and so assemble the services offered from the VAS to create
complex applications, it is required to install the ProxyTSA and the ProxyCA Android
packages (apk); these entities are shown in the lower left half of Fig. 4.

ProxyCA is one of the underlying VASs that exist in the framework. All entities
must submit to the ProxyCA the digital certificates they receive from their
communication partners. The service contacts a web service that works as an online
Certification Authority, inserts the certificate in a XML file and through a secure
HTTP connection (i.e., HTTPS) asks for the certificate verification. The web service
checks the certificate validity and answers with an XML response.

ProxyTSA is another basic VAS of SAVED. As the ProxyCA the ProxyTSA takes
in account the communication with an external partner, the timestamping web service.
All the communications between the proxy and the timestamping web service are
managed through XML messages on HTTPS.

A Building a Value Added Service

• Create a new Android project with a class that extends the native Service class;
• Import in the project:
• pkgServ.jar,
• pkgCommBase.jar,
• pkgCA.jar;
• The main class of the project must implement InterfaceService interface class and

consequently all his methods;

422 A. Grillo et al.

• Create the graphical user interface;
• Create the IServiceX.aidl in the project as described previously;
• Create and export pkgXVAS.jar containing IServiceX.aidl and the corresponding

.Stub file generated automatically;
• Service class must implement, all the standard methods of the Android native

Service class, and the .aidl interface with all the methods defined through the
description language;

• Release the service as an .apk file for the installation on the device.

B Building an Application

• Create a new Android project which contains a class that extends the native
Activity Android class;

• Import in the project:
• pkgApp.jar,
• pkgCommBase.jar,
• pkgCA.jar,
• pkgTS.jar;
• The main class of the project must implement the InterfaceApplication interface

with all his methods;
• Create a graphical user interface to allow the user to interact with the Application;
• Import from each VAS you want to use in the Application the corresponding jar

file (i.e., pkgXVAS.jar)
• Use each service in a proper way, taking care of managing and releasing correctly

the connection with the involved VAS. Note that early versions of Android
platform serialize the access to the services.

• Release the Application as an .apk file for the installation on the device.

Assume we are in a scenario where we have one Application and one VAS, each one
with its own digital certificate signed by different CAs. Note that in this scenario,
none of the entities “knows” the public key or the certificate of the counterpart. If the
two entities wish to cooperate, they need to authenticate each other. After contacting
the ProxyCA to verify the communication partner trustability (cfr. the Mutual
Authentication phase), an asymmetric cryptography session to exchange the session
key can be started (cfr. the Session Authentication phase). Finally, the session
between the involved parties is encrypted using symmetric cryptography (cfr. the
Session Encryption phase). The need to switch from asymmetric to symmetric
cryptography is due to the performance overhead of asymmetric cryptography:
indeed, the switch from asymmetric to symmetric cryptography improves the
performances of the whole framework reducing the effort due to
encryption/decryption operations.

 SAVED: Secure Android Value addED services 423

5 Use Cases

The framework described in the previous sections, can be used to develop complex
Applications or VAS interfacing basic services in a secure, certified and non-
repudiable way. In this section, we will detail two use cases.

A Payment VAS

An explicative use case, which requires security and non-repudiability of the
operations can be the access to money transfer services and management of the
related information.

A payment gateway (e.g., PayPaltm [8], or Google checkout [10]) eases the transfer
of information between payment portal and frontend processor. A new trend (e.g.,
PayPal Mobile Checkout [9]) for payment gateway is to provide its service to the
growing population of mobile users.

A developer who has implemented an application that require any form of money
transfer (e.g., buying e-books, music, games, tickets, … or booking a service) needs
to interface his/her application with all available payment gateways. A payment
gateway aims to reach as many developers as possible in a simple and secure way,
preserving its distinctive user interface. Using SAVED, developers can interface their
e-commerce Application with the VASs exposed by different payment gateways (see
Fig. 5).

Fig. 5. The Payment VAS Use Case realized in the SAVED framework with three payment
opportunities (i.e., Google Checkout, PayPal and Credit Card)

After inserting the payment gateway VAS in our framework, all the
communications between SAVED Applications and VAS will be performed in a
secure way. The VAS using the framework will transparently provide API ready to
use in the Application.

424 A. Grillo et al.

B Event Certification

Producing digital evidence through a report can demonstrate other advantages of
using Application and VASs belonging to the SAVED framework. To preserve in
time and space a digital document, some accessory information are required to keep
in time the authenticity of the digital document and the proof of the evidenced fact.
The user probably could produce, as evidence, a document enriched by: a picture of
the place where the fact happened or of the fact itself; some georeferenced
information; a timestamp; a voice note; and a text note characterizing the digital
document.

A modern mobile device, such as a Smartphone, is the most suitable tool to reach
the use case’s goal as it is equipped with all the hardware capabilities to perform the
following services:

• GPS Position; that allows the user to get his/her current location on earth, the two
GPS coordinates (latitude and longitude) will be used from the Application to be
attached to the digital document; Android provides two classes to interact with the
GPS device and access such coordinates:
− LocationManager which handles the access to the location service of the system.

The location service provides periodically updates of the current location of the
device on the earth and alerts the user when he/she is in the proximity of some
location on earth.

− LocationListener is used to manage the alerts and the changes of latitude and
longitude coming from the LocationManager class. The operating system calls
the LocationListener methods automatically.

• Pick a photo; Android provides some classes and methods to access the camera
installed in the device, to present a preview of the picture to the user, to get the
picture clicking a button, to save the picture in the device filesystem and to handle
the camera settings. The classes used to perform all these operations are:
− SurfaceHolder.Callback, represents the user interface to show the preview of the

picture the user is going to take.
− Camera, which handles all the camera actions such as connect/disconnect,

handle the settings and getting data to be converted in a manageable format.
• Getting an audio record; is the service providing to the user the possibility to get an

audio record, using the device microphone; the class used to get access to
audio/video recorder is the MediaRecorder class.

• Getting a text note; such functionality has not been implemented as a VAS, but like
a small extension created using an EditBox.

The Application realized for this use case simplifies in a GUI the interaction with the
VASs (see Fig. 6) and generates a data package containing a picture, a GPS location,
a text note and an audio message. Such data package will be processed and sent to the
TSAProxy that will certify the time in which the digital document has been created as
it is connected with a Time Stamping Authority.

 SAVED: Secure Android Value addED services 425

The VASs implemented to test the framework can be used in a plethora of different
contexts; a lot of applications currently on the Android Market use one of the
securized services in a non secure way.

Fig. 6. Screenshot of the Application that realizes the Event Certification use case

6 On a Real Device

The framework has been tested on an Android HTC Magic device. The device was
equipped with Android 1.5 OS, 3.2 M-pixel camera, Integrated GPS Antenna, Wi-Fi:
IEEE 802.11 b/g. Using Android ADB tool different .apk, created using Eclipse IDE,
have been installed on the HTC Magic. The testing phase has highlighted a slower
response of the Applications due to security operations, inter-process communications
via AIDL interfaces and parcelable classes. We executed some performance tests
using our prototype. We aimed at measuring the time computational overhead
introduced by the use of SAVED, and thus we measured the time needed to execute
security functions. In particular, we have considered the overhead related to each one
of the phases described in Section 3.

Table 1. Time overhead for the framework phases

Phase Time (ms)
1. Mutual Authentication* 1197

1. Mutual Authentication 446

2. Session Authentication 257

3. Session Encryption 795

Total Framework Overhead 1498

In Table 1 we can see the time overhead introduced by SAVED. The first row of

the table refers to the first execution of the Mutual Authentication phase, while the
second row refers to the subsequent executions. In the first case the more time
required is justified by the need to update the keystore with the new digital
certificates; this delay is paid once. The total framework overhead amounts to 1.5
second preserving the usability for real use cases.

426 A. Grillo et al.

We have chosen to test the framework on a HTC Magic that is one of the earliest
models of Android, so the performance issues are more evident; clearly, new devices
are more responsive and performance problem will always be less significant.

The testing phase has been really useful to verify the effectiveness of the
framework and to solve some side issues due to the complexity of the interaction
between processes in a real mobile device: for example, we noted that the device puts
the application in stand-by mode when it notices a display rotation, this is because the
OS calls the application that rotates the display, and later gives back the control of the
system to the running application. This issue has been solved using
onSaveInstanceState and onRestoreInstanceState when the application is put in stand-
by and woken up from the OS. Implementing such methods prevents data loss due to
changes in the state of the application.

7 Conclusion

In this paper we have presented a new framework called SAVED in which
applications and services taking part can communicate and share safely functionalities
and facilities. We have implemented a prototype of SAVED and we have tested it on
a real device. The operational capacities of the framework have been verified.
Using the proposed framework enables complex use cases, with a range of value
added services actually certified. Future extensions of the framework include: the
enhancement of the discovery mechanism through which each Application receive
information about SAVED VAS available on the device; a mechanism to audit the
history of each VAS or Application, so as to keep track of all kinds of actions and
information exchanged between the entities of the framework.

References

1. Android developers, “Security and Permission” (June 2010),
http://developer.android.com/guide/topics/
security/security.html

2. Gartner Inc., “Gartner Says Worldwide Mobile Phone Sales Grew 17 Per Cent in First
Quarter 2010” (June 2010), http://www.gartner.com/it/page.jsp?id=1372013

3. Bachmann, F., et al.: Documenting Software Architecture: Documenting Interfaces.
Sofware Enginerring Institute, Carniege Mellon (2002)

4. Lamb, D.A.: Sharing intermediate representations: the interface description language,
Ph.D. Dissertation, Carnegie-Mellon University, Department of Computer Science (1983)

5. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going Beyond the Sandbox: An
Overview of the New Security Architecture in the Java Development Kit 1.2. In:
Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey,
California (December 1997)

6. Burns, J.: Mobile application security on Android, Context on Android security, Black Hat
(2009)

 SAVED: Secure Android Value addED services 427

7. Burns, J.: Developing secure mobile applications for Android, iSEC Partners (October
2008)

8. PayPal, Adaptive Payments Guide (June 2009), PayPalIntegrationCenter
https://www.x.com/community/ppx/documentation

9. PayPal Mobile Checkout, PayPal Mobile Checkout Developer Guide (October 2009),
PayPalIntegrationCenter https://www.x.com/community/ppx/documentation

10. Google checkout, About Google Checkout, http://checkout.google.com

	SAVED: Secure Android Value addED services
	Introduction
	State of the Art
	The Framework
	The Framework Implementation
	Use Cases
	On a Real Device
	Conclusion
	References

