

M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 39–58, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Tool Support for Constructing Mobile Mashups

Lasse Holmstedt1, Tommi Mikkonen2, and Mikko Terho3

1 Nokia Qt Development Frameworks
Invalidenstrasse 117, Berlin, Germany
lasse.holmstedt@nokia.com
2 Tampere University of Technology

Korkeakoulunkatu 1, Tampere, Finland
tommi.mikkonen@tut.fi

3 Nokia Devices, Visiokatu 5, Tampere, Finland
mikko.j.terho@nokia.com

Abstract. The ability to instantly publish software worldwide, and the ability to
dynamically combine data, code and other content from numerous web sites all
over the world has opened up entirely new possibilities for software
development. In web terminology, a web site that combines (“mashes up”)
content from more than one source into an integrated experience is referred to
as a mashup. At present, the development of mashups usually relies on the tools
for composing server-side software, and off-the-shelf browser is commonly
assumed as the runtime environment. However, when considering client-side
mashups that are well-suited for mobile devices due to local processing and
associated interactivity, numerous complications exist. One of these problems is
available tool support, which is commonly targeted to desktops and browsers.
In this paper, we introduce a tool for developing client-side mashup
applications. In spirit, the tool is similar to tools available for mainstream
mashup development, but all the actual processing is done on the client side
using a special purpose runtime environment.

Keywords: Web applications, mashup development.

1 Introduction

In the past few years, the Web has become a popular deployment environment for
new software systems and applications such as word processors, spreadsheets,
calendars and games. In the new era of web-based software, applications live on the
Web as services. They consist of data, code and other resources that can be located
anywhere in the world.

The ability to instantly publish software worldwide, and the ability to dynamically
combine data, code and other content from numerous web sites all over the world will
open up entirely new possibilities for software development. In web terminology, a
web site that combines (“mashes up”) content from more than one source is
commonly referred to as a mashup. Mashups are content aggregates that leverage the
power of the Web to support instant, worldwide sharing of content.

40 L. Holmstedt, T. Mikkonen, and M. Terho

Today, mashups are run inside a web browser. However, because the web browser
was originally designed to be a document viewing tool – not an environment for
highly interactive applications – there are challenges when running web applications
and mashups that behave in a highly interactive fashion, especially in mobile devices.
Support for user interface widgets can also be limited. Furthermore, poor performance
of the web browser can be a major issue especially when running mashups in mobile
devices. On the other hand, success stories of application stores by Apple and others
have shown that users wish to use content and applications that have tight integration
with the mobile platform. Consequently, it seems more fruitful to run mobile mashups
predominantly on the client side, as already proposed in [1, 2], to combine the best
possible performance and benefits of the services residing in the web.

In this paper, we introduce a tool created for easing the development of mobile
mashups that are predominantly run on the client-side. The tool has been constructed
using Qt, an industry-scale cross-platform environment, which has been rapidly
extending into mobile devices. In terms of background, the work is based on our
previous research results [1, 2], and on extending tools that the Qt environment
provides for composing compelling applications.

The paper is structured as follows. Section 2 discusses mashup development in
general. Section 3 introduces Qt and associated tools that were used in our
implementation. Section 4 provides the tools for composing client-side mashups, and
Section 5 introduces some sample mashups composed using these tools. Section 6
provides a discussion on our experiences, and Section 7 finally concludes the paper
with some final remarks.

2 Mashup Development

Mashups – systems that amalgamate existing content from the web – can be
composed manually using the classic DHTML technologies. However, since the
actual representation of data, behavior and content can vary dramatically between
different web sites, manual mashup construction can be extremely tedious, fragile and
error-prone.

A number of tools are available for mashup development. To begin with, mashups
can be developed using general-purpose web application development platforms.
Unfortunately the capabilities of such general-purpose web programming
environments are still somewhat limited in features, especially when considering
flexible extraction and combination of data from different web sites, which is
important for mashup development. Most general-purpose web content development
tools bear the same (or similar) shortcomings. Finally, there are also tools that have
been intended for mashup development, many of which are more or less experiments.
In such tools, there are some common emerging themes and trends [2]:

Using the web browser not only to run applications/mashups but also to develop
them. For instance, and Yahoo Pipes (http://pipes.yahoo.com/pipes/) and Google
Mashup Editor (http://code.google.com/gme/) use the web browser to host the

 Tool Support for Constructing Mobile Mashups 41

development environment and to provide seamless transition between the
development and use of the mashups.

Using visual programming techniques to facilitate end-user development. Visual
“tile scripting” and “program by wire” environments are provided by Yahoo Pipes,
for example.

Using the web server to host and share the created mashups. Many mashup
development tools store the created mashups on a web server that is hosted by the
service provider.

Direct hook-ups to various existing web services. Since the Web itself does not
provide enough semantic information or well-defined interfaces to access information
in web sites in a generalized fashion, most of the mashup development tools include
custom-built hook-ups to existing web services such as Twitter (http://twitter.com/),
Digg (http://digg.com/), Facebook (http://www.facebook.com/), Flickr
(http://www.flickr.com/), Yahoo Traffic (http://developer.yahoo.com/traffic/), Google
Maps (http://maps.google.com), and various RSS news feeds.

Despite the ever-increasing role of the web browser as target platform for mashups,
the availability of a web browser is not an essential requirement for mashup
development. On the contrary, there are technologies that utilize custom-built,
special-purpose web runtimes that can bypass security limitations associated with the
browser and can offer better performance, e.g., by performing the client-side mashup
generation using native processing capabilities. For instance, mashups intended for
mobile devices often utilize a custom-built client environment. Similarly, tools used
for composing mashups need not be run inside the browser, but they can also be
implemented as extensions of generic software development environments.

Our approach to the development of client-side mashups is based on a runtime
environment for client-side mashups. The fashion we have implemented the system
builds on top of Qt and our earlier activity, Lively for Qt (http://lively.cs.tut.fi/qt/) [1],
as well as experiences on mobile mashups discussed in [2].

3 Qt as a Mashup Environment

Qt (http://www.qtsoftware.com/) is an industry-scale cross-platform environment that
supports a rich set of APIs, widgets and tools that run on most commercial software
platforms. In addition, Qt has been used in various embedded devices and
applications, including in particular mobile phones, but also PDAs, GPS receivers and
handheld media players.

From the technical viewpoint, Qt is primarily a GUI framework. It comprises a rich
set of widgets, graphics rendering APIs, layout and stylesheet mechanisms. In
addition, tools are provided that can be used for creating compelling user interfaces
that run in a wide array of target platforms.

Qt has been gradually expanded to offer a range of connectivity facilities as well.
Networking, filesystem access and web browsing capabilities are all available,
together with scripting, multimedia and XML processing frameworks. While Qt is
primarily targeted for C++ development, bindings to its libraries are also available for

42 L. Holmstedt, T. Mikkonen, and M. Terho

other languages, officially for Java and unofficially for several others, perhaps most
notably Python.

3.1 Qt Creator

Intended to make Qt development easier, Qt Creator is a multi-platform IDE for
several languages. While it primarily supports C++, other languages such as
ECMAScript are also supported. The architecture is entirely plug-in based, including
the components shipped with the editor itself. Some of the most important features are
integrated help for the Qt Framework, a code editor and Designer, a tool for visual
GUI design. Designer is intended for building traditional desktop interfaces and
provides limited support for creating complex, non-standard interfaces. It is best used
for its original purpose and requires a fair amount of understanding how interfaces
created with Qt work, as its widget and tool names are derived from their Qt class
counterparts. Qt also has a concept of styles akin to CSS, but only a text editor is
provided to the user in this respect. However, the most important part of the tool,
laying out widgets, is made easily approachable with a standard drag-and-drop
interface, shown in Figure 1.

Fig. 1. Qt Designer default interface

From the technical point of view, Qt Creator is very extensible with its plug-in
interface, but the interfaces are not documented well. In effect, a plug-in author has to
study the interfaces through the numerous existing plug-ins and examples provided by

 Tool Support for Constructing Mobile Mashups 43

the framework. The Designer plug-in, on the other hand, has only a handful of plug-in
interfaces. While there is decent documentation for all of them, there is not enough
built-in extensibility. Due to such technical restraints, implementation of extra
functionality had to be made by directly modifying the Qt Designer code, in effect
branching it. Additionally, a separate Qt Creator plug-in was created to facilitate
creation of mashups through a combination of visual programming and traditional
scripting. Combined, these plug-ins enable loading, modification and display of data
with minimal effort.

3.2 Qt for Client-Side Mashups

There is a strong connection between Qt and web applications. Qt libraries include a
complete web browser based on the WebKit (http://webkit.org/) browser engine.
Moreover, the necessary DOM and XML APIs are included to parse, manipulate and
generate new web content easily. In addition, Qt includes a fully functional
ECMAScript [3] (JavaScript) engine called QtScript. The presence of a JavaScript
engine is important, since JavaScript – along with XML – is the lingua franca of the
Web that is used by popular web service APIs such as the Google Maps API
(http://code.google.com/apis/maps). Powerful debugging tools are also available for
QtScript, making it more attractive for developers. However, these debugging tools
have not yet been fully integrated to the Qt Creator IDE, making their usage more
difficult than the ones intended for C++ debugging.

Qt also offers excellent connectivity facilities to network resources, as well as an
SQL database interface and filesystem access classes. In particular, network access is
made as simple as making requests, without having to care for the protocol, provided
that it is supported. HTTP, FTP, TCP and UDP are supported out of the box, as well
as SSL-secured connections.

Based on the above, Qt lends itself to a client-side mashup environment. The
mashups can leverage the rich Qt APIs for information visualization and processing.
In addition to binary image and video formats such as GIF, JPEG, PNG and MPEG-4,
textual representations such as XML, CSV (Comma-Separated Value format), JSON
(JavaScript Object Notation) and plain JavaScript source code play a central role in
enabling the reuse of web content and scripts in new contexts. Qt provides excellent
capabilities for processing such information.

In terms of pure functionality, Qt has a definite upper hand over pure web-based
mashup development. Its WebKit component enables the usage of any web-based
mashups, and allows for their further manipulation through the WebKit's DOM
interface and JavaScript engine. Existing mashups can also be reinforced with local
filesystem content and results can be locally cached and saved, allowing for faster
access on subsequent runs. Entirely new possibilities also realize – building mashups
using data sources readily available on the operating system, such as address book
data, GPS location and user-created content such as images, video, documents and
other such content, becomes possible. Examples of mashups utilizing this information
could be fetching user-relevant content from the web, like music, while the user's
personal preferences could be analyzed locally from their music library. Other
examples include using user's location data as an input for a web service offering
travel information of the surroundings, such as famous sights.

44 L. Holmstedt, T. Mikkonen, and M. Terho

Qt's main advantages are its high performance and clear API, which encapsulates
most of the difficult and tedious tasks involved with network connectivity or
filesystem access. Additionally, the cross-platform nature of Qt enables deployment
to a wide range of platforms. However, to make development faster, a higher
concentration on QtScript is needed instead of vanilla C++, while still maintaining the
native performance of UI rendering and data access through script bindings.

4 Client-Side Mashup Tools

The mashup creation process for Qt Creator could be described as follows – take data,
manipulate it and assign it to a display widget. Because Qt Creator already offers a
powerful GUI design tool, Qt Designer, mashup integration with it was decided upon.
A data model editor, similar to that of Yahoo! Pipes with a visual programming
interface, was also created. In the following, this visual editor is called Mashup
Editor. Although some extensions had to be built into Qt Designer to enable building
mashups, the modifications are not called by any name in particular. Figure 2
illustrates the intended mashup creation process.

Fig. 2. Creating a mashupping application

The mashup creation part is not always necessary, as previously created mashups
are reusable. Also, Qt Creator is able to use the compilers installed into the system
and offers and simple button interface for compilation, further easing the process.
Therefore, creating simple data-displaying programs can be as simple as dragging and
dropping content to widgets and pressing a button to compile the generated code.
Illustrations of both the Mashup Editor and the Qt Designer extensions can be found
in the following sections.

4.1 Mashup Editor

Mashup Editor is a visual programming tool that enables loading, modification and
display of data in a graph-like interface. The editor was created from the ground up as
a plug-in for Qt Creator, so that existing functionality of the IDE and interaction
between form design and mashup creation could be harnessed. The tool creates two
types of XML files. Mashup files describe how various data and script elements
interact with each other, and Mashup views, which describe how the visual mashup

 Tool Support for Constructing Mobile Mashups 45

elements, denoting either a source of data or a script, are laid out on the screen. This
separation was made because the content of the view files is not needed in order to
process the mashup data. A screenshot of the editor used to create this markup is
shown in Figure 3.

Fig. 3. Screenshot of the Mashup Editor for the Qt Creator

As the tool was originally intended to be used to aid in software prototyping, the
data type was limited to text. XML based documents are preferred, because Qt
contains good XML support, and because a lot of the Web content is XML based.
Furthermore, converting other types of data to valid XML is usually a rather
straightforward process. However, no limitations to the document contents are made,
and the data processor of the mashups could just as well process binary files.
Regarding the scripting, QtScript – essentially JavaScript with some minor deviations
regarding libraries – is used, as it is an integral part of Qt itself. It is enhanced with a
collection of libraries created with the experimental QtScriptGenerator, a tool which
creates bindings from most of the available Qt objects into QtScript, exposing more
Qt functionality to the script engine.

In Figure 4, a simple mashup, which combines the contents of two RSS feeds into
one XML listing, is shown. In the row above, two RSS icons have their output nodes
connected to the input nodes of a script processor. A single output can have multiple
outgoing connections, but an input can have only a single incoming connection.
Additionally, an output node of an XML element, such as the RSS feed, can be

46 L. Holmstedt, T. Mikkonen, and M. Terho

modified with XQuery expressions, which are natively supported by Qt. The script
element contents can be either written by the user or a previously saved script can be
assigned. When creating a new script, all boilerplate code is automatically generated
to assist the user. New inputs and outputs can be created to script elements, and to
other appropriate elements as well.

Fig. 4. A mashup system concatenating two RSS feeds

A powerful feature of structuring mashups and building them from pre-made parts
is that mashup elements can be placed inside containers, and containers can be also
placed inside each other. The containers act like other mashup elements – they have
input and output nodes, and allow such connections to be made. Otherwise, they
behave like black boxes – only the information returned as output from them is seen
by the rest of the elements. This considerably facilitates building complex mashups or
reusing existing components.

After mashups are saved, they can be set as templates, after which they are
available as an otherwise limited list of building blocks. The mashup elements
available by default are XML, RSS, Container, Script and YahooGeoCoder.
Additionally, support for a triple-store database called Piglet exists. The capabilities
of the most primitive items, XML and RSS, are simple. They are able to load data
from an URL understood by QNetworkAccessManager, or local files, specified by
their full path. YahooGeoCoder is an example implementation of a REST-based
element, which is able to receive place names or addresses as inputs, sends data to
Yahoo's Geocoding service [4], and returns GPS coordinates.

A developer can create new native items, and new script templates can be
introduced as well by installing them in the appropriate directory.

To facilitate manipulation of XML based data, a drag-and drop-based XQuery
editor exists. While not able to handle complicated logic, several common actions
such as element and attribute selection are in place. Drag and drop is extensively used
in other parts of the Mashup Editor interface, too. Examples of such behavior include

 Tool Support for Constructing Mobile Mashups 47

dragging and dropping web browser bookmarks and text containing URLs into the
editor, which automatically creates XML elements with URLs pointing to the given
sources.

With the features listed above, the mashup editor is able to produce XML-
compliant files that describe how data is to be processed. Next, we take a look at the
extensions built into Qt Designer, which enable attaching these mashup instructions to
an UI created with Qt Designer.

4.2 Qt Designer Extension

Extensions built on top of Qt Designer enable the user to set data on a number of item
view widgets [5]. Due to the lack of an extension interface built for such a purpose,
the whole Qt Designer code was branched and necessary modifications were built on
top of that. While this posed some new challenges, such as maintainability and a large
overhead due to lack of interface documentation, a relatively easy-to-use drag-and-
drop interface could be built.

The extension implements a similar interface for data models as seen earlier in
Figure 1. This data model list can be accessed through a toolbar button or a keyboard
shortcut, in similar fashion with the existing tools. The mashup files that are
enumerated in the data model list come from two different locations: user's home
directory and the current Qt project's directory. The user's home directory contains
mashup templates, which can also be utilized directly from within Designer, while the
current project directory typically contains all project-specific mashups. While the
user cannot directly modify mashup templates, an editor for project-specific ones can
be opened by double-clicking the desired item.

To assign a mashup into a widget, the user needs to first create an item view
widget that inherits the QAbstractItemView class on the form canvas by dragging and
dropping it there. Qt ships with a number of such widgets, and the user is free to
subclass their own, provided that they follow the Model-View-Delegate pattern used
in Qt [6]. Next, the user is able to drag and drop a mashup on top of the view item.
Provided that the mashup engine can load the data as instructed in the XML files, the
Designer interface will display the XML based per-item output in the view.

As an example of subclassing QAbstractItemView, a Nokia Maps Item View
widget was created, which is able to parse location data in several XML based
formats and project these points as points of interest (POI) on the map. Such a widget
cannot display most text-based data in a sensible manner, but for location-based
content, it is very effective.

The Model-View-Delegate pattern also allows for the user to set delegates into
views, which is also implemented in drag-and-drop style in the extension. Delegates
are simply components that instruct how the data is displayed for per widget, or by its
rows and columns. The Designer extension implements the ability to set a per-widget
delegate, which essentially means that the whole widget will be rendered with the
instructions of a single delegate. More detailed delegate processing can be done on
the code level.

48 L. Holmstedt, T. Mikkonen, and M. Terho

When a user double-clicks on an item view widget or presses a button in the
toolbar of the editor, the data and list toolbox is replaced with a list of available
delegates. The delegates are stored as binary files in the QPicture format provided by
Qt [7], which lists 2D painting instructions in a sequence.

Creating these delegates is difficult, however, since no editor is available for creating
QPicture content. While delegates are fairly straightforward to create in C++ with an
average lines of code less than 50, it still requires a knowledge that is out of place for a
GUI editor. The reasons for not building a delegate editor are addressed later in the paper.

5 Sample Applications

To demonstrate two different types of applications that can be created with the aid of
the mashup editor, two samples are provided. One uses a map widget to display data,
while the other relies on standard item view widgets and delegates to display latest
news items from an RSS feed.

5.1 RSS Newsfeed Combiner Mashup

The first sample application is a simple list of news items from two RSS services –
BBC World and AP News. While RSS is a very popular and fairly simple XML based
syndication format, it offers a comparison with already existing tools that allow users
to take existing content, modify it, and display it on a widget. Because wizards to
create new projects are built into the mashup editor, we concentrate on how the
mashup is built with the editor. To add both of the BBC World and AP News feeds to
the mashup canvas, the user drags and drops two RSS elements to the canvas (Figure
5, left). To assign URLs to them, the user can copy the URL into each element's
respective panel (Figure 5, right).

Fig. 5. Adding RSS feeds to the canvas and modifying their properties

Next, the user needs to combine the data of the two feeds by concatenating them.
For this duty, the user can add a new script element (Figure 6) and select which
template to use by double-clicking on it (Figure 7). A template for concatenating
XML content exists, and is logically called Concatenator. The user can also write
their own script and freely modify the script after selecting the template, as a copy is
made out of them.

 Tool Support for Constructing Mobile Mashups 49

Fig. 6. Adding a script processor to the canvas

Fig. 7. Creating a new script out of a template

Next, two input and a single output are created for the script element to provide it
with data. The output is connected with the output of the container mashup itself
(Figure 8, left side) and the inputs are similarly connected with the outputs of the RSS
items (Figure 8, right side). The connection happens in a drag-and-drop fashion,
starting from either end of the node pair and finishing at the other end.

Finally, the user simply drags and drops the data model on top of the list view,
double clicks it and assigns a delegate which is able to render the RSS data in a
sensible manner. As creating delegates themselves is somewhat difficult, the editor
currently ships with a number of delegate templates, including renderers for the
popular RSS and Atom feed types. This process is shown in Figure 9.

50 L. Holmstedt, T. Mikkonen, and M. Terho

Fig. 8. Connecting mashup subsystems together

Fig. 9. Dragging and dropping a data model on a widget

 Tool Support for Constructing Mobile Mashups 51

To briefly analyze this process, it can be still enhanced by removing the need to
add inputs and outputs manually – it is only required because the current
implementation lacks functionality in this respect. However, even at the prototype
stage of the tool, this sample outlines that only a few minutes of work is required to
build a simple but fully working program that is able to display data. Experience has
shown that most cases are not so simple, but even in non-trivial cases, the majority of
time was spent in fetching the desired data from a broken XML-like file and
reformatting it to make it compliant. Such examples included generating route
suggestions from a Finnish national railway web service (http://www.vr.fi), as well as
using a Finnish combined public transit website (http://www.matka.fi) for a similar
task. Writing scripts to parse the data took several hours in both cases, which
illustrates one of the standing problems with the whole concept of mashups.

5.2 GPS Coordinates from Addresses of Contacts in Local Database

The second sample application uses a database called Piglet, which is a triple-store
database originating from Wilbur [8], a toolkit for programming web applications with
XML and Resource Description Framework (RDF) [9] support. Piglet is also based on
RDF and as such, its user can add any kind of metadata into any kind of object. Out
Piglet database included a contact book, in which each contact had an address in textual
format. This text could then be sent to a Yahoo's Geocoding service in order to fetch the
location in GPS coordinates. Each user is also associated with a distinctive URI within
Piglet, which allows users to point and click on the points of interest on the map,
opening up more information about each user. However, a similar scenario is loading up
any data with a postal address on a map, so this example is not restricted to a certain
data engine. The illustrations below display creating this mashup.

The user first adds a Piglet element to the canvas and adds an XML namespace
filter to select only contacts (Figure 10). Then, the user can add a new output and
create an XQuery for it to filter out everything but the addresses. Next, a Geocoder is
added, and connected to the Piglet's address output (Figure 11). Finally, a script
element is added, using a template XMLMerge, which takes two XML inputs, called
inner and outer, and inserts the inner input's element into the outer data source. The
element names can be specified in the properties (Figure 12).

After connecting the Geocoder result node with the inner input and the unmodified
data from Piglet in the outer input (Figure 13), the mashup is finished. The
differences lie just in usage of data sources and scripts. Figure 14 shows what a
compiled program using the created mashup looks like.

The mashup engine library heavily relies on XML parsing and QtScript, both of
which are likely to cause a performance penalty. The first sample application,
combining two RSS feeds into one and displaying it, was implemented with standard
Qt for comparison. Because the performance hit happens almost exclusively on
initialization when plugins have to be loaded and mashup files have to be parsed, the
initialization time for a mashup-engine powered feed displayer was measured –
2227ms on average. A pure C++ implementation took only 1149ms, so the execution
time is nearly doubled. Most of the extra time accounted for is spent loading external

52 L. Holmstedt, T. Mikkonen, and M. Terho

libraries that handle additional QtScript functionality provided by QtScriptGenerator
and parsing XML and script files. Were these additional QtScript libraries part of Qt
itself, this loading time would not be experienced. In the light of these numbers, a
more effective instruction storage format is also desirable over XML, together with
optimizations to the mashup engine itself, in particular regarding library loading.

Fig. 10. Creating Piglet data source

Fig. 11. Modifying Piglet data source properties

The vanilla implementation of the RSS feed reader was approximately 500 lines of
code. Most of the code deals with XML processing and delegate rendering that are
non-reusable by themselves. With the mashup engine and the Qt Creator extensions,
the required amount of C++ programming is reduced to zero lines, provided that the
wizards in Qt Creator are used. Even without the wizards, the user only has to write
about 4 code lines per program, consisting of boilerplate initialization code.

 Tool Support for Constructing Mobile Mashups 53

Fig. 12. Adding a Geocoder and fetching address data from the Piglet

Fig. 13. Mashup that takes address data of contants, gets GPS coordinates, and appends them

54 L. Holmstedt, T. Mikkonen, and M. Terho

Fig. 14. Finished application using contacts address mashup

6 Discussion

At present the tool we have implemented is experimental software, and it is not ready
for prime time use. However, even in its present condition it demonstrates that one
can rapidly develop client-side mashups that combine data from the Internet.
Moreover, since we are using a special-purpose runtime environment, the tool is not
bound to the restrictions of the browser but can freely access different web sites and
internal data that is only available in the device.

6.1 Implementation Restrictions

There are certain use cases to which even the current prototype of the mashup editor
is more than suitable for. Modifying data with XQuery and ECMAScript is easy for
anyone with a rudimentary understanding of the said technologies, and for those who
are not, templates are available for use. Consequently, extending functionality is easy,
which is something that most of the existing mashup systems have also done well.
Map mashups could be argued to be easier than with competing technologies, as
coordinate-containing data can be simply dragged and dropped on the widget. For
interaction, normal programming is still required, but Qt Designer provides some
ailments to this respect as well, namely visual connection of signals and slots.
Displaying valid XML-compliant data is also very easy, provided that there is a

 Tool Support for Constructing Mobile Mashups 55

delegate available. However, therein lays one of the biggest drawbacks with the
current approach - the difficulty around creating delegates for item view widgets.
Some item views, such as a map widget, do not even require additional delegates to

display data, but for the majority of cases, this poses a greater problem as
displaying even text is difficult. Although initially planned, no delegate editor was
built as Nokia changed the development direction of Qt, including next-generation
item views, which did not follow the Model-View-Delegate pattern.

In addition, a declarative UI toolkit especially targeting mobile devices, called Qt
Quick, is being built as well, which allows for creating interfaces with a simple
markup, in addition to a GUI editor, reuse of created interfaces, as well as
programming of interaction within the UI. One of the core differences between
traditional and declarative development is that the latter is based on 2D graphics
rendering, while the former is based on standard widgets provided by the
underlying operating system. As such, the declarative approach allows for far more
flexibility and possibilities, while the widgets make it possible for the UI to adapt
to the operating system being deployed to. As a language, Qt Quick resembles
JSON notation of JavaScript and it has been perceived as easy to learn also to those
with no prior JavaScript experience, due to its very hierarchical structure.

Currently, Qt Quick seems to be the most interesting future development direction.
The mashup editor and Qt Quick seem to complement each other as technologies,
as Qt Quick currently supports displaying data from models, and building UIs
around already available data requires no C++ knowledge, further easing the
development of mashup applications. In addition, making mashups even with plain
Qt Quick is possible, thanks to its XML and XQuery-processing capabilities. In
real-world stress tests, Qt Quick performs 60 FPS on devices such as N900 without
additional optimization work, so the CPU power of the device is freed for data
acquisition and processing for the need of mashups and application business logic.

For what comes to the implemented Qt Creator extensions, they are on the prototype
stage. While they work reasonably well on both OS X 10.6 and Ubuntu 9.10 with
distribution packages also created, a fair amount of work is to be done for
productization. The groundwork is laid out, however, and the mashup engine itself
is only in need of performance optimizations.

6.2 Mashup-Related Restrictions

Another, much more difficult problem is related to the nature of mashups. That is,
while manipulating data from various sources, there is little to no guarantee that the
structure of the data would not suddenly change due to an upgrade in the
corresponding web site. As most of the cases where mashups are desired, are fetching
data from a Web source, a widget could stop working if the web author even slightly
modifies the structure of the site markup. The mashup templates were created to
reduce the influence of this problem and the idea was that such templates could be
easily shared through a web service between users of the mashup tool. Upon a content
change, any community member could then proceed to fix the affected mashup files
and other users could then update their repositories respectively. While this approach

56 L. Holmstedt, T. Mikkonen, and M. Terho

does not even attempt to defeat the original problem, there is no definite solution – for
instance, a web page author might move the content to an entirely different location,
rendering even advanced heuristic-based content retrieval attempts futile.

A further typical mashup related problem associated with the nature of the web
sites is that they are usually not valid HTML or XHTML. Research shows that only a
fraction of all pages on any given site are completely valid [10], which results in
errors in parsers that do not offer error processing facilities. While the native XQuery
support for Qt is otherwise adequate, it offers minimal error handling facilities,
making it difficult to use with a great many test cases. Experience has shown that
regular expressions and even concatenated substring matches are much more effective
at finding the desired data. While a visual editor for generating these does not exist
yet, it is one of the future development targets.

6.3 Tools and Technologies

Comparable tools exist in terms of visual data creation, like Yahoo Pipes. The
difference lies in web-based interface of Yahoo Pipes, and the fact that Pipes is
concentrated solely on data mashups, as opposed to the mashup tool built on top of Qt
Creator, which also enables usage of created data in user interfaces. A limited
comparison can be also made to tools that help creating desktop widgets, such as
Dashcode for OS X. Dashcode offers powerful tools modifying the visual appearance
of widgets and programming them with JavaScript. While web-based data can be used
in the interface, such as RSS feeds, the data itself cannot be modified in a visual way
as in the Qt Creator extensions. However, it can be argued that Dashcode's UI tools
are easier to use for novices than those in Qt Designer – a test with Dashcode to create
an RSS feed with a personalized interface took less than half an hour, with no prior
experience with the tool. On the other hand, creating a similar application with vanilla
Qt Designer amounts to hours even from an experienced developer, due to the fact
that data has be set into the widgets programatically. The mashup extensions set Qt
Creator on par with tools like Dashcode, as it is only a matter of minutes to build a
data model from web sources and assign it to a view.

Compared to other technologies, client-side mashups created with Qt are
associated with higher performance and a more complete access to the operating
system if needed through the powerful Qt API. As any existing web applications can
be readily utilized through Qt's WebKit API with similar performance to web
browsers utilizing the WebKit, such as Apple Safari, Qt seems to be an ideal choice,
if additional client-side functionality is desired. Obviously, when considering a client-
side mashup runtime environment, it is clear that security features need attention
before large-scale use. At present, considerations on how a convenient model could
be created have been based on J2ME [11], but we do of course acknowledge that in
that context the distribution model of applications is completely different.

Another approach for a mixture of web and native content would be
implementation of a plug-in for web browsers that is able to render Qt content.
Building a basic version of such a plugin is not difficult, but problems arise in
particular with security. Furthermore, using web browser as a platform again

 Tool Support for Constructing Mobile Mashups 57

somewhat defeats the purpose of client-side mashups, although gained performance
that arises from the use of Qt can always be seen as a positive side. Additionally,
constructing websites with an unlimited set of tools, as opposed to the current
approach of modifying document-based content with scripts to make websites look
more functional, is attractive by itself.

Competing technologies such as Flash, often used for mashup as well as web
application development, are thought of as an easier alternative than C++. Research
supports that C++ is difficult to learn [12] and because of its complexity, it is also less
productive. With the Mashup Editor, new UI technologies, scripting and other
advances, these problems may be eliminated or at least become less pronounced.
Even with the current, experimental QtScript bindings for the GUI widgets and such,
it is possible to build complete applications with pure QtScript. While script-side
documentation and development tools still need improvement, it opens up new
possibilities for cross-platform development.

7 Conclusions

In this paper we have discussed a mashup editor for client-side mashups that are well-
suited for mobile environment. The system was developed using tools and techniques
that the Qt framework provides. Even in its current state, the Qt Creator extensions
can be used to successfully create simple applications with a considerable reduction in
the lines of code – for basic applications that simply display data, no code has to be
written at all.

The comparison between a mashup engine-driven and a vanilla Qt implementation
reveals performance issues, but also a promise of better reusability and reduced effort
in software development. While the vanilla implementation does not use many lines
of code either in absolute terms, it can be argued to be a considerable difference to a
developer new to C++ development, which is typically considered difficult.

Interesting future directions also include better integration to device-specific
facilities such as a cell phone contact book and data engines provided by the operating
system, such as Akonadi (http://pim.kde.org/akonadi/) available on the K Desktop
Environment (http://www.kde.org/). Moreover, provided with a declarative fashion to
compose user interfaces in the form of Qt Quick, the developer is offered an extended
toolset for the development of interesting, interactive mobile mashups.

References

1. Mikkonen, T., Taivalsaari, A., Terho, M.: Lively for Qt: A Platform for Mobile Web
Applications. In: Proceedings of the Sixth ACM Mobility Conference, Nice, France,
September 2-4 (2009)

2. Nyrhinen, F., Salminen, A., Mikkonen, T., Taivalsaari, A.: Lively mashups for mobile
devices. In: Proceedings of the MobiCase 2009 Conference, San Diego, CA, USA,
October 26-29 (2009)

3. ECMA Standard 262: ECMAScript Language Specification, 3rd edn. (December 1999)

58 L. Holmstedt, T. Mikkonen, and M. Terho

4. Yahoo Inc. Yahoo! Maps Web Services – Geocoding API (2010)
5. Nokia Corporation. Qt 4.6: View Classes (2010),

http://qt.nokia.com/doc/4.6/model-view-view.html (reviewed January
18, 2010)

6. Nokia Corporation. Qt 4.6: An Introduction to Model/View Programming (2010),
http://qt.nokia.com/doc/4.6/model-view-introduction.html
(reviewed January 18, 2010)

7. Nokia Corporation. Qt 4.6: QPicture Class Reference (2010),
http://qt.nokia.com/doc/4.6/qpicture.html (reviewed January 18, 2010)

8. Lassila, O.: Enabling Semantic Web Programming by Integrating RDF and Common Lisp.
In: Proceedings of the First Semantic Web Working Symposium. Stanford University (July
2001)

9. World Wide Web Consortium. Resource Description Framework (RDF) Model and Syntax
Specification. World Wide Web Consortium (1999)

10. Marincu, C., McMullin, B.: A comparative assessment of Web accessibility and technical
standards conformance in four EU states. First Monday 9(7-5) (2004)

11. Riggs, R., Taivalsaari, A., Van Peursem, J., Huopaniemi, J., Patel, M., Uotila, A.:
Programming Wireless Devices with the Java 2 Platform, Micro Edition, 2nd edn. Java
Series. Addison-Wesley (2003)

12. Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M.: A Study of the Difficulties of Novice
Programmers. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, Capariga, Portugal, pp. 14–18 (2005)

	Tool Support for Constructing Mobile Mashups
	Introduction
	Mashup Development
	Qt as a Mashup Environment
	Qt Creator
	Qt for Client-Side Mashups

	Client-Side Mashup Tools
	Mashup Editor
	Qt Designer Extension

	Sample Applications
	RSS Newsfeed Combiner Mashup
	GPS Coordinates from Addresses of Contacts in Local Database

	Discussion
	Implementation Restrictions
	Mashup-Related Restrictions
	Tools and Technologies

	Conclusions
	References

