
M. Griss and G. Yang (Eds.): MOBICASE 2010, LNICST 76, pp. 401–414, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Google Android: An Updated Security Review

Yuval Fledel, Asaf Shabtai, Dennis Potashnik, and Yuval Elovici

Deutshce Telekom Laboratories at Ben-Gurion University,
Beer-Shava, Israel

{fledely,shabtaia,dennisp,elovici}@bgu.ac.il

Abstract. Among the most significant smartphone operating systems that have
arisen recently is Google’s Android framework. Google’s Android is a software
framework for mobile communication devices. The Android framework
includes an operating system, middleware and a set of key applications.
Designed as open, programmable, networked devices, Android is vulnerable to
various types of threats. This paper provides a security assessment of the
Android framework and the security mechanisms incorporated into it. In
addition, a review of recent academic and commercial solutions in the area of
smartphone security in general and Android in particular is presented.

Keywords: Mobile devices, Google, Android, Security.

1 Introduction

Among the most significant smartphone operating systems that have arisen recently is
Google’s Android framework. Designed as open, programmable, networked devices,
Android is vulnerable to various types of attacks that can make the phone partially or
fully unusable, cause unwanted SMS/MMS billing, expose private information, or
infect every name in a owner’s phonebook [1].

Smartphone market share in the US has increased from 11 percent of all cellular
phone subscribers in 2008 to 17 percent in 2009, and it is expected to increase
significantly over the next few years, almost fivefold by 2013 [2]. The Android
framework has gained much interest by both the developers' community and
smartphone users in a relatively short period of time. In fact, according to [3] Android
is the fourth most popular smartphone in the US as of February 2010. Smartphones
based on the Google Android operating system are expected to increase 10 percent
during 2010 [4]. Consequently, smartphones are likely to become a fertile ground for
various types of threats. Another major factor attracting hackers is that smartphones
are often carried for business purposes and are likely to have sensitive and valuable
information. They also provide remote access to a company’s most sensitive data,
which can lead to data leakage if their phones are hacked into.

The increasing number of attacks on mobile platforms along with the increasing
usage has led many security vendors and researchers to propose a variety of security
solutions for mobile platforms. As a case in point, Symbian and Google have
designed their operating systems to enable applications to run only in specialized

402 Y. Fledel et al.

sandboxes, minimizing the capability of malware to spread [5]. A robust application
signing and certification mechanism was integrated into Symbian’s operating system
and was proven highly effective in reducing malware attacks. The risks to Android
are nevertheless significant, mainly because it’s an open source and open platform
software stack operated in a heterogenic mobile environment. On one hand, it allows
introducing new applications and services very quickly. On the other hand, it raises
security issues that the academic community and security vendors attempt to address.
This paper reviews and assesses the security mechanisms incorporated into the
Android framework. Additionally, a list of security mechanisms which can be
incorporated to harden the Android is presented.

2 The Android Framework

The Android1 software stack is built on the Linux kernel, which is used for its device
drivers, memory management, process management, and networking. The next level
up contains the Android native libraries. These libraries are written in C/C++ and are
used by various system components in the upper layers. Incorporating these libraries
in Android applications is achieved through Java interfaces or native compiled code.
The next level is the Android runtime, comprising of the Dalvik Virtual Machine and
the core libraries. Dalvik runs .dex (Dalvik executable) files that are designed to be
more compact and memory-efficient than Java .class files. The core libraries are
written in Java and provide a substantial subset of the Java 5 SE packages as well as
some Android-specific libraries. The Application Framework layer, written fully in
Java, includes Google-supplied tools as well as proprietary extensions or services.
The topmost Application layer provides applications such as phone, web-browser and
email client.

Each application in Android is packaged in an .apk (Android package) archive for
installation. The .apk is similar to a standard Java jar file in that it holds all code and
non-code resources (e.g., images, manifest) for the application. The applications are
written in Java based on the APIs provided by the Android SDK. An Android package
is basically a collection of components: Activities, Services, Broadcast Receivers and
Content Providers. Components in one .apk are isolated from components in another
.apk and can only communicate with each other and share data through means
provided by the system. Each .apk is associated with a primary process in which all of
the application's components are executed. Enck et al. [6] and Burns [7] provide an
overview of the main components of an Android application and guidelines for using
the Android-specific mechanisms correctly in order to protect the application.

Android is a multi-process system, where each application (and parts of the
system) runs in its own process. For the most part, security between applications and
the system is enforced at the process level through standard Linux facilities, such as
POSIX user IDs and group IDs assigned to applications. Files in Android (both
application- and system-files) are subject to the Linux file permission mechanism. In

1 www.android.com

 Google Android: An Updated Security Review 403

addition, access-control is provided through the application level permission
mechanism that enforces restrictions on the specific operations that a particular
application can perform. Signing applications is another significant security feature in
which all of the application’s files are signed along with their meta-data in the .apk. A
review of Android's inherent security mechanisms is provided in [8].

3 Android Security Analysis

In this section we describe findings from our assessment of various security aspects of
the Android framework. The results presented in this section were validated on T-
Mobile G1 and HTC Desire devices.

3.1 Analysis of the Android Framework’s Cornerstone Layers

This subsection presents the outcome of our analysis of Android’s lower layers. We
adopted a security-oriented code-review approach to identify potential vulnerabilities.
We focused on special locations that might be problematic such as interfaces,
structures and configurations. The source code that was reviewed is from the Android
open source project repository.

Linux Kernel

In 2009, 111 CVE (Common Vulnerabilities and Exposures) entries were logged for
the Linux kernel (i.e., two entries a week). Drivers and vendor-specific additions are
the main locations for these vulnerabilities. Android contains a considerable amount
of vendor-specific code. Therefore, Android code should be submitted to mainline.
Code that is integrated into the mainline passes several phases of checks and
validations that are likely to identify and remove bugs; some may have security
implications. However, Android has diverged from the mainline kernel and Android
vendors have so far published the code only after shipping a product on the market.

Android modifications include hardcode POSIX user ids (uids) and group ids
(gids) in the kernel code. These modifications contradict the basic design decisions in
Linux. However, it increases security since the system services are not required to run
with root privileges. Two examples of such modifications are the "paranoid network"
that limits network access based on gids, and the Binder which accepts the first
process that uses it as its master, but only if it has the "system" group.

The Linux kernel is highly configurable. On a typical Android device, common
Linux options are disabled in order to reduce memory consumption. Less code also
means a smaller attack surface. On the other hand, it also means omitting "security
enabler" modules. A few examples from HTC Desire that have security implications
are: disabling the auditing support and BSD task accounting (less input is available to
intrusion detection systems); disabling SYN cookie support (if enabled, it can reduce
the chance of SYN flood attack); and disabling security modules (e.g., SELinux). The
following modules are enabled: PPTP, L2TP and IPSec-based VPN connections
(supported on Android from release 1.6); CFS scheduler group scheduling; disk

404 Y. Fledel et al.

encryption; and NetFilter (provides firewall capabilities). Enabling these modules in
the kernel configuration requires a trivial amount of effort and also consumes minor
memory space. However, providing the means for using these modules is not trivial
and requires additional user-space components that will provide the API for these
modules in order to avoid the need for root access.

Android employs Linux’s Completely Fair Scheduler (CFS) that ensures that an
equal share of CPU is distributed among all processes. In addition, specific processes
can be granted a larger share, but are still prevented from monopolizing the CPU. To
test this fairness mechanism we have created a simple application that starts 100
threads that loop doing nothing in particular. Running this application on a T-Mobile
G1 device resulted in the entire device being frozen.

Linux also supports storage quota, but Android does not enable it. This means that
an application can create files of any size, on both the internal flash and the SD card.
Files can be created outside of the private application folder and therefore do not
counted in the application's size figure.

Finally, we tested the applicability of existing Linux root-kits and key-loggers that
usually require root level access in order to install. We successfully compiled and
activated the rathole and Linux rootkit V (lrk5) root-kits, and the vlogger key-logger
on Android [9]. The running root-kits on Android can remotely explore running
processes, hide or kill specific processes, prevent hidden processes from being
stopped, enable packet sniffing and provide several methods to communicate with the
root-kit such as encrypted SSH backdoor and remote shell. Using the key-logger we
managed to log keystrokes on the devices keyboard [9]. Detailed description of
similar experiments is provided in [3].

System Libraries

Android makes use of many native libraries. These libraries are intended to be used
by native processes, other native libraries or by Dalvik through Java Native Interface
(JNI). JNI is normally used for: (1) providing low-level functionalities; (2)
implementing computationally intensive calculations; (3) hiding code and licensing
issues; and (4) leveraging existing libraries.

The native libraries are written in C/C++, which is not type safe. Thus, native
libraries have a higher chance of bugs than Java code. Since JNI loads native libraries
into the memory space of a Dalvik process, bugs in the native library may crash the
Dalvik process, corrupt its memory or cause arbitrary code execution. For that reason,
system libraries are a target when searching for vulnerabilities. Example
vulnerabilities in Android native libraries are CVE-2009-0606, and CVE-2009-0608.
Usually, such vulnerabilities stem from using outdated vulnerable versions of ported
libraries and not keeping pace with upstream bug fixes.

Dalvik Runtime

Dalvik is a Java Virtual Machine (VM) based on Apache Harmony which was
extensively modified and adapted for environments with low memory. Securing
Dalvik is crucial since vulnerability in the VM affects all applications. Dalvik

 Google Android: An Updated Security Review 405

provides the possibility of executing native code through JNI without requesting
permission for it. Employing native code, however, removes the layer of defense
provided by the VM.

A potential weak spot is the .dex file loading code which is required to deal with
.dex files from unreliable sources. The verification process of .dex files that is
performed during the installation of the application is also applied whenever the .dex
files are loaded to memory. By inspection of the Dalvik code we conclude that sanity
checking is implemented in the initial loading code. However, we identified
unchecked pointer operations and as a result, we were able create a malformed .dex
file that during installation caused the Package Installer to crash resulting in a
phantom application that cannot be uninstalled because the installer claimed it is
already installed, nor can another package with the same package name be installed if
it has a different signature.

Pure "desktop" Java malware spreads by injecting code into other class files
without harming the valid structure of the victim class file and its verifiability. Java
malware such as StrangeBrew and BeanHive search for writable class files in the
user’s working directory and then modify them to start execution from the viral
segment. From our experiments with the StrangeBrew malware we conclude Java
malware are not applicable to the Android framework for two reasons. First, they
infect class file formats and must be adjusted to support injecting malicious code into
.dex files. Second, in Android, applications do not have write privileges to any .apk
files. Moreover, since it is not possible to list a folder of another application for its
files, any effective search for files to infect is not feasible [9].

Forcing Windows OSs (XP and Vista) to automatically run a malicious Windows
executable from a T-Mobile G1 device (located on the SD-card) by using an
Autorun.inf file was also tested and found not feasible [9].

3.2 Application-Level Permissions

The application-level permission mechanism is responsible for securing APIs
provided by the system and other applications [8]. Whereas some of the core
permissions are reserved for Google applications, a large variety of Normal and
Dangerous protection level permissions are still available for non-Google
applications. As a result, abuse of such permissions is inevitable. As an example, an
Internet access with the ability to read various contents stored on the device (e.g., files
on the SD card, SMS messages or GPS tracking) can be used to acquire confidential
information or to spy on the user without his/her knowledge. Other examples include:
Denial of Service (DoS) attacks (e.g., denying the ability to place phone calls or
draining the battery) and the abuse of paid services (e.g., phone calls, SMS/MMS
messages, and chargeable network traffic). As a case in point, SMobile analysis of
68% of the applications available on the Android market indicates that 20% of the
applications request permissions to access private or sensitive information that can be
used for malicious attacks. Small portion of the applications have the ability to brick
the device, read or use the authentication credentials from another service or
application, or send unknown premium SMS messages without the user’s

406 Y. Fledel et al.

authorization [9]. A recent example is the AndroidOS.FakePlayer.a Trojan horse that
masquerades as a media player but in the background sends SMS messages to
premium rate numbers.

Another source of difficulties arises from the shared user-ID feature. When an
application, declaring a shared user-ID, is installed, all of the granted permissions are
ascribed to the shared user-ID. At runtime, each of the applications sharing that user-
ID will be granted by a combined set of permissions. A simple attack scenario based
on exploiting the user-ID feature would probably take place as follows. The user
installs two applications sharing a user-ID. The first requests access to the Internet
while the second wishes to access the contact list. As soon as both applications are
installed, each application is capable of both reading the contacts and sending them
through the Internet. The user, however, is unaware of the collaboration between the
completely unrelated applications. A major design flaw is that the user does not have
the ability to only partially grant the requested permissions.

3.3 Installing Applications

The Package Manager (the service responsible for the installation process) validates
the correctness of the .apk during installation. Validation includes: verification of the
digital signature; confirmation of legitimacy of shared user-ID and permission
requests; and the validation/verification of the included .dex file. The package
installation API is guarded by the INSTALL_PACKAGES permission which is of
Signature protection level and defined in the core Android package. Thus, malicious
applications cannot install applications on their own. The Package Installer, a
legitimate application-level wrapper for the Package Manager is included as one of
the core applications that are provided with the Android-operated device.

There are three main methods for installing .apk files. The first, which is intended
mainly for developers, is using the Android Debug Bridge (a command-line tool that
is supplied along with the SDK). The installation command is issued from a PC while
the Android device is connected via USB connection. The actual installation is done
directly by the Package Manager without any user interaction and therefore has the
ability to propagate worms from PCs to devices silently. The two remaining
installation options are intended for the device owners. The first one is installing via
Android Market. Since the Market application is signed by Google, it can interact
directly with the Package Manager. The last installation method is based on installing
applications from the SD card using 3rd party applications that enable the user to
search for .apk files on the SD card and to initiate the installation process which is
carried out by the Package Installer.

When installing an existing application, the installation will be allowed only when
the signatures of the existing application and the new application match. The
signature-matching safeguards against malicious applications that attempt to gain
access to private data through substitution of the original package.

 Google Android: An Updated Security Review 407

3.4 Web-Browser

Web-browsing exposes Android users to common attacks such as: Cross-Site
Scripting (XSS); URL encoding attacks; social engineering; and malicious scripts.
WebKit, Android’s open-source Web engine, has a history of vulnerabilities. Previous
attacks on the Web browser include a buffer overflow in an outdated native library,
and an explicit XSS vulnerability. Both attacks enabled the attacker to run any
malicious code on the device with all the abilities and privileges assigned to the Web
browser application. Since the browser runs with its own POSIX user-id, an attack is
limited to the browser, leaving other phone functions (e.g., dialing or messaging)
unharmed. The browser is also limited by the application-level permissions it has
been granted at installation (Internet access, ability to acquire wake locks, location-
based APIs, network-related information retrieval, and writing to the SD-card).
Nevertheless, in a successful attack, the attacker could gain information stored by the
browser such as cookies, passwords, favorites and form-field values. Having access to
all of the browser’s private data, the attacker could corrupt it in order to prevent
correct operation in the future. The browser provides several security-related
configurable options. These include remembering form data and passwords; accepting
cookies; displaying security warnings; loading images; enabling JavaScript; blocking
pop-ups; and setting (or disabling) the homepage.

3.5 Connectivity and Communication

Multiple communication transports (Bluetooth, Wi-Fi, cellular, cable) provide many
options for malware to infiltrate a device. Some malware can propagate through more
than one transport. For example, Lasco is a malware which spreads via the Bluetooth
on Symbian devices [11]. In addition, it also infects all Symbian Installation Source
(SIS)-files using social engineering.

Bluetooth on Android supports pairing and audio headsets. Additional functions
can be enabled using 3rd party applications (e.g., Object Push). For the pairing
process, Android allows itself to become discoverable, but only for a short duration of
two minutes. In addition, the owner needs to accept the connection. This significantly
decreases the likelihood of being detected by attackers).

The two USB sub-protocols which are supported by Android are: mass-storage
device and the Android Debugger Bridge (adb). By default, adb is disabled, and the
device is mounted as mass-storage device where only the device’s SD card are
exposed. When USB debugging is enabled, the device can be managed with the adb
tool which is provided in the Android SDK. This tool makes it possible to push and
pull files to and from the device, install .apk files, redirect TCP and UDP packets, etc.

One of the Android-specific Linux kernel changes is the "Paranoid-Network".
Usually, on Linux systems, any user-space process can open network connections at
will. On Android, a user-space application must receive the INTERNET permission in
order to make any kind of network connection. The enforcement of the INTERNET
permission is done at the kernel level and therefore even native applications are
subject to this setting. The Paranoid Network setting works by hard-coding several

408 Y. Fledel et al.

POSIX group IDs in the kernel. An application must be a member of the relevant
group before it is allowed to create sockets.

3.6 Conclusions

From our analysis of the Android framework we identified two main threat classes
which should be countered by employing proper security solutions/capabilities. First,
whenever discovering a bug or vulnerability in one of the core components (such as a
native library or a kernel component), an attacker might be able to run malicious code
in a highly privileged mode and even gain full control over the device. This threat is
amplified due to the fact that Android’s code is publicly available; some system
processes run with root privileges; and no fine-grained access control mechanism
exists for system processes. Second, the application-level permission mechanism is
not sufficient and installation of an application that maliciously uses permissions
granted by the unaware user is a scenario which is likely to occur. The framework
also provides the adb install feature that makes it possible to install applications and
to grant permission to an application without any user interaction. In addition, a user
cannot approve a sub-set of requested permissions (it is "all-or-none") and cannot
verify that an application uses its granted permissions only for benign purposes.
Moreover, the shared user-ID mechanism allows sharing permissions between
applications without a user’s awareness or the need for explicit approval.

These threat classes may results in compromising the availability, confidentiality
and/or integrity of private content that is stored on the device (e.g., pictures, contacts,
emails, documents), applications and services (e.g., phone, messaging, emailing,
Internet) and resources (e.g., battery power, communication, memory and CPU).

4 Applicable Security Mechanisms for Android

In order to further harden an Android device and mitigate the identified high-risk
threats, additional safeguards may be employed. Some of these mechanisms were
tested and evaluated in our mobile security laboratory. Several security companies,
such as SMobile, Mocana, McAfee and DroidSecurity are already providing security
solutions for Android. Additionally, several security mechanisms have been proposed
and evaluated by the academic community. In the following paragraphs we provide a
description of several security mechanisms that can be adapted to harden the Android.

Anti-malware

To identify and remove malware, anti-malware software examines files, email
attachments, memory, system configuration, MMS, Bluetooth objects, etc. It usually
identifies known malware based on a signature repository. As mentioned earlier,
several commercial solutions are available for Android which also provides an anti-
malware component. There are also open-source anti-virus and rootkit detectors that
can be ported to Android such as the ClamAV [12]. Anti-malware is a well-known
solution and is extensively used in other platforms. Signature-based solutions provide

 Google Android: An Updated Security Review 409

low false-positives, but will only detect known malware and require continuous
updating of the signature repository. At this time, the anti-malware solution does not
seem to be effective for mobile devices.

Firewalls

A firewall running on Android can prevent remote network attacks. It is a well known
and highly effective solution; however, it will not protect against attacks via web-
browser, SMS/MMS, email or Bluetooth and will not provide phone call filtering.

We have implemented a preliminary Firewall for Android which is based on
NetFilter. NetFilter is a Linux kernel subsystem that provides firewalling capabilities
(e.g., packet filtering and connection tracking capabilities). NetFilter is enabled on
Android devices including T-Mobile G1 and HTC Desire, thus only a control
application is needed. However, in order to update the firewall policy, the control
application should run with root privileges.

In the basic firewall, that we activate on Android rules are very simple and provide
the ability to block communication to/from specific IP addresses and ports. The more
suitable firewall policy for Android is one that allows defining rules at the application
level. In such a way the policy will define for each application who can access it and
where it can send information to. We can also make sure that port scanning is not
preformed from the device by a malicious application. However, firewalling at the
application level is hard to achieve since, as mentioned before, any application that is
granted with INTERNET permission can open a socket at its will.

Intrusion Detection System

Host-based intrusion detection system (HIDS) monitors the device, applications or
user's behavior to detect/prevent abnormal or known malicious behavior. Anomaly-
based IDS can detect unusual phone call/SMS activity, denial of service attacks, and
protect the information on the device in case of theft or loss. While it may detect new
and isolated attacks, it will probably suffer from high rate of false positives.

Most academic initiatives to enhance protection of mobile devices have employed
host-based intrusion detection systems comprising an agent collecting various features
from the device and then applying various machine learning algorithms to classify the
behavior of the system as benign or malicious or to detect anomalies [9]. In our
Android security research we developed and evaluated the "Andromaly", which is an
experimental anomaly-based IDS for Android [13][14]. Andromaly employs various
methods, such as anomaly detection and temporal reasoning, to facilitate detection of
maliciously behaving applications. An IDS such as the Andromaly can be used for
reporting suspicious behavior of applications to Google via the Android Market.

Access Control

Android incorporates several access control mechanisms. While these mechanisms
are enforced on the application level or only on files, Linux can provide other tools
that are directly enforced by the kernel. As a case in point, we tested the Security-
Enhanced Linux (SELinux) on an Android G1 device [15]. SELinux allows restricting

410 Y. Fledel et al.

of any process in the system, including root-owned, and by that limiting access of
processes and users to resources and/or services, thus limiting the potential damage
from malicious or exploited applications. Its decisions are based on an access control
policy, which should be deployed together with the base system. Our experimentation
with SELinux on Android has shown that it consumes very few resources and incurs a
very low overhead [15].

Android provides simple authentication functionality based on a screen lock
pattern mechanism. Such mechanism can be extended so that the device can be locked
remotely (when the device is lost or stolen), or by protecting sensitive information
stored on the device, or on the SD card using password-based encryption.

In the same context, Ni et al. [16] present the DiffUser framework that provides
role-based access control mechanism for smartphone users. DiffUser was
implemented and evaluated on Android. Each user can be assigned with different
rights. For example, only an administrator can install/uninstall applications; the guest
user can only use the phone application.

Protecting Android Permissions

During the installation of application on Android, the user may view a list of required
permissions, and may decline installation based on this list. However, there is no way
for the user to allow only a subset of the required permissions. Nauman and Khan
[17] added an advanced feature to the Package Installer enabling the user to decline
certain requested permissions but still permit installing of the application. Such a
change would be highly beneficial to security aware users. This solution would
protect from granting unneeded permissions that could be maliciously used. However,
applications granted with a partial set of permissions may crash if the developer did
not anticipate and provide a solution for such a situation (i.e., handle cases in which
partial permissions were given). This solution can be enhanced for corporate users to
provide the option for hardening Android devices by limiting permissions granting
based on a predefined policy.

Additional efforts for enhancing Android security at the application level
permissions are presented by the Kirin system [18] and Secure Application
INTeraction (SAINT) [19]. These two systems presented an installer and security
framework that realize an overlay layer on top of Android’s standard application
permission mechanism. This layer allows applications to exert fine-grained control
over the assignment of permissions through explicit policies.

Spam-Filter

A spam filter blocks unwanted MMS, SMS, emails, and calls from an unreliable
origin. In the mobile phone arena, spam filters are implemented using the white/black
listing approach, with caller ID and words/phrases dictionary being used as the source
for allowing/blocking a call or a message. Products for spam filtering on Android are
already available. eMail spam filtering can be provided by either the email server
(e.g., gmail account) or by Android client side email application.

 Google Android: An Updated Security Review 411

Application Certification

Android uses certificates in a limited way in order to ensure package integrity and that
two or more packages are from the same origin. Applications that define their own
permissions may choose to grant such permissions only to packages sign by the same
author. There is no support for root Certificate Authorities (CAs) or for certificate
chains in Android. In order to employ the application trust mechanism, Android needs
to be modified to support trust levels of applications, associating CA certificates to
the trust level, as well as verifying certificate chains. This mechanism is highly
effective in detecting malicious applications before they are installed on a device.
However, this solution is highly expensive in terms of implementation and
maintenance.

Certification process was implemented by other mobile operating systems (e.g.,
Symbian, iPhone and Blackberry). Although certification has been proven very
effective, it is not error prone and malicious applications can still unintentionally be
approved and signed. In addition we can assume that users will continue to download
and install “unapproved” applications that are available from free websites and prefer
them over trusted applications that need to be paid for. Furthermore, Android is
grounded in an open source approach, while the certification framework contradicts
this approach; thus researchers should look for alternatives to capture application
semantics without relying on manual code inspection.

Automated Code Analysis and Verification

Android .apk files encapsulate valuable information that can help in understanding an
application’s behavior. This information includes requested permissions, framework
methods called by the application, framework classes used by the application, User
Interface widgets and more. We took that avenue by exploring the use of machine
learning classifiers on static features extracted from Android’s application files [19].
In this approach, the application file is represented by static features extracted from
the file and the classifiers are then applied to learn patterns in the code in order to
classify new files. Schmidt et al. [12] evaluated a framework for static function call
analysis and performed a statistical analysis on function calls used by native
applications. Chaudhuri [21] presented a formal language for describing Android
applications and data flow among application’s components. This formal language
can be used for statically analyzing Android applications and data flow between
applications and comparing those with security specifications defined in the
application’s manifest. This provides the ground for security decisions such as is the
application safe and does it do what it claimed to do. Therefore it can provide the
means for a developer to certify is application, and for the user to verify the proof of
the certification before installation.

Such an approach is closely coupled with certification and can provide an
automated alternative as a part of the certification process; developers can certify their
applications, and users can verify the proof of the certification before installation.
Such a method can also be used for rapid examination of Android packages and
informing Google team, via the Android Market of suspicious applications.

412 Y. Fledel et al.

Data Leakage Prevention (DLP)

DLP is a relatively new field in computer security used mainly by enterprises. DLP
mechanisms prevent sensitive/private content from leaking out. Identification of such
content is done by applying various content and context inspection mechanisms (e.g.,
predefined keywords and patterns/regular expressions, fingerprinting of sensitive
content and statistical algorithms). These mechanisms haven't been integrated yet into
smart mobile platforms despite the fact that these devices can store content that
should be protected (e.g., location, documents, contacts, calendar etc.)

We have investigated the implementation of DLP solution on Android. Its main
requirement is the possibility to monitor and block outbound communication over the
network (Wi-Fi/3G), SMS, or MMS. We analyzed several ways to hook into the data
flow. Due to security considerations, such changes require deep OS integration, and
can’t be supported by just adding a regular (add-on) Android application.

Network data flow can be interrupted in the following locations: Java API, C API
(i.e., native libraries) and kernel. Altering the Java API is simple but can be easily
bypassed by calling the native libraries. Hooks in native libraries, such as libc,
requires relatively low maintenance yet is can still be bypassed by using statically-
compiled binaries. Kernel hooking is very difficult to bypass, but requires high
maintenance.

Interruption of SMS messages can be done in the following locations: SMS
application, application framework, serial line, rild daemon and kernel. Altering the
SMS application requires low effort but can be easily bypassed by installing a 3rd
party SMS application. Modifying the application framework is easy to implement
and also difficult to bypass. The serial line used by rild can be rerouted to a
monitoring daemon as demonstrated by Mulliner and Miller [22]. Altering the rild
daemon and the kernel is also possible, however, it is has no additional benefits over
the previous methods.

MMS is simply an SMS message that is marked as non-textual, and contains a
URL. Therefore monitoring MMS is similar to the combination of file uploads (i.e.,
network monitoring), and SMS monitoring.

An Additional DLP feature, anti-theft, is provided for smartphones by several
security vendors. This feature provides remote control capability over the device in
case it gets lost or stolen. This module enables to locate the device, block it and wipe
its data remotely.

5 Summary and Conclusions

In this paper we analyzed security issues pertaining to Google’s Android in order to
identify potential security flaws that should be mitigated using security solutions for
Android devices. The risk arising from these vulnerabilities is amplified by the fact
that as a smartphone, Android devices are expected to handle personal data and
provide PC-compliant functionalities, thereby exposing the user to all the attacks that
threaten users of personal computers.

 Google Android: An Updated Security Review 413

We reviewed the security-related mechanisms that are inherently integrated in the
Android framework and surveyed additional security mechanisms that can be applied
on Android-based handsets. Several of these mechanisms were tested and evaluated in
our laboratory. A security suite for mobile devices, especially open-source and open
platform such as the Android, should include a collection of tools, optionally
operating in collaboration.

Our review indicates that the defensive shell around Android was designed with
extensive care since the security mechanisms embedded in Android address a broad
range of security threats. However, despite these Android-integrated measures we
conclude that it is highly important to incorporate a mechanism that can prevent or
contain potential damage deriving from an attack on the Linux kernel layer such as
the SELinux access control mechanism. Also, better protection should be added for
hardening the Android permission mechanism and protecting owner's private data by
modifying the permission mechanism, using a firewall, Intrusion Detection System,
automated static analysis, encryption and a DLP mechanism.

Finally, remote management mechanisms can be used to consolidate several other
security mechanisms while providing the ability to remotely control, configure and
manage the device (e.g., setting network parameters or firewall policy, pushing
security updates, tracking the device location, uninstalling/installing applications,
bricking the device and deleting or encrypting data). Context-aware capabilities can
also be added to dynamically allow and restrict access to resources (documents,
emails) and services (camera, Internet, phone, messaging) based on a predefined
policy and on the instantaneous context of the device.

References

1. Piercy, C.: Embedded devices next on the virus target list. Electronic Systems and
Software 2(6), 42–43 (2005)

2. Frost, Sullivan: World mobile anti-malware products markets. Frost and Sullivan Report #
M154-74 (2007)

3. Papathanasiou, C., Percoco, N.J.: This is not the droid you’re looking for. In: DEF
CON 18 (2010)

4. Pelino, M.: Predictions 2010: Enterprise Mobility Accelerates Again. Forrester (2009)
5. Lawton, G.: Is It Finally Time to Worry about Mobile Malware? Computer 41(5), 12–14

(2008)
6. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE Security

and Privacy 7(1), 50–57 (2009)
7. Burns, J.: Developing Secure Mobile Applications for Android. Technical Report, iSEC

(2008)
8. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google Android:

A Comprehensive Security Assessment. IEEE Security and Privacy 8(2), 5–44 (2010)
9. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S.: Google Android: A State-of-

the-Art Review of Security Mechanisms. CoRR abs/0912.5101 (2009)

414 Y. Fledel et al.

10. Vennon, T., Stroop, D.: Threat Analysis of Android Market (2010),
http://threatcenter.smobilesystems.com/wp-
content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-
10-v1.pdf

11. Emm, D.: Mobile Malware – New Avenues. Network Security 2006(11), 4–6 (2006)
12. Schmidt, A.D., et al.: Enhancing Security of Linux-based Android Devices. In: 15th

International Linux Kongress, Germany (2008)
13. Shabtai, A., Kanonov, U., Elovici, Y.: Intrusion Detection on Mobile Devices Using the

Knowledge Based Temporal-Abstraction Method. Journal of Systems and Software 83(8),
1524–1537 (2010)

14. Shabtai, A., Elovici, Y.: Applying Behavioral Detection on Android-Based Devices. In:
Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobilware 2010. Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, vol. 48, pp. 235–249. Springer, Heidelberg (2010)

15. Shabtai, A., Fledel, Y., Elovici, Y.: Securing Android-Powered Mobile Devices Using
SELinux. IEEE Security and Privacy 8(3), 36–44 (2010)

16. Ni, X., Yang, Z., Bai, X., Champion, A.C., Xuan, D.: DiffUser: Differentiated User Access
Control on Smartphones. In: Proceedings of the 5th IEEE International Workshop on
Wireless and Sensor Networks Security (2009)

17. Nauman, M., Khan, S.: Design and Implementation of a Fine-grained Resource Usage
Model for the Android Platform. To appear in International Arab Journal of Information
Technology (2010)

18. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of Computer and Communications Security Conference, pp.
235–245 (2009)

19. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich Application-
Centric Security in Android. In: Proceedings of the 25th Annual Computer Security
Applications Conference, Honolulu, Hawaii (2009)

20. Shabtai, A., Fledel, Y., Elovici, Y.: Automated Static Code Analysis for Classifying
Android Applications Using Machine Learning. In: International Conference on
Computational Intelligence and Security, Nanning, China (2010)

21. Chaudhuri, A.: Language-Based Security on Android. In: Proceesings of the ACM
Workshop on Programming Languages and Analysis for Security, pp. 1–7 (2009)

22. Mulliner, C., Miller, C.: Fuzzing the Phone in your Phone, Black Hat USA (2009)

	Google Android: An Updated Security Review
	Introduction
	The Android Framework
	Android Security Analysis
	Analysis of the Android Framework’s Cornerstone Layers
	Application-Level Permissions
	Installing Applications
	Web-Browser
	Connectivity and Communication
	Conclusions

	Applicable Security Mechanisms for Android
	Summary and Conclusions
	References

